Add OpInfo based meta tensor tests [RELAND]
PR #75994 was taking too long to ship so I extracted out the CrossRef gadget and
had it run on a simple OpInfo invocation only.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77008
Approved by: https://github.com/ngimel
diff --git a/test/test_meta.py b/test/test_meta.py
new file mode 100644
index 0000000..971aa08
--- /dev/null
+++ b/test/test_meta.py
@@ -0,0 +1,886 @@
+# Owner(s): ["module: primTorch"]
+
+import torch
+from torch.utils._pytree import tree_map, tree_flatten
+from torch.testing._internal.common_utils import (
+ TestCase,
+ skipIfCrossRef,
+ suppress_warnings,
+ TEST_WITH_ASAN,
+ run_tests,
+)
+from torch.overrides import push_torch_function_mode
+from torch.testing._internal.common_device_type import (
+ onlyNativeDeviceTypes,
+ ops,
+ instantiate_device_type_tests,
+)
+from torch.testing._internal.common_methods_invocations import op_db
+
+import functools
+import re
+from functools import partial
+import unittest
+import warnings
+
+RE_NOT_IMPLEMENTED_MSG = re.compile(r"Could not run '([^']+)' with arguments ")
+
+# These just need an implementation of meta tensors, once you
+# implement them remove from this set. When doing comprehensive
+# testing, we will verify that these raise errors when meta is run under
+# OpInfo
+meta_exclude_set = {
+ torch.Tensor.__lshift__, # MISSING aten::__lshift__.Scalar
+ torch.Tensor.__lshift__, # MISSING aten::__lshift__.Tensor
+ torch.Tensor.__reversed__, # MISSING aten::flip
+ torch.Tensor.__rmatmul__, # MISSING aten::dot
+ torch.Tensor.__rshift__, # MISSING aten::__rshift__.Scalar
+ torch.Tensor.__rshift__, # MISSING aten::__rshift__.Tensor
+ torch.Tensor.abs, # MISSING aten::abs.out
+ torch.Tensor.abs_, # MISSING aten::abs.out
+ torch.Tensor.absolute, # MISSING aten::abs.out
+ torch.Tensor.absolute_, # MISSING aten::abs.out
+ torch.Tensor.addbmm, # MISSING aten::addbmm
+ torch.Tensor.addcmul, # MISSING aten::_local_scalar_dense
+ torch.Tensor.angle, # MISSING aten::angle
+ torch.Tensor.argsort, # MISSING aten::sort
+ torch.Tensor.bincount, # MISSING aten::bincount
+ torch.Tensor.cholesky, # MISSING aten::cholesky
+ torch.Tensor.cholesky_inverse, # MISSING aten::cholesky_inverse
+ torch.Tensor.cholesky_solve, # MISSING aten::_cholesky_solve_helper
+ torch.Tensor.clamp, # MISSING aten::clamp.Tensor
+ torch.Tensor.clamp_, # MISSING aten::clamp.Tensor_out
+ torch.Tensor.clip, # MISSING aten::clamp.Tensor
+ torch.Tensor.clip_, # MISSING aten::clamp.Tensor_out
+ torch.Tensor.conj_physical, # MISSING aten::conj_physical.out
+ torch.Tensor.corrcoef, # MISSING aten::_local_scalar_dense
+ torch.Tensor.count_nonzero, # MISSING aten::count_nonzero.dim_IntList
+ torch.Tensor.cov, # MISSING aten::_local_scalar_dense
+ torch.Tensor.cummax, # MISSING aten::_cummax_helper
+ torch.Tensor.cummin, # MISSING aten::_cummin_helper
+ torch.Tensor.cumprod_, # MISSING aten::logical_and.out
+ torch.Tensor.dequantize, # MISSING aten::dequantize.self
+ torch.Tensor.det, # MISSING aten::_det_lu_based_helper
+ torch.Tensor.diag, # MISSING aten::diag.out
+ torch.Tensor.diagflat, # MISSING aten::diag.out
+ torch.Tensor.dot, # MISSING aten::dot
+ torch.Tensor.eig, # MISSING aten::abs.out
+ torch.Tensor.equal, # MISSING aten::equal
+ torch.Tensor.flip, # MISSING aten::flip
+ torch.Tensor.fliplr, # MISSING aten::flip
+ torch.Tensor.flipud, # MISSING aten::flip
+ torch.Tensor.floor_divide, # MISSING aten::floor_divide
+ torch.Tensor.frexp, # MISSING aten::frexp.Tensor_out
+ torch.Tensor.geqrf, # MISSING aten::geqrf
+ torch.Tensor.histc, # MISSING aten::histc
+ torch.Tensor.histogram, # MISSING aten::histogram.bin_ct
+ torch.Tensor.index_select, # MISSING aten::index_select
+ torch.Tensor.inverse, # MISSING aten::_local_scalar_dense
+ torch.Tensor.is_set_to, # MISSING aten::is_set_to
+ torch.Tensor.isclose, # MISSING aten::abs.out
+ torch.Tensor.isnan, # MISSING aten::isnan
+ torch.Tensor.istft, # MISSING aten::view_as_complex
+ torch.Tensor.kthvalue, # MISSING aten::kthvalue.values
+ torch.Tensor.logcumsumexp, # MISSING aten::_logcumsumexp
+ torch.Tensor.logdet, # MISSING aten::abs.out
+ torch.Tensor.logical_and, # MISSING aten::logical_and.out
+ torch.Tensor.logical_and_, # MISSING aten::logical_and.out
+ torch.Tensor.logical_not, # MISSING aten::logical_not.out
+ torch.Tensor.logical_or, # MISSING aten::logical_or.out
+ torch.Tensor.logical_or_, # MISSING aten::logical_or.out
+ torch.Tensor.logical_xor, # MISSING aten::logical_xor.out
+ torch.Tensor.logical_xor_, # MISSING aten::logical_xor.out
+ torch.Tensor.logit, # MISSING aten::logit
+ torch.Tensor.logsumexp, # MISSING aten::abs.out
+ torch.Tensor.lstsq, # MISSING aten::lstsq
+ torch.Tensor.masked_select, # MISSING aten::masked_select
+ torch.Tensor.matmul, # MISSING aten::dot
+ torch.Tensor.matrix_exp, # MISSING aten::linalg_matrix_exp
+ torch.Tensor.matrix_power, # MISSING aten::eye.m_out
+ torch.Tensor.max, # MISSING aten::max
+ torch.Tensor.median, # MISSING aten::median
+ torch.Tensor.median, # MISSING aten::median.dim_values
+ torch.Tensor.min, # MISSING aten::min
+ torch.Tensor.mode, # MISSING aten::mode
+ torch.Tensor.msort, # MISSING aten::sort
+ torch.Tensor.multinomial, # MISSING aten::multinomial
+ torch.Tensor.mvlgamma, # MISSING aten::_local_scalar_dense
+ torch.Tensor.mvlgamma_, # MISSING aten::_local_scalar_dense
+ torch.Tensor.nan_to_num, # MISSING aten::nan_to_num.out
+ torch.Tensor.nan_to_num_, # MISSING aten::nan_to_num.out
+ torch.Tensor.nanmean, # MISSING aten::logical_not.out
+ torch.Tensor.nanmedian, # MISSING aten::nanmedian
+ torch.Tensor.nanmedian, # MISSING aten::nanmedian.dim_values
+ torch.Tensor.nanquantile, # MISSING aten::sort
+ torch.Tensor.nansum, # MISSING aten::nansum
+ torch.Tensor.narrow, # MISSING aten::_local_scalar_dense
+ torch.Tensor.nonzero, # MISSING aten::nonzero
+ torch.Tensor.orgqr, # MISSING aten::linalg_householder_product
+ torch.Tensor.ormqr, # MISSING aten::ormqr
+ torch.Tensor.pinverse, # MISSING aten::where.self
+ torch.Tensor.prod, # MISSING aten::prod
+ torch.Tensor.qr, # MISSING aten::_linalg_qr_helper
+ torch.Tensor.quantile, # MISSING aten::sort
+ torch.Tensor.relu, # MISSING aten::relu
+ torch.Tensor.renorm_, # MISSING aten::_local_scalar_dense
+ torch.Tensor.repeat_interleave, # MISSING aten::repeat_interleave.Tensor
