tree: 6aba8f9774b7a52930bbe2a779c14e86412ddea9 [path history] [tgz]
  1. cpp/
  2. distributed/
  3. dynamo/
  4. fastrnns/
  5. framework_overhead_benchmark/
  6. functional_autograd_benchmark/
  7. fuser/
  8. instruction_counts/
  9. operator_benchmark/
  10. overrides_benchmark/
  11. profiler_benchmark/
  12. record_function_benchmark/
  13. serialization/
  14. sparse/
  15. static_runtime/
  16. tensorexpr/
  17. transformer/
  18. compare-fastrnn-results.py
  19. compare.sh
  20. README.md
  21. upload_scribe.py
benchmarks/README.md

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite