Add support for requires_grad in JIT's AD (#4898)
diff --git a/test/expect/TestJit.test_cpp.expect b/test/expect/TestJit.test_cpp.expect
index 8685e47..b089006 100644
--- a/test/expect/TestJit.test_cpp.expect
+++ b/test/expect/TestJit.test_cpp.expect
@@ -44,8 +44,30 @@
%6 : Float(2, 3, 4) = add[alpha={1}](%4, %5)
%7 : Float(2, 3, 4) = mul(%3, %2)
%8 : Float(2, 3, 4) = mul(%6, %1)
- %9 : Float(2, 3, 4) = add[alpha={1}](%7, %8)
- %10 : Float(2, 3, 4) = mul(%6, %0)
- %11 : Float(2, 3, 4) = add[alpha={1}](%3, %10)
- return (%9, %11);
+ %9 : Float(2, 3, 4) = mul(%6, %0)
+ %10 : Float(2, 3, 4) = add[alpha={1}](%7, %8)
+ %11 : Float(2, 3, 4) = add[alpha={1}](%3, %9)
+ return (%10, %11);
}
+
+testDifferentiateWithRequiresGrad
+graph(%0 : Float(2, 3, 4)
+ %1 : Float(2, 3, 4)) {
+ %2 : Float(2, 3, 4) = mul(%1, %1)
+ %3 : Float(2, 3, 4) = add[alpha={1}](%2, %1)
+ %4 : Float(2, 3, 4) = add[alpha={1}](%3, %0)
+ %5 : Float(2, 3, 4) = mul(%4, %0)
+ %6 : Float(2, 3, 4) = add[alpha={1}](%5, %1)
+ return (%3, %6, %4);
+}
+graph(%0 : Float(2, 3, 4)
+ %1 : Float(2, 3, 4)
+ %2 : Float(2, 3, 4)
+ %3 : Float(2, 3, 4)) {
+ %4 : Float(2, 3, 4) = mul(%2, %0)
+ %5 : Float(2, 3, 4) = add[alpha={1}](%3, %4)
+ %6 : Float(2, 3, 4) = mul(%2, %1)
+ %7 : Float(2, 3, 4) = add[alpha={1}](%6, %5)
+ return (%7);
+}
+
diff --git a/torch/csrc/jit/autodiff.cpp b/torch/csrc/jit/autodiff.cpp
index 6b48611..53a42e8 100644
--- a/torch/csrc/jit/autodiff.cpp
+++ b/torch/csrc/jit/autodiff.cpp
@@ -1,18 +1,26 @@
#include "torch/csrc/jit/autodiff.h"
+#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/symbolic_variable.h"
#include "torch/csrc/utils/functional.h"
+#include "torch/csrc/utils/auto_gpu.h"
namespace torch { namespace jit {
using value_map = std::unordered_map<Value*, Value*>;
using value_set = std::unordered_set<Value*>;
-Value* addAndPutAfter(Value *a, Value *b, Node *node) {
- Graph *graph = node->owningGraph();
+// Creates a node for a + b and puts it after the given node.
+// If node is a null pointer, appends that node at the end of the node list.
+Value* addValues(Value *a, Value *b, Node *node = nullptr) {
+ Graph *graph = a->node()->owningGraph();
Node *add_node = graph->create(kadd, {a, b})
->t_(kalpha, at::Scalar(1).toTensor());
- add_node->insertAfter(node);
+ if (node) {
+ add_node->insertAfter(node);
+ } else {
+ graph->appendNode(add_node);
+ }
Value *add_output = add_node->output();
add_output->setType(a->typeOption());
return add_output;
@@ -45,6 +53,55 @@
return fmap(sym_grads, [](const SymbolicVariable &v) { return v.value(); });
}
+static value_set findAllRequiresGradNodes(
+ Graph& graph, const std::vector<bool>& input_requires_grad) {
+ JIT_ASSERT(graph.inputs().size() == input_requires_grad.size());
+
+ std::unordered_set<Value*> requires_grad_set;
+ const auto requires_grad = [&](Value *v) { return requires_grad_set.count(v) > 0; };
+
+ auto inputs = graph.inputs();
+ for (std::size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
+ if (!input_requires_grad[i]) continue;
+ requires_grad_set.emplace(inputs[i]);
+ }
+
+ for (Node * node : graph.nodes()) {
+ if (std::none_of(node->inputs().begin(), node->inputs().end(), requires_grad)) continue;
+ for (Value * output : node->outputs())
+ requires_grad_set.emplace(output);
+ }
+
+ return requires_grad_set;
+}
+
+static Value* allocZerosLike(Value *v) {
+ static const Symbol constant_sym = "constant"_sym;
+ static const Symbol is_zero_sym = "is_zero"_sym;
+ static const Symbol value_sym = "value"_sym;
+ JIT_EXPECTM(v->hasType(), "can't allocate zero gradient for a value without a type");
+ Graph *graph = v->owningGraph();
+ auto type = v->type()->expect<TensorType>();
+ AutoGPU gpu_guard(type->device());
+
+ auto & at_type = type->device() == -1 ? at::CPU(type->scalarType()) : at::CUDA(type->scalarType());
+ auto zeros = at_type.zeros({1}).expand(type->sizes());
+ Node *constant = graph->create(constant_sym)
+ ->t_(value_sym, zeros)
+ ->i_(is_zero_sym, 1);
+ graph->appendNode(constant);
+ return constant->output();
+}
+
+struct ReverseDetails {
+ ReverseDetails(value_map&& grad_map, value_set&& requires_grad_set)
+ : grad_map(std::move(grad_map))
+ , requires_grad_set(std::move(requires_grad_set)) {}
+
+ value_map grad_map;
+ value_set requires_grad_set;
+};
+
// Before:
// - graph has only stage 0
// - grad_desc doesn't have any fields initialized
@@ -52,15 +109,25 @@
// - graph has stage 0 and stage 1 that computes its vjp
// - grad_desc has df_input_vjps and df_output_vjps set
// (but df_input_vjps will be modified later as well)
-static value_map addReverseInline(Graph& graph, Gradient& grad_desc) {
+static ReverseDetails addReverseInline(Graph& graph, Gradient& grad_desc,
+ const std::vector<bool>& input_requires_grad) {
JIT_ASSERT(graph.stage() == 0);
graph.advanceStage();
+ auto requires_grad_set = findAllRequiresGradNodes(graph, input_requires_grad);
+ const auto requires_grad = [&](Value *v) { return requires_grad_set.count(v) > 0; };
+
value_map grad_map; // x -> dx mapping
- const auto get_grad = [&](Value* v) { return grad_map.at(v); };
+ const auto get_grad = [&](Value* v) -> Value* {
+ auto it = grad_map.find(v);
+ if (it == grad_map.end()) {
+ std::tie(it, std::ignore) = grad_map.emplace(v, allocZerosLike(v));
+ }
+ return it->second;
+ };
const auto set_grad = [&](Value *x, Value *dx) {
if (Value * prev_grad = grad_map[x]) {
- Value * new_grad = addAndPutAfter(prev_grad, dx, dx->node());
+ Value * new_grad = addValues(prev_grad, dx);
grad_map[x] = new_grad;
} else {
grad_map[x] = dx;
@@ -70,6 +137,7 @@
auto outputs = graph.outputs();
for (std::size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) {
Value * output = outputs[i];
+ if (!requires_grad(output)) continue;
Value * output_grad = graph.addInput()->setType(output->typeOption());
set_grad(output, output_grad);
grad_desc.df_input_vjps.push_back(i);
@@ -78,6 +146,7 @@
for (auto it = graph.rbegin(), end = graph.rend(); it != end; ++it) {
Node *node = *it;
auto inputs = node->inputs();
+ if (std::none_of(inputs.begin(), inputs.end(), requires_grad)) continue;
value_list grad_inputs = gradientForNode(node, fmap(node->outputs(), get_grad));
JIT_ASSERT(grad_inputs.size() == node->inputs().size());
for (std::size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) {
@@ -89,11 +158,12 @@
for (std::size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
Value * input = inputs[i];
if (input->stage() > 0) break;
+ if (!requires_grad(input)) continue;
graph.registerOutput(get_grad(input));
grad_desc.df_output_vjps.push_back(i);
}
- return grad_map;
+ return ReverseDetails(std::move(grad_map), std::move(requires_grad_set));
}
// This function will take the graph and return a new one that:
@@ -138,7 +208,9 @@
// detailed description see Note [Gradient graphs] in autodiff.h.
// This function also initializes the fields in grad_desc that were undefined after
// `addReverseInline` (and modifies `df_input_vjps`).
-static void lambdaLiftReverse(Graph& graph, value_map& grad_map, Gradient& grad_desc) {
+static void lambdaLiftReverse(Graph& graph,
+ ReverseDetails& rev_info,
+ Gradient& grad_desc) {
static const auto is_stage_0 = [](Value *v) { return v->stage() == 0; };
static const auto is_stage_1 = [](Value *v) { return v->stage() == 1; };
// NOTE: in the comments inside this function first stage is stage 0
@@ -227,13 +299,14 @@
JIT_ASSERT(graph.stage() == 1); // We will be adding inputs to stage 1
for (std::size_t i = grad_desc.f_real_outputs; i < primal_outputs.size(); ++i) {
Value * tmp = primal_outputs.at(i);
+ // Add VJP inputs only for intermediates that actually required grad.
+ if (rev_info.requires_grad_set.count(tmp) == 0) continue;
Value * tmp_vjp_in = graph.addInput()->setType(tmp->typeOption());
- if (grad_map.count(tmp) == 0) continue; // This gradient wasn't even used.
- Value * tmp_vjp_prev = grad_map.at(tmp);
+ Value * tmp_vjp_prev = rev_info.grad_map.at(tmp);
// This is quite weird because we can't first make a sum and then replace all uses
// of tmp_vjp_prev (that would replace its use in the sum too!), so we create an
// incorrect sum that doesn't use prev vjp, replace uses, and fix the sum.
- Value * new_vjp = addAndPutAfter(tmp_vjp_in, tmp_vjp_in, tmp_vjp_prev->node());
+ Value * new_vjp = addValues(tmp_vjp_in, tmp_vjp_in, tmp_vjp_prev->node());
tmp_vjp_prev->replaceAllUsesWith(new_vjp);
new_vjp->node()->replaceInput(1, tmp_vjp_prev);
grad_desc.df_input_vjps.emplace_back(i);
@@ -257,7 +330,7 @@
grad_desc.df = splitOffStage(graph, 1, reverse_inputs, reverse_outputs);
}
-Gradient differentiate(std::shared_ptr<Graph>& _graph) {
+Gradient differentiate(std::shared_ptr<Graph>& _graph, const std::vector<bool>& requires_grad) {
// Take ownership of the graph
std::shared_ptr<Graph> graph;
JIT_ASSERTM(_graph.use_count() == 1,
@@ -267,10 +340,14 @@
// XXX: Take care when handling outputs - they can be duplicated!
Gradient grad_desc;
// Fills in df_input_vjps and df_output_vjps
- auto grad_map = addReverseInline(*graph, grad_desc);
+ auto rev_info = addReverseInline(*graph, grad_desc, requires_grad);
+ // addReverseInline has to call gradientForNode if *any* of the outputs
+ // require grad, but it will emit vjps for *all* outputs. Use DCE to remove
+ // unnecessary nodes.
+ EliminateDeadCode(graph);
// Fills in f, df, f_real_outputs, df_input_captures,
// modifies df_input_vjps (new vjps are added for temporaries)
- lambdaLiftReverse(*graph, grad_map, grad_desc);
+ lambdaLiftReverse(*graph, rev_info, grad_desc);
return grad_desc;
}
diff --git a/torch/csrc/jit/autodiff.h b/torch/csrc/jit/autodiff.h
index 9ee9c99..90014fa 100644
--- a/torch/csrc/jit/autodiff.h
+++ b/torch/csrc/jit/autodiff.h
@@ -80,7 +80,7 @@
// - Interpret df
// - Wrap outputs of df into Variables (that don't require grad)
};
-Gradient differentiate(std::shared_ptr<Graph>& graph);
+Gradient differentiate(std::shared_ptr<Graph>& graph, const std::vector<bool>& requires_grad);
// can we take a derivative of this node symbolically?
bool isDifferentiable(Node * n);
diff --git a/torch/csrc/jit/test_jit.cpp b/torch/csrc/jit/test_jit.cpp
index 1227870..5af14c4 100644
--- a/torch/csrc/jit/test_jit.cpp
+++ b/torch/csrc/jit/test_jit.cpp
@@ -545,7 +545,7 @@
// Trace and differentiate the op
auto graph = trace(test, vars_in);
- auto grad_spec = differentiate(graph);
+ auto grad_spec = differentiate(graph, std::vector<bool>(vars_in.size(), true));
// Get outputs from the interpreter
auto tensors_in = fmap(vars_in, unwrap);
@@ -582,7 +582,7 @@
auto c = a * b * a + b;
graph->registerOutput(c.value());
- auto grad_spec = differentiate(graph);
+ auto grad_spec = differentiate(graph, {true, true});
std::vector<Capture> expected_captures = {
{Capture::Kind::Input, 0},
{Capture::Kind::Input, 1},
@@ -597,6 +597,37 @@
out << "testDifferentiate\n";
out << *grad_spec.f;
out << *grad_spec.df;
+ out << "\n";
+}
+
+void testDifferentiateWithRequiresGrad(std::ostream & out) {
+ auto graph = std::make_shared<Graph>();
+ at::ScalarType s = at::ScalarType::Float;
+ auto type = std::shared_ptr<TensorType>(new TensorType(s, -1, {2, 3, 4}, {12, 4, 1}));
+
+ // Build up a fake graph
+ auto a = SymbolicVariable::asNewInput(*graph, type);
+ auto b = SymbolicVariable::asNewInput(*graph, type);
+ auto d = b * b + b;
+ auto e = (d + a) * a + b;
+ graph->registerOutput(d.value());
+ graph->registerOutput(e.value());
+
+ auto grad_spec = differentiate(graph, {true, false});
+ std::vector<Capture> expected_captures = {
+ {Capture::Kind::Input, 0},
+ {Capture::Kind::Output, 2},
+ };
+ std::vector<std::size_t> expected_input_vjps = {1, 2}; // for e and %4 = (d + a)
+ std::vector<std::size_t> expected_output_vjps = {0}; // only a requires grad
+ JIT_ASSERT(grad_spec.f_real_outputs == 2); // we need one temporary %4 = (d + a)
+ JIT_ASSERT(grad_spec.df_input_captures == expected_captures);
+ JIT_ASSERT(grad_spec.df_input_vjps == expected_input_vjps);
+ JIT_ASSERT(grad_spec.df_output_vjps == expected_output_vjps);
+ out << "testDifferentiateWithRequiresGrad\n";
+ out << *grad_spec.f;
+ out << *grad_spec.df;
+ out << "\n";
}
void testCreateAutodiffSubgraphs(std::ostream & out) {
@@ -706,6 +737,7 @@
std::stringstream out;
testCreateAutodiffSubgraphs(out);
testDifferentiate(out);
+ testDifferentiateWithRequiresGrad(out);
testADFormulas();
interpTest();
interpStageTest();