+ torch.Tensor.roll, # MISSING aten::roll
+ torch.Tensor.rot90, # MISSING aten::flip
+ torch.Tensor.slogdet, # MISSING aten::linalg_slogdet
+ torch.Tensor.solve, # MISSING aten::_solve_helper
+ torch.Tensor.sort, # MISSING aten::sort
+ torch.Tensor.std, # MISSING aten::std.correction
+ torch.Tensor.stft, # MISSING aten::_fft_r2c
+ torch.Tensor.symeig, # MISSING aten::_symeig_helper
+ torch.Tensor.take, # MISSING aten::take
+ torch.Tensor.to_mkldnn, # MISSING aten::to_mkldnn
+ torch.Tensor.to_sparse, # MISSING aten::to_sparse
+ torch.Tensor.to_sparse_csr, # MISSING aten::to_sparse_csr
+ torch.Tensor.topk, # MISSING aten::_local_scalar_dense
+ torch.Tensor.trace, # MISSING aten::trace
+ torch.Tensor.unique, # MISSING aten::_unique2
+ torch.Tensor.unique_consecutive, # MISSING aten::unique_consecutive
+ torch.Tensor.unsqueeze, # MISSING aten::_local_scalar_dense
+ torch.Tensor.var, # MISSING aten::var.correction
+ torch.Tensor.vdot, # MISSING aten::vdot
+ torch.Tensor.where, # MISSING aten::where.self
+ torch._add_relu, # MISSING aten::_add_relu.Tensor
+ torch._aminmax, # MISSING aten::_aminmax
+ torch._assert_async, # MISSING aten::_assert_async
+ torch._choose_qparams_per_tensor, # MISSING aten::min
+ torch._compute_linear_combination, # MISSING aten::_compute_linear_combination
+ torch._det_lu_based_helper, # MISSING aten::_det_lu_based_helper
+ torch._dirichlet_grad, # MISSING aten::_dirichlet_grad
+ torch._fake_quantize_learnable_per_channel_affine, # MISSING aten::_fake_quantize_learnable_per_channel_affine
+ torch._fake_quantize_learnable_per_tensor_affine, # MISSING aten::_fake_quantize_learnable_per_tensor_affine
+ torch._fake_quantize_per_tensor_affine_cachemask_tensor_qparams, # MISSING aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams # noqa: E501
+ torch._foreach_abs, # MISSING aten::_foreach_abs
+ torch._foreach_abs_, # MISSING aten::_foreach_abs_
+ torch._foreach_acos, # MISSING aten::_foreach_acos
+ torch._foreach_acos_, # MISSING aten::_foreach_acos_
+ torch._foreach_add, # MISSING aten::_foreach_add.Scalar
+ torch._foreach_add_, # MISSING aten::_foreach_add_.Scalar
+ torch._foreach_addcdiv, # MISSING aten::_foreach_addcdiv.Scalar
+ torch._foreach_addcdiv_, # MISSING aten::_foreach_addcdiv_.Scalar
+ torch._foreach_addcmul, # MISSING aten::_foreach_addcmul.Scalar
+ torch._foreach_addcmul_, # MISSING aten::_foreach_addcmul_.Scalar
+ torch._foreach_asin, # MISSING aten::_foreach_asin
+ torch._foreach_asin_, # MISSING aten::_foreach_asin_
+ torch._foreach_atan, # MISSING aten::_foreach_atan
+ torch._foreach_atan_, # MISSING aten::_foreach_atan_
+ torch._foreach_ceil, # MISSING aten::_foreach_ceil
+ torch._foreach_ceil_, # MISSING aten::_foreach_ceil_
+ torch._foreach_cos, # MISSING aten::_foreach_cos
+ torch._foreach_cos_, # MISSING aten::_foreach_cos_
+ torch._foreach_cosh, # MISSING aten::_foreach_cosh
+ torch._foreach_cosh_, # MISSING aten::_foreach_cosh_
+ torch._foreach_div, # MISSING aten::_foreach_div.Scalar
+ torch._foreach_div_, # MISSING aten::_foreach_div_.ScalarList
+ torch._foreach_erf, # MISSING aten::_foreach_erf
