[optim] Fix: wrong ASGD implementation (#126375)

This PR is based on #125440, additionally merging the latest main branch and fixing the lint failures from #126361.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126375
Approved by: https://github.com/janeyx99
diff --git a/test/test_optim.py b/test/test_optim.py
index 717e892..7fa612e 100644
--- a/test/test_optim.py
+++ b/test/test_optim.py
@@ -604,8 +604,16 @@
             for input, model, optimizer in zip(inputs, models, optimizers):
                 optimizer.zero_grad()
 
+                if i == 3:
+                    # Freeze a layer to test if the step of this layer in 'fused' or 'foreach'
+                    # is same as the step in 'forloop'.
+                    model[2].requires_grad_(False)
+                if i == 5:
+                    # Unfreeze the layer after 2 iters.
+                    model[2].requires_grad_(True)
+
                 # Test that step behaves as expected (a no-op) when grads are set to None
-                if i != 3:
+                if i != 2:
                     output = model(input)
                     loss = output.sum()
                     loss.backward()
diff --git a/torch/_meta_registrations.py b/torch/_meta_registrations.py
index a4edd83..93e45bf 100644
--- a/torch/_meta_registrations.py
+++ b/torch/_meta_registrations.py
@@ -19,6 +19,7 @@
     corresponding_real_dtype,
     elementwise_dtypes,
     ELEMENTWISE_TYPE_PROMOTION_KIND,
+    FloatLike,
     IntLike,
     make_contiguous_strides_for,
     Number,
@@ -3286,6 +3287,15 @@
     return
 
 
+@register_meta([aten._foreach_pow_.Scalar])
+def meta__foreach_pow__scalar(self, exponent):
+    torch._check(
+        isinstance(exponent, FloatLike),
+        lambda: f"exponent must be a float but got {type(exponent)}",
+    )
+    return
+
+
 @register_meta([aten._foreach_pow.ScalarAndTensor])
 def meta__foreach_pow_scalar_and_tensor(self, exponent):
     # Only foreach_pow has a ScalarAndTensor method and needs special
diff --git a/torch/optim/asgd.py b/torch/optim/asgd.py
index a87aadc..f53f8b4 100644
--- a/torch/optim/asgd.py
+++ b/torch/optim/asgd.py
@@ -22,13 +22,6 @@
 __all__ = ["ASGD", "asgd"]
 
 
-def _to_tensor(x, device=None):
-    if not isinstance(x, torch.Tensor):
-        return torch.tensor(x, device=device)
-
-    return x
-
-
 class ASGD(Optimizer):
     def __init__(
         self,
@@ -264,9 +257,9 @@
             mu.copy_(1 / torch.maximum(step_t - t0, torch.ones_like(step_t)))
         else:
             step = _get_value(step_t)
-            new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha))
+            new_eta = torch.as_tensor(lr / ((1 + lambd * lr * step) ** alpha))
             eta.copy_(new_eta)
-            new_mu = _to_tensor(1 / max(1, step - t0))
+            new_mu = torch.as_tensor(1 / max(1, step - t0))
             mu.copy_(new_mu)
 
 
@@ -381,27 +374,23 @@
             torch._foreach_copy_(grouped_mus, new_mus)
             del new_mus
 
-            # update eta = lr / (1 + lambd * lr * step^alpha)
-            new_etas = torch._foreach_pow(grouped_state_steps, alpha)
-            torch._foreach_mul_(new_etas, lambd)
+            # update eta = lr / ((1 + lambd * lr * step)^alpha)
+            new_etas = torch._foreach_mul(grouped_state_steps, lambd)
             torch._foreach_mul_(new_etas, lr)
             torch._foreach_add_(new_etas, 1)
+            torch._foreach_pow_(new_etas, alpha)
             torch._foreach_reciprocal_(new_etas)
             torch._foreach_mul_(new_etas, lr)
             torch._foreach_copy_(grouped_etas, new_etas)
         else:
-            step = grouped_state_steps[0].item()
-            new_etas = []
-            new_mus = []
-
-            for i in range(len(grouped_mus)):
-                new_eta = _to_tensor(
-                    lr / (1 + lambd * lr * step**alpha), device=device
-                )
-                new_etas.append(new_eta)
-                new_mu = _to_tensor(1 / max(1, step - t0), device=device)
-                new_mus.append(new_mu)
-
+            new_etas = [
+                torch.as_tensor(lr / ((1 + lambd * lr * step) ** alpha), device=device)
+                for step in grouped_state_steps
+            ]
+            new_mus = [
+                torch.as_tensor(1 / max(1, _get_value(step) - t0), device=device)
+                for step in grouped_state_steps
+            ]
             torch._foreach_copy_(grouped_etas, new_etas)
             torch._foreach_copy_(grouped_mus, new_mus)
 
diff --git a/torch/testing/_internal/common_optimizers.py b/torch/testing/_internal/common_optimizers.py
index 5a66923..c81efb0 100644
--- a/torch/testing/_internal/common_optimizers.py
+++ b/torch/testing/_internal/common_optimizers.py
@@ -590,6 +590,7 @@
     ]
     return [
         OptimizerInput(params=None, kwargs={}, desc="default"),
+        OptimizerInput(params=None, kwargs={"lambd": 0.1}, desc="non-default lambd"),
         OptimizerInput(params=None, kwargs={"lr": 0.02}, desc="non-default lr"),
         OptimizerInput(params=None, kwargs={"t0": 100}, desc="t0"),
         OptimizerInput(params=None, kwargs={"maximize": True}, desc="maximize"),
@@ -1450,6 +1451,13 @@
                 "TestOptimRenewed",
                 "test_defaults_changed_to_foreach",
             ),
+            DecorateInfo(
+                unittest.skip(
+                    "ASGD internally changes the weights even with zero grad"
+                ),
+                "TestOptimRenewed",
+                "test_step_is_noop_for_zero_grads",
+            ),
         ),
     ),
     OptimizerInfo(