| from contextlib import contextmanager |
| from typing import Any, List, Tuple, Callable, Optional |
| import argparse |
| import random |
| import torch |
| import traceback |
| import time |
| import functools |
| from torch.utils.benchmark import Timer |
| |
| ''' |
| Usage: |
| 1. Run your script and pipe into a log file |
| PYTORCH_JIT_LOG_LEVEL=">>graph_fuser" python3 my_test.py &> log.txt |
| 2. Run log_extract: |
| log_extract.py log.txt --nvfuser --nnc-dynamic --nnc-static |
| |
| You can also extract the list of extracted IR: |
| log_extract.py log.txt --output |
| |
| Passing in --graphs 0 2 will only run graphs 0 and 2 |
| ''' |
| |
| def extract_ir(filename: str) -> List[str]: |
| BEGIN = "<GRAPH_EXPORT>" |
| END = "</GRAPH_EXPORT>" |
| pfx = None |
| current = "" |
| graphs = [] |
| with open(filename, "r") as f: |
| split_strs = f.read().split(BEGIN) |
| for i, split_str in enumerate(split_strs): |
| if i == 0: |
| continue |
| end_loc = split_str.find(END) |
| if end_loc == -1: |
| continue |
| s = split_str[:end_loc] |
| pfx = split_strs[i - 1].splitlines()[-1] |
| lines = [x[len(pfx):] for x in s.splitlines(keepends=True)] |
| graphs.append(''.join(lines)) |
| |
| return graphs |
| |
| |
| def make_tensor_from_type(inp_type: torch._C.TensorType): |
| size = inp_type.sizes() |
| stride = inp_type.strides() |
| device = inp_type.device() |
| dtype = inp_type.dtype() |
| return torch.empty_strided(size=size, stride=stride, device=device, dtype=dtype) |
| |
| def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]: |
| graph = torch._C.parse_ir(ir) |
| graph.makeMultiOutputIntoTuple() |
| inputs = [] |
| for inp in graph.inputs(): |
| if isinstance(inp.type(), torch._C.FloatType): |
| inputs.append(random.uniform(.1, 100)) |
| elif isinstance(inp.type(), torch._C.IntType): |
| inputs.append(random.randint(1, 100)) |
| elif isinstance(inp.type(), torch._C.TensorType): |
| inputs.append(make_tensor_from_type(inp.type())) |
| else: |
| raise NotImplementedError(f"A default value is not implemented for type {inp.type()}") |
| |
| func = torch._C._create_function_from_graph("forward", graph) |
| torch._C._jit_pass_erase_shape_information(func.graph) |
| return (func, inputs) |
| |
| def time_cuda(fn, inputs, test_runs): |
| t = Timer(stmt="fn(*inputs)", globals={"fn": fn, "inputs" : inputs}) |
| times = t.blocked_autorange() |
| return times.median * 1000 # time in ms |
| |
| def time_cpu(fn, inputs, test_runs): |
| s = time.perf_counter() |
| for _ in range(test_runs): |
| fn(*inputs) |
| e = time.perf_counter() |
| return (e - s) / test_runs |
| |
| |
| # TODO add support for timing on CPU |
| def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float: |
| graph, _ = load_graph_and_inputs(ir) |
| for _ in range(warmup_runs): |
| graph(*inputs) |
| |
| is_cpu = None |
| for input in inputs: |
| if isinstance(input, torch.Tensor): |
| is_cpu = input.device.type == "cpu" |
| break |
| assert is_cpu is not None |
| |
| out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs) |
| return out |
| |
| @contextmanager |
| def no_fuser(*args, **kwargs): |
| old_optimize = torch._C._get_graph_executor_optimize(False) |
| try: |
| yield |
| finally: |
| torch._C._get_graph_executor_optimize(old_optimize) |
| |
| def run_baseline_no_fusion(ir, inputs) -> float: |
| with no_fuser(): |
| return run_test(ir, inputs) |
| |
| |
| def run_nnc(ir, inputs, dynamic) -> float: |
| try: |
| strat = [("DYNAMIC", 10)] if dynamic else [("STATIC", 10)] |
| old_strat = torch.jit.set_fusion_strategy(strat) |