+ torch._foreach_erf_, # MISSING aten::_foreach_erf_
+ torch._foreach_erfc, # MISSING aten::_foreach_erfc
+ torch._foreach_erfc_, # MISSING aten::_foreach_erfc_
+ torch._foreach_exp, # MISSING aten::_foreach_exp
+ torch._foreach_exp_, # MISSING aten::_foreach_exp_
+ torch._foreach_expm1, # MISSING aten::_foreach_expm1
+ torch._foreach_expm1_, # MISSING aten::_foreach_expm1_
+ torch._foreach_floor, # MISSING aten::_foreach_floor
+ torch._foreach_floor_, # MISSING aten::_foreach_floor_
+ torch._foreach_frac, # MISSING aten::_foreach_frac
+ torch._foreach_frac_, # MISSING aten::_foreach_frac_
+ torch._foreach_log, # MISSING aten::_foreach_log
+ torch._foreach_log10, # MISSING aten::_foreach_log10
+ torch._foreach_log10_, # MISSING aten::_foreach_log10_
+ torch._foreach_log1p, # MISSING aten::_foreach_log1p
+ torch._foreach_log1p_, # MISSING aten::_foreach_log1p_
+ torch._foreach_log2, # MISSING aten::_foreach_log2
+ torch._foreach_log2_, # MISSING aten::_foreach_log2_
+ torch._foreach_log_, # MISSING aten::_foreach_log_
+ torch._foreach_maximum, # MISSING aten::_foreach_maximum.List
+ torch._foreach_minimum, # MISSING aten::_foreach_minimum.List
+ torch._foreach_mul, # MISSING aten::_foreach_mul.Scalar
+ torch._foreach_mul_, # MISSING aten::_foreach_mul_.ScalarList
+ torch._foreach_neg, # MISSING aten::_foreach_neg
+ torch._foreach_neg_, # MISSING aten::_foreach_neg_
+ torch._foreach_norm, # MISSING aten::_foreach_norm.Scalar
+ torch._foreach_reciprocal, # MISSING aten::_foreach_reciprocal
+ torch._foreach_reciprocal_, # MISSING aten::_foreach_reciprocal_
+ torch._foreach_round, # MISSING aten::_foreach_round
+ torch._foreach_round_, # MISSING aten::_foreach_round_
+ torch._foreach_sigmoid, # MISSING aten::_foreach_sigmoid
+ torch._foreach_sigmoid_, # MISSING aten::_foreach_sigmoid_
+ torch._foreach_sin, # MISSING aten::_foreach_sin
+ torch._foreach_sin_, # MISSING aten::_foreach_sin_
+ torch._foreach_sinh, # MISSING aten::_foreach_sinh
+ torch._foreach_sinh_, # MISSING aten::_foreach_sinh_
+ torch._foreach_sqrt, # MISSING aten::_foreach_sqrt
+ torch._foreach_sqrt_, # MISSING aten::_foreach_sqrt_
+ torch._foreach_sub, # MISSING aten::_foreach_sub.Scalar
+ torch._foreach_sub_, # MISSING aten::_foreach_sub_.ScalarList
+ torch._foreach_tan, # MISSING aten::_foreach_tan
+ torch._foreach_tan_, # MISSING aten::_foreach_tan_
+ torch._foreach_tanh, # MISSING aten::_foreach_tanh
+ torch._foreach_tanh_, # MISSING aten::_foreach_tanh_
+ torch._foreach_trunc, # MISSING aten::_foreach_trunc
+ torch._foreach_trunc_, # MISSING aten::_foreach_trunc_
+ torch._foreach_zero_, # MISSING aten::_foreach_zero_
+ torch._fused_moving_avg_obs_fq_helper, # MISSING aten::_fused_moving_avg_obs_fq_helper
+ torch._make_per_tensor_quantized_tensor, # MISSING aten::_make_per_tensor_quantized_tensor
+ torch._masked_softmax, # MISSING aten::_masked_softmax
+ torch._sample_dirichlet, # MISSING aten::_sample_dirichlet
+ torch._standard_gamma, # MISSING aten::_standard_gamma
+ torch._unique, # MISSING aten::_unique
+ torch._unique2, # MISSING aten::_unique2
+ torch.abs, # MISSING aten::abs.out
+ torch.absolute, # MISSING aten::abs.out
