explicitly provide memory format when calling to clone() at Sorting.cpp

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28663

Test Plan: Imported from OSS

Differential Revision: D18333373

Pulled By: ifedan

fbshipit-source-id: 908880dd58d5e795db661a7249a11028f610c328
diff --git a/aten/src/ATen/native/Sorting.cpp b/aten/src/ATen/native/Sorting.cpp
index 53b2cfe..e2e4f35 100644
--- a/aten/src/ATen/native/Sorting.cpp
+++ b/aten/src/ATen/native/Sorting.cpp
@@ -120,7 +120,7 @@
     indices.zero_();
     return std::forward_as_tuple(values, indices);
   }
-  auto tmp_values = self.clone();
+  auto tmp_values = self.clone(at::MemoryFormat::Contiguous);
   auto tmp_indices = at::empty(self.sizes(), self.options().dtype(kLong));
   AT_DISPATCH_ALL_TYPES(self.scalar_type(), "kthvalue_cpu", [&] {
     dim_apply(
@@ -290,9 +290,9 @@
 #endif
   TORCH_CHECK(self.numel() > 0, "median cannot be called with empty tensor");
   if (self.dim() == 0 && self.numel() == 1) {
-    return self.clone();
+    return self.clone(at::MemoryFormat::Contiguous);
   }
-  auto tmp_values = self.clone().view(-1);
+  auto tmp_values = self.clone(at::MemoryFormat::Contiguous).view(-1);
   auto result = at::empty({1}, self.options());
   AT_DISPATCH_ALL_TYPES(self.scalar_type(), "median", [&] {
     // note, quick_select is 0 based while kthvalue is not