blob: 84ca155b3c708b1d016823f1e765603b77ee317b [file] [log] [blame]
#pragma once
#include <ATen/Tensor.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/Exception.h>
namespace at {
struct CAFFE2_API SparseTensorImpl : public TensorImpl {
// Stored in COO format, indices + values.
// INVARIANTS:
// sparse_dim: range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
// dense_dim : range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
// _indices.shape: dimensionality: 2, shape: (sparse_dim, nnz)
// _values.shape: dimensionality: 1 + dense_dim. shape: (nnz, shape[sparse_dim:])
int64_t sparse_dim_ = 0; // number of sparse dimensions
int64_t dense_dim_ = 0; // number of dense dimensions
Tensor indices_; // always a LongTensor
Tensor values_;
// A sparse tensor is 'coalesced' if every index occurs at most once in
// the indices tensor, and the indices are in sorted order. (This means
// that it is very easy to convert a coalesced tensor to CSR format: you
// need only compute CSR format indices.)
//
// Most math operations can only be performed on coalesced sparse tensors,
// because many algorithms proceed by merging two sorted lists (of indices).
bool coalesced_ = false;
public:
// Public for now...
explicit SparseTensorImpl(at::TensorTypeId, const caffe2::TypeMeta&);
int64_t nnz() const { return values_.size(0); }
int64_t sparse_dim() const { return sparse_dim_; }
int64_t dense_dim() const { return dense_dim_; }
bool coalesced() const { return coalesced_; }
Tensor indices() const { return indices_; }
Tensor values() const { return values_; }
IntList sizes() const override;
IntList strides() const override;
bool is_contiguous() const override;
int64_t stride(int64_t d) const override;
void resize_dim(int64_t ndim) override;
void set_size(int64_t dim, int64_t new_size) override;
void set_stride(int64_t dim, int64_t new_stride) override;
void set_storage_offset(int64_t storage_offset) override;
int64_t dim() const override;
TensorImpl* maybe_zero_dim(bool condition_when_zero_dim) override;
const Storage& storage() const override;
int64_t storage_offset() const override;
// WARNING: This function does NOT preserve invariants of sparse_dim/dense_dim with
// respect to indices and values
void raw_resize_(int64_t sparse_dim, int64_t dense_dim, IntList size) {
AT_CHECK(allow_tensor_metadata_change(), "raw_resize_ is not allowed on Tensor created from .data or .detach()");
sizes_ = size.vec();
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
refresh_numel();
}
// NOTE: This function preserves invariants of sparse_dim/dense_dim with respect to
// indices and values.
//
// NOTE: This function supports the following cases:
// 1. When we keep the number of dense dimensions unchanged, and NOT shrinking the size of
// any of the dense dimensions.
// 2. When we keep the number of sparse dimensions unchanged, and NOT shrinking the size of
// any of the sparse dimensions.
// 3. When the sparse tensor has zero nnz, in which case we are free to change the shapes of
// both its sparse and dense dimensions.
//
// This function DOESN'T support (and will throw an error) the following cases:
// 1. When we attempt to change the number of sparse dimensions on a non-empty sparse tensor
// (such an operation will invalidate the indices stored).
// 2. When we attempt to change the number of dense dimensions on a non-empty sparse tensor
// (such an operation will behave differently from an equivalent dense tensor's resize method,
// and for API consistency we don't support it).
// 3. When we attempt to shrink the size of any of the dense dimensions on a non-empty sparse tensor
// (such an operation will behave differently from an equivalent dense tensor's resize method,
// and for API consistency we don't support it).
// 4. When we attempt to shrink the size of any of the sparse dimensions on a non-empty sparse tensor
// (this could make some of the stored indices out-of-bound and thus unsafe).