+ torch.addbmm, # MISSING aten::addbmm
+ torch.angle, # MISSING aten::angle
+ torch.batch_norm, # MISSING aten::native_batch_norm
+ torch.bernoulli, # MISSING aten::bernoulli.out
+ torch.bincount, # MISSING aten::bincount
+ torch.binomial, # MISSING aten::binomial
+ torch.bucketize, # MISSING aten::bucketize.Tensor
+ torch.cholesky, # MISSING aten::cholesky
+ torch.cholesky_inverse, # MISSING aten::cholesky_inverse
+ torch.cholesky_solve, # MISSING aten::_cholesky_solve_helper
+ torch.clip, # MISSING aten::clamp.Tensor
+ torch.combinations, # MISSING aten::masked_select
+ torch.complex, # MISSING aten::complex.out
+ torch.conj_physical, # MISSING aten::conj_physical.out
+ torch.corrcoef, # MISSING aten::_local_scalar_dense
+ torch.count_nonzero, # MISSING aten::count_nonzero.dim_IntList
+ torch.cov, # MISSING aten::_local_scalar_dense
+ torch.cummax, # MISSING aten::_cummax_helper
+ torch.cummin, # MISSING aten::_cummin_helper
+ torch.det, # MISSING aten::_det_lu_based_helper
+ torch.diag, # MISSING aten::diag.out
+ torch.diagflat, # MISSING aten::diag.out
+ torch.dot, # MISSING aten::dot
+ torch.eig, # MISSING aten::abs.out
+ torch.embedding, # MISSING aten::index_select
+ torch.equal, # MISSING aten::equal
+ torch.eye, # MISSING aten::eye.m_out
+ torch.fake_quantize_per_channel_affine, # MISSING aten::fake_quantize_per_channel_affine_cachemask
+ torch.fake_quantize_per_tensor_affine, # MISSING aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams
+ torch.fft.fft, # MISSING aten::_fft_r2c
+ torch.fft.fft2, # MISSING aten::_fft_c2c
+ torch.fft.fftn, # MISSING aten::_fft_c2c
+ torch.fft.fftshift, # MISSING aten::roll
+ torch.fft.hfft2, # MISSING aten::_fft_c2c
+ torch.fft.hfftn, # MISSING aten::_fft_c2c
+ torch.fft.ifft, # MISSING aten::_fft_r2c
+ torch.fft.ifft2, # MISSING aten::_fft_c2c
+ torch.fft.ifftn, # MISSING aten::_fft_c2c
+ torch.fft.ifftshift, # MISSING aten::roll
+ torch.fft.ihfft, # MISSING aten::_fft_r2c
+ torch.fft.ihfft2, # MISSING aten::_fft_r2c
+ torch.fft.ihfftn, # MISSING aten::_fft_r2c
+ torch.fft.irfft, # MISSING aten::_fft_c2r
+ torch.fft.irfft2, # MISSING aten::_fft_c2r
+ torch.fft.irfftn, # MISSING aten::_fft_c2r
+ torch.fft.rfft, # MISSING aten::_fft_r2c
+ torch.fft.rfft2, # MISSING aten::_fft_r2c
+ torch.fft.rfftn, # MISSING aten::_fft_r2c
+ torch.flip, # MISSING aten::flip
+ torch.fliplr, # MISSING aten::flip
+ torch.flipud, # MISSING aten::flip
+ torch.floor_divide, # MISSING aten::floor_divide
+ torch.frexp, # MISSING aten::frexp.Tensor_out
+ torch.functional.cdist, # MISSING aten::_cdist_forward
+ torch.functional.einsum, # MISSING aten::dot
+ torch.functional.istft, # MISSING aten::view_as_complex
+ torch.functional.pca_lowrank, # MISSING aten::_linalg_qr_helper
+ torch.functional.stft, # MISSING aten::_fft_r2c
+ torch.functional.svd_lowrank, # MISSING aten::_linalg_qr_helper
+ torch.functional.tensordot, # MISSING aten::tensordot.out
+ torch.functional.unique, # MISSING aten::_unique2
+ torch.functional.unique_consecutive, # MISSING aten::unique_consecutive
+ torch.fused_moving_avg_obs_fake_quant, # MISSING aten::_fused_moving_avg_obs_fq_helper
+ torch.geqrf, # MISSING aten::geqrf
