Use indices for SpatialAdaptiveMaxPooling indices.
diff --git a/SpatialAdaptiveMaxPooling.cu b/SpatialAdaptiveMaxPooling.cu
index 5dd8659..b67203b 100644
--- a/SpatialAdaptiveMaxPooling.cu
+++ b/SpatialAdaptiveMaxPooling.cu
@@ -8,7 +8,7 @@
* this function adaptively maxpools an input 4D tensor along dimensions 2 and 3
* 4D input, 4D output, 4D argmax x and y
*/
-__global__ void adaptivemaxpool(float *input, float *output, float *indices_x, float *indices_y,
+__global__ void adaptivemaxpool(float *input, float *output, long *indices_x, long *indices_y,
int input_n, int input_h, int input_w,
int output_h, int output_w,
int strideh, int stridew,
@@ -29,7 +29,6 @@
int yy_start = blockDim.y*blockIdx.y + threadIdx.y;
int yy_end = output_h;
const int yy_step = blockDim.y*gridDim.y;
-
// select input/output plane
output = output + o*output_w*output_h;
input = input + i*strided;
@@ -52,8 +51,8 @@
// Compute the mean of the input image...
float *ptr_input = input + y_start*strideh + x_start*stridew;
float *ptr_output = output + yy*output_w + xx;
- float *ptr_ind_x = indices_x + yy*output_w + xx;
- float *ptr_ind_y = indices_y + yy*output_w + xx;
+ long *ptr_ind_x = indices_x + yy*output_w + xx;
+ long *ptr_ind_y = indices_y + yy*output_w + xx;
int argmax_x = -1;
int argmax_y = -1;
float max = -FLT_MAX;
@@ -81,7 +80,7 @@
* Description:
* this function computes the gradInput from weight and gradOutput
*/
-__global__ void adaptivemaxgradinput(float *gradInput, float *gradOutput, float *indices_x, float *indices_y,
+__global__ void adaptivemaxgradinput(float *gradInput, float *gradOutput, long *indices_x, long *indices_y,
int input_n, int input_h, int input_w,
int output_h, int output_w)
{
@@ -118,8 +117,8 @@
float *ptr_gradInput = gradInput + y_start*input_w + x_start;
float *ptr_gradOutput = gradOutput + yy*output_w + xx;
- float *ptr_ind_x = indices_x + yy*output_w + xx;
- float *ptr_ind_y = indices_y + yy*output_w + xx;
+ long *ptr_ind_x = indices_x + yy*output_w + xx;
+ long *ptr_ind_y = indices_y + yy*output_w + xx;
float z = *ptr_gradOutput;
int argmax_x = (*ptr_ind_x) - TH_INDEX_BASE;
@@ -136,7 +135,7 @@
* when kH != dH or kW != dW (uses atomic add)
*/
__global__ void atomicadaptivemaxgradinput(
- float *gradInput, float *gradOutput, float *indices_x, float *indices_y,
+ float *gradInput, float *gradOutput, long *indices_x, long *indices_y,
int input_n, int input_h, int input_w, int output_h, int output_w
)
{
@@ -172,8 +171,8 @@
float *ptr_gradInput = gradInput + y_start*input_w + x_start;
float *ptr_gradOutput = gradOutput + yy*output_w + xx;
- float *ptr_ind_x = indices_x + yy*output_w + xx;
- float *ptr_ind_y = indices_y + yy*output_w + xx;
+ long *ptr_ind_x = indices_x + yy*output_w + xx;
+ long *ptr_ind_y = indices_y + yy*output_w + xx;
float z = *ptr_gradOutput;
int argmax_x = (*ptr_ind_x) - TH_INDEX_BASE;
@@ -185,11 +184,11 @@
}
}
-void THNN_CudaSpatialAdaptiveMaxPooling_updateOutput(THCState *state, THCudaTensor *input, THCudaTensor *output, THCudaTensor *indices, int nOutputCols, int nOutputRows)