| with torch.jit.fuser("fuser1"): |
| return run_test(ir, inputs) |
| finally: |
| torch.jit.set_fusion_strategy(old_strat) |
| |
| def run_nvfuser(ir, inputs) -> float: |
| with torch.jit.fuser("fuser2"): |
| return run_test(ir, inputs) |
| |
| |
| def test_runners(graphs: List[str], runners: List[Tuple[str, Callable]], graph_set: Optional[List[int]]): |
| for i, ir in enumerate(graphs): |
| _, inputs = load_graph_and_inputs(ir) |
| if graph_set and i not in graph_set: |
| continue |
| |
| print(f"Running Graph {i}") |
| prev_result = None |
| prev_runner_name = None |
| for runner in runners: |
| runner_name, runner_fn = runner |
| try: |
| result = runner_fn(ir, inputs) |
| if prev_result: |
| improvement = (prev_result / result - 1) * 100 |
| print(f"{runner_name} : {result:.6f} ms improvement over {prev_runner_name}: improvement: {improvement:.2f}%") |
| else: |
| print(f"{runner_name} : {result:.6f} ms") |
| prev_result = result |
| prev_runner_name = runner_name |
| except RuntimeError: |
| print(f" Graph {i} failed for {runner_name} :", traceback.format_exc()) |
| |
| |
| def run(): |
| parser = argparse.ArgumentParser( |
| description="Extracts torchscript IR from log files and, optionally, benchmarks it or outputs the IR" |
| ) |
| parser.add_argument("filename", help="Filename of log file") |
| parser.add_argument("--nvfuser", dest="nvfuser", action="store_true", help="benchmark nvfuser") |
| parser.add_argument("--no-nvfuser", dest="nvfuser", action="store_false", help="DON'T benchmark nvfuser") |
| parser.set_defaults(nvfuser=False) |
| parser.add_argument("--nnc-static", dest="nnc_static", action="store_true", help="benchmark nnc static") |
| parser.add_argument("--no-nnc-static", dest="nnc_static", action="store_false", help="DON'T benchmark nnc static") |
| parser.set_defaults(nnc_static=False) |
| |
| parser.add_argument("--nnc-dynamic", dest="nnc_dynamic", action="store_true", help="nnc with dynamic shapes") |
| parser.add_argument("--no-nnc-dynamic", dest="nnc_dynamic", action="store_false", help="DONT't benchmark nnc with dynamic shapes") |
| parser.set_defaults(nnc_dynamic=False) |
| |
| |
| parser.add_argument("--baseline", dest="baseline", action="store_true", help="benchmark baseline") |
| parser.add_argument("--no-baseline", dest="baseline", action="store_false", help="DON'T benchmark baseline") |
| parser.set_defaults(baseline=False) |
| |
| parser.add_argument("--output", dest="output", action="store_true", help="Output graph IR") |
| parser.add_argument("--no-output", dest="output", action="store_false", help="DON'T output graph IR") |
| parser.set_defaults(output=False) |
| |
| parser.add_argument('--graphs', nargs="+", type=int, help="Run only specified graph indices") |
| |
| |
| args = parser.parse_args() |
| graphs = extract_ir(args.filename) |
| |
| graph_set = args.graphs |
| graph_set = graph_set if graph_set else None |
| |
| options = [] |
| if args.baseline: |
| options.append(("Baseline no fusion", run_baseline_no_fusion)) |
| if args.nnc_dynamic: |
| options.append(("NNC Dynamic", functools.partial(run_nnc, dynamic=True))) |
| if args.nnc_static: |
| options.append(("NNC Static", functools.partial(run_nnc, dynamic=False))) |
| if args.nvfuser: |
| options.append(("NVFuser", run_nvfuser)) |
| |
| test_runners(graphs, options, graph_set) |
| |
| if args.output: |
| quoted = [] |
| for i, ir in enumerate(graphs): |
| if graph_set and i not in graph_set: |
| continue |
| quoted.append("\"\"\"" + ir + "\"\"\"") |
| print("[" + ", ".join(quoted) + "]") |
| |
| if __name__ == "__main__": |
| run() |