+ torch.group_norm, # MISSING aten::native_batch_norm
+ torch.histc, # MISSING aten::histc.out
+ torch.histogram, # MISSING aten::histogram.bin_ct
+ torch.histogramdd, # MISSING aten::_histogramdd_bin_edges
+ torch.index_select, # MISSING aten::index_select
+ torch.inner, # MISSING aten::tensordot.out
+ torch.inverse, # MISSING aten::_local_scalar_dense
+ torch.isnan, # MISSING aten::isnan
+ torch.kthvalue, # MISSING aten::kthvalue.values
+ torch.layer_norm, # MISSING aten::native_batch_norm
+ torch.linalg.cholesky, # MISSING aten::linalg_cholesky_ex
+ torch.linalg.cholesky_ex, # MISSING aten::linalg_cholesky_ex
+ torch.linalg.det, # MISSING aten::_det_lu_based_helper
+ torch.linalg.eig, # MISSING aten::linalg_eig
+ torch.linalg.eig, # MISSING aten::linalg_eig.out
+ torch.linalg.eigh, # MISSING aten::linalg_eigh
+ torch.linalg.eigvals, # MISSING aten::linalg_eig
+ torch.linalg.eigvalsh, # MISSING aten::linalg_eigh
+ torch.linalg.eigvalsh, # MISSING aten::linalg_eigvalsh.out
+ torch.linalg.householder_product, # MISSING aten::linalg_householder_product
+ torch.linalg.inv, # MISSING aten::_local_scalar_dense
+ torch.linalg.lstsq, # MISSING aten::linalg_lstsq.out
+ torch.linalg.lu_factor, # MISSING aten::_local_scalar_dense
+ torch.linalg.matmul, # MISSING aten::dot
+ torch.linalg.matrix_exp, # MISSING aten::linalg_matrix_exp
+ torch.linalg.matrix_norm, # MISSING aten::abs.out
+ torch.linalg.matrix_power, # MISSING aten::_local_scalar_dense
+ torch.linalg.matrix_power, # MISSING aten::eye.m_out
+ torch.linalg.norm, # MISSING aten::linalg_vector_norm
+ torch.linalg.pinv, # MISSING aten::where.self
+ torch.linalg.qr, # MISSING aten::_linalg_qr_helper
+ torch.linalg.slogdet, # MISSING aten::linalg_slogdet
+ torch.linalg.solve, # MISSING aten::linalg_solve
+ torch.linalg.solve_triangular, # MISSING aten::linalg_solve_triangular
+ torch.linalg.tensorinv, # MISSING aten::_local_scalar_dense
+ torch.linalg.tensorsolve, # MISSING aten::linalg_solve
+ torch.linalg.vector_norm, # MISSING aten::linalg_vector_norm
+ torch.logcumsumexp, # MISSING aten::_logcumsumexp
+ torch.logdet, # MISSING aten::abs.out
+ torch.logical_and, # MISSING aten::logical_and.out
+ torch.logical_not, # MISSING aten::logical_not.out
+ torch.logical_or, # MISSING aten::logical_or.out
+ torch.logical_xor, # MISSING aten::logical_xor.out
+ torch.logit, # MISSING aten::logit
+ torch.logsumexp, # MISSING aten::abs.out
+ torch.lstsq, # MISSING aten::lstsq
+ torch.masked_select, # MISSING aten::masked_select
+ torch.matmul, # MISSING aten::dot
+ torch.matrix_exp, # MISSING aten::linalg_matrix_exp
+ torch.matrix_power, # MISSING aten::eye.m_out
+ torch.matrix_rank, # MISSING aten::linalg_eigvalsh.out
+ torch.median, # MISSING aten::median
+ torch.median, # MISSING aten::median.dim_values
+ torch.mode, # MISSING aten::mode
+ torch.multinomial, # MISSING aten::multinomial
+ torch.mvlgamma, # MISSING aten::_local_scalar_dense
+ torch.nan_to_num, # MISSING aten::nan_to_num.out
+ torch.nanmean, # MISSING aten::logical_not.out
+ torch.nanmedian, # MISSING aten::nanmedian
+ torch.nanmedian, # MISSING aten::nanmedian.dim_values