+void THNN_CudaSpatialAdaptiveMaxPooling_updateOutput(THCState *state, THCudaTensor *input, THCudaTensor *output, THCudaLongTensor *indices, int nOutputCols, int nOutputRows)
{
THCUNN_assertSameGPU(state, 3, input, output, indices);
- float *indices_data;
+ long *indices_data;
float *output_data;
float *input_data;
@@ -207,9 +206,9 @@
input_data = THCudaTensor_data(state, input);
THCudaTensor_resize3d(state, output, nInputPlane, nOutputRows, nOutputCols);
- THCudaTensor_resize4d(state, indices, 2, nInputPlane, nOutputRows, nOutputCols);
+ THCudaLongTensor_resize4d(state, indices, 2, nInputPlane, nOutputRows, nOutputCols);
- indices_data = THCudaTensor_data(state, indices);
+ indices_data = THCudaLongTensor_data(state, indices);
output_data = THCudaTensor_data(state, output);
// cuda blocks & threads:
@@ -239,9 +238,9 @@
input_data = THCudaTensor_data(state, input);
THCudaTensor_resize4d(state, output, nbatch, nInputPlane, nOutputRows, nOutputCols);
- THCudaTensor_resize5d(state, indices, 2, nbatch, nInputPlane, nOutputRows, nOutputCols);
+ THCudaLongTensor_resize5d(state, indices, 2, nbatch, nInputPlane, nOutputRows, nOutputCols);
- indices_data = THCudaTensor_data(state, indices);
+ indices_data = THCudaLongTensor_data(state, indices);
output_data = THCudaTensor_data(state, output);
// cuda blocks & threads:
@@ -261,13 +260,13 @@
}
}
-void THNN_CudaSpatialAdaptiveMaxPooling_updateGradInput(THCState *state, THCudaTensor *input, THCudaTensor *gradOutput, THCudaTensor *gradInput, THCudaTensor *indices)
+void THNN_CudaSpatialAdaptiveMaxPooling_updateGradInput(THCState *state, THCudaTensor *input, THCudaTensor *gradOutput, THCudaTensor *gradInput, THCudaLongTensor *indices)
{
bool atomic = true; // suboptimal, but without atomic it doesn't pass the tests
THCUNN_assertSameGPU(state, 4, input, indices, gradOutput, gradInput);
- float *indices_data;
+ long *indices_data;
float *gradInput_data;
float *gradOutput_data;
@@ -285,7 +284,7 @@
THCudaTensor_resizeAs(state, gradInput, input);
THCudaTensor_zero(state, gradInput);
- indices_data = THCudaTensor_data(state, indices);
+ indices_data = THCudaLongTensor_data(state, indices);
gradOutput_data = THCudaTensor_data(state, gradOutput);
gradInput_data = THCudaTensor_data(state, gradInput);
@@ -323,7 +322,7 @@
THCudaTensor_resizeAs(state, gradInput, input);
THCudaTensor_zero(state, gradInput);
- indices_data = THCudaTensor_data(state, indices);
+ indices_data = THCudaLongTensor_data(state, indices);
gradOutput_data = THCudaTensor_data(state, gradOutput);
gradInput_data = THCudaTensor_data(state, gradInput);
diff --git a/THCUNN.h b/THCUNN.h
index 553fd72..ba7cdee 100644
--- a/THCUNN.h
+++ b/THCUNN.h
@@ -476,7 +476,7 @@
THCState *state,
THCudaTensor *input,
THCudaTensor *output,
- THCudaTensor *indices,
+ THCudaLongTensor *indices,
int nOutputCols,
int nOutputRows);
TH_API void THNN_CudaSpatialAdaptiveMaxPooling_updateGradInput(
@@ -484,7 +484,7 @@
THCudaTensor *input,
THCudaTensor *gradOutput,
THCudaTensor *gradInput,
- THCudaTensor *indices);
+ THCudaLongTensor *indices);
TH_API void THNN_CudaSpatialAveragePooling_updateOutput(
THCState *state,