void resize_(int64_t sparse_dim, int64_t dense_dim, IntList size) {
AT_CHECK(allow_tensor_metadata_change(), "resize_ is not allowed on Tensor created from .data or .detach()");
AT_CHECK(sparse_dim + dense_dim == size.size(), "number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size());
if (nnz() > 0) {
auto alt_options_msg = "You could try the following options:\n\
1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\
2. If you need to resize this tensor, you have the following options:\n\
1. For both sparse and dense dimensions, keep the number of them constant and the size of them non-shrinking, and then try the same call again.\n\
2. Or, create a new sparse tensor with the correct indices and values from this sparse tensor.";
AT_CHECK(sparse_dim == sparse_dim_,
"changing the number of sparse dimensions (from ", sparse_dim_, " to ", sparse_dim, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
AT_CHECK(dense_dim == dense_dim_,
"changing the number of dense dimensions (from ", dense_dim_, " to ", dense_dim, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
bool shrinking_sparse_dims = false;
bool shrinking_dense_dim = false;
auto sparse_size_original = sizes().slice(0, sparse_dim);
auto sparse_size_new = size.slice(0, sparse_dim);
for (int i = 0; i < sparse_dim; i++) {
if (sparse_size_new[i] < sparse_size_original[i]) {
shrinking_sparse_dims = true;
break;
}
}
auto dense_size_original = sizes().slice(sparse_dim);
auto dense_size_new = size.slice(sparse_dim);
for (int i = 0; i < dense_dim; i++) {
if (dense_size_new[i] < dense_size_original[i]) {
shrinking_dense_dim = true;
break;
}
}
AT_CHECK(!shrinking_sparse_dims,
"shrinking the size of sparse dimensions (from ", sparse_size_original, " to ", sparse_size_new, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
AT_CHECK(!shrinking_dense_dim,
"shrinking the size of dense dimensions (from ", dense_size_original, " to ", dense_size_new, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
}
if ((!size.equals(sizes_)) || (sparse_dim != sparse_dim_) || (dense_dim != dense_dim_)) {
auto nnz = values().size(0);
std::vector<int64_t> values_size = {nnz};
auto dense_size = size.slice(sparse_dim);
values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
values_.resize_(values_size);
indices_.resize_({sparse_dim, nnz});
}
sizes_ = size.vec();
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
refresh_numel();
}
// NOTE: this function will resize the sparse tensor and also set `indices` and `values` to empty.
void resize_and_clear_(int64_t sparse_dim, int64_t dense_dim, IntList size) {
AT_CHECK(allow_tensor_metadata_change(), "resize_and_clear_ is not allowed on Tensor created from .data or .detach()");
AT_CHECK(sparse_dim + dense_dim == size.size(), "number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size());
sizes_ = size.vec();
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
auto empty_indices = at::empty({sparse_dim, 0}, indices().options());
std::vector<int64_t> values_size = {0};
auto dense_size = sizes().slice(sparse_dim);
values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
auto empty_values = at::empty(values_size, values().options());
set_indices_and_values_unsafe(empty_indices, empty_values);
refresh_numel();
}
void set_coalesced(bool coalesced) {
AT_CHECK(allow_tensor_metadata_change(), "set_coalesced is not allowed on Tensor created from .data or .detach()");
coalesced_ = coalesced;
}
// NOTE: this function is only used internally and not exposed to Python frontend
void set_nnz_and_narrow(int64_t new_nnz) {
AT_CHECK(allow_tensor_metadata_change(), "set_nnz_and_narrow is not allowed on Tensor created from .data or .detach()");
AT_ASSERT(new_nnz <= nnz());
indices_ = indices_.narrow(1, 0, new_nnz);
values_ = values_.narrow(0, 0, new_nnz);
}
// Takes indices and values and directly puts them into the sparse tensor, no copy.
// NOTE: this function is unsafe because it doesn't check whether any indices are
// out of boundaries of `sizes`, so it should ONLY be used where we know that the
// indices are guaranteed to be within bounds.
// This used to be called THSTensor_(_move)
// NB: This used to be able to avoid a refcount bump, but I was too lazy to
// make it happen
void set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values);
// NOTE: `shallow_copy_and_detach()` does not copy the AutogradMeta pointer
// because it is unique for each Variable.
// NOTE: We don't set `allow_tensor_metadata_change_` to false here, because there are call sites
// to this function that need to change the shallow copy's size or storage afterwards, and setting
// `allow_tensor_metadata_change_` to false would prevent those changes from happening and is
// undesirable.
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach() const override {
auto impl = c10::make_intrusive<SparseTensorImpl>(type_id(), dtype());
// TensorImpl general fields
// Note that these fields are not used in sparse tensor code, and we copy them here only for completeness.
impl->sizes_ = sizes_;
impl->strides_ = strides_;
impl->storage_offset_ = storage_offset_;
impl->is_contiguous_ = is_contiguous_;
impl->is_wrapped_number_ = is_wrapped_number_;
impl->reserved_ = reserved_;
// Sparse-specific fields
impl->sparse_dim_ = sparse_dim();
impl->dense_dim_ = dense_dim();
impl->indices_ = indices();
impl->values_ = values();
impl->coalesced_ = coalesced();
impl->refresh_numel();
return impl;
}
private:
int64_t get_device_slow() const override {
return values_.get_device();
}
};
} // namespace at