+ torch.nansum, # MISSING aten::nansum
+ torch.nn.functional.adaptive_avg_pool1d, # MISSING aten::_adaptive_avg_pool2d
+ torch.nn.functional.adaptive_avg_pool2d, # MISSING aten::_adaptive_avg_pool2d
+ torch.nn.functional.adaptive_avg_pool3d, # MISSING aten::_adaptive_avg_pool3d
+ torch.nn.functional.batch_norm, # MISSING aten::native_batch_norm
+ torch.nn.functional.binary_cross_entropy, # MISSING aten::binary_cross_entropy
+ torch.nn.functional.channel_shuffle, # MISSING aten::channel_shuffle
+ torch.nn.functional.cosine_embedding_loss, # MISSING aten::clamp_min.out
+ torch.nn.functional.cross_entropy, # MISSING aten::_local_scalar_dense
+ torch.nn.functional.cross_entropy, # MISSING aten::nll_loss2d_forward
+ torch.nn.functional.ctc_loss, # MISSING aten::_ctc_loss
+ torch.nn.functional.embedding, # MISSING aten::index_select
+ torch.nn.functional.embedding_bag, # MISSING aten::_embedding_bag
+ torch.nn.functional.fold, # MISSING aten::col2im
+ torch.nn.functional.gaussian_nll_loss, # MISSING aten::_local_scalar_dense
+ torch.nn.functional.grid_sample, # MISSING aten::grid_sampler_2d
+ torch.nn.functional.group_norm, # MISSING aten::native_batch_norm
+ torch.nn.functional.hardswish, # MISSING aten::hardswish
+ torch.nn.functional.hardtanh, # MISSING aten::hardtanh
+ torch.nn.functional.hinge_embedding_loss, # MISSING aten::clamp_min.out
+ torch.nn.functional.huber_loss, # MISSING aten::huber_loss
+ torch.nn.functional.instance_norm, # MISSING aten::native_batch_norm
+ torch.nn.functional.kl_div, # MISSING aten::where.self
+ torch.nn.functional.l1_loss, # MISSING aten::abs.out
+ torch.nn.functional.layer_norm, # MISSING aten::native_batch_norm
+ torch.nn.functional.logsigmoid, # MISSING aten::log_sigmoid_forward
+ torch.nn.functional.lp_pool1d, # MISSING aten::abs.out
+ torch.nn.functional.lp_pool2d, # MISSING aten::abs.out
+ torch.nn.functional.max_pool3d, # MISSING aten::max_pool3d_with_indices
+ torch.nn.functional.max_pool3d_with_indices, # MISSING aten::max_pool3d_with_indices
+ torch.nn.functional.max_unpool1d, # MISSING aten::max_unpool2d
+ torch.nn.functional.max_unpool2d, # MISSING aten::max_unpool2d
+ torch.nn.functional.max_unpool3d, # MISSING aten::max_unpool3d
+ torch.nn.functional.multi_head_attention_forward, # MISSING aten::logical_or.out
+ torch.nn.functional.multi_margin_loss, # MISSING aten::multi_margin_loss
+ torch.nn.functional.multilabel_margin_loss, # MISSING aten::multilabel_margin_loss_forward
+ torch.nn.functional.multilabel_soft_margin_loss, # MISSING aten::log_sigmoid_forward
+ torch.nn.functional.nll_loss, # MISSING aten::nll_loss2d_forward
+ torch.nn.functional.one_hot, # MISSING aten::min
+ torch.nn.functional.pdist, # MISSING aten::_pdist_forward
+ torch.nn.functional.prelu, # MISSING aten::prelu
+ torch.nn.functional.relu, # MISSING aten::relu
+ torch.nn.functional.relu6, # MISSING aten::hardtanh
+ torch.nn.functional.rrelu, # MISSING aten::rrelu_with_noise
+ torch.nn.functional.softsign, # MISSING aten::abs.out
+ torch.nn.functional.unfold, # MISSING aten::im2col
+ torch.nonzero, # MISSING aten::nonzero
+ torch.normal, # MISSING aten::min
