| from numbers import Number |
| |
| import torch |
| from torch.autograd import Variable |
| from torch.distributions import constraints |
| from torch.distributions.dirichlet import Dirichlet |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| |
| |
| class Beta(Distribution): |
| r""" |
| Creates a Beta distribution parameterized by concentration `alpha` and `beta`. |
| |
| Example:: |
| |
| >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5])) |
| >>> m.sample() # Beta distributed with concentrarion alpha |
| 0.1046 |
| [torch.FloatTensor of size 2] |
| |
| Args: |
| alpha (Tensor or Variable): concentration parameter of the distribution |
| """ |
| params = {'alpha': constraints.positive, 'beta': constraints.positive} |
| support = constraints.unit_interval |
| has_rsample = True |
| |
| def __init__(self, alpha, beta): |
| if isinstance(alpha, Number) and isinstance(beta, Number): |
| alpha_beta = torch.Tensor([alpha, beta]) |
| else: |
| alpha, beta = broadcast_all(alpha, beta) |
| alpha_beta = torch.stack([alpha, beta], -1) |
| self._dirichlet = Dirichlet(alpha_beta) |
| super(Beta, self).__init__(self._dirichlet._batch_shape) |
| |
| def rsample(self, sample_shape=()): |
| value = self._dirichlet.rsample(sample_shape).select(-1, 0) |
| if isinstance(value, Number): |
| value = self._dirichlet.alpha.new([value]) |
| return value |
| |
| def log_prob(self, value): |
| self._validate_log_prob_arg(value) |
| heads_tails = torch.stack([value, 1.0 - value], -1) |
| return self._dirichlet.log_prob(heads_tails) |
| |
| def entropy(self): |
| return self._dirichlet.entropy() |