+ torch.orgqr, # MISSING aten::linalg_householder_product
+ torch.ormqr, # MISSING aten::ormqr
+ torch.pinverse, # MISSING aten::where.self
+ torch.poisson, # MISSING aten::poisson
+ torch.polar, # MISSING aten::polar.out
+ torch.prod, # MISSING aten::prod
+ torch.qr, # MISSING aten::_linalg_qr_helper
+ torch.quantize_per_channel, # MISSING aten::quantize_per_channel
+ torch.quantize_per_tensor, # MISSING aten::quantize_per_tensor
+ torch.quantize_per_tensor_dynamic, # MISSING aten::quantize_per_tensor_dynamic
+ torch.relu, # MISSING aten::relu
+ torch.repeat_interleave, # MISSING aten::repeat_interleave.Tensor
+ torch.rnn_relu, # MISSING aten::relu
+ torch.rnn_relu_cell, # MISSING aten::relu
+ torch.roll, # MISSING aten::roll
+ torch.rot90, # MISSING aten::flip
+ torch.rsub, # MISSING aten::rsub.Tensor
+ torch.searchsorted, # MISSING aten::searchsorted.Tensor
+ torch.slogdet, # MISSING aten::linalg_slogdet
+ torch.solve, # MISSING aten::_solve_helper
+ torch.special.logit, # MISSING aten::logit
+ torch.special.logsumexp, # MISSING aten::abs.out
+ torch.special.multigammaln, # MISSING aten::_local_scalar_dense
+ torch.square, # MISSING aten::square.out
+ torch.std, # MISSING aten::std.correction
+ torch.std_mean, # MISSING aten::std_mean.correction
+ torch.symeig, # MISSING aten::_symeig_helper
+ torch.take, # MISSING aten::take
+ torch.threshold, # MISSING aten::_local_scalar_dense
+ torch.trace, # MISSING aten::trace
+ torch.var, # MISSING aten::var.correction
+ torch.var_mean, # MISSING aten::var_mean.correction
+ torch.vdot, # MISSING aten::vdot
+ torch.where, # MISSING aten::where.self
+ torch.quantile, # MISSING aten::isnan
+ torch.nanquantile, # MISSING aten::isnan
+}
+
+# Only some overloads/configurations are covered with meta tensors,
+# so we can't use these to toggle expected failure. Try to prioritize these
+overload_exclude_set = {
+ torch.clamp, # MISSING aten::clamp.Tensor
+ torch.max, # MISSING aten::max
+ torch.min, # MISSING aten::min
+ torch.nn.functional.interpolate, # MISSING aten::upsample_nearest3d.vec
+ torch.nn.functional.upsample_nearest, # MISSING aten::upsample_nearest3d.vec
+ torch.nn.functional.pad, # MISSING aten::reflection_pad2d
+ torch.remainder, # MISSING aten::remainder.Scalar_Tensor
+ torch.linalg.matrix_rank, # MISSING aten::linalg_eigh
+ torch.Tensor.isinf, # MISSING aten::abs.out
+ torch.isinf, # MISSING aten::abs.out
+ torch.Tensor.isfinite, # MISSING aten::abs.out
+ torch.isfinite, # MISSING aten::abs.out
+ torch.diff, # MISSING aten::logical_xor.out
+}
+
+# These are fine in OpInfo tests, but triggered errors in full test suite
+# crossref testing, which means there is probably not enough coverage from
+# OpInfo. Patch in https://github.com/pytorch/pytorch/pull/75994 and find
+# out where these fails come from.
+suspicious_exclude_set = {
+ torch.add, # MISSING aten::_local_scalar_dense
+ torch.cat, # MISSING aten::_local_scalar_dense
+ torch.cumprod, # MISSING aten::logical_and.out
+ torch.cumsum, # MISSING aten::_local_scalar_dense
+ torch.functional.norm, # MISSING aten::isnan
+ torch.linalg.cond, # MISSING aten::abs.out
+ torch.sgn, # MISSING aten::abs.out
+
+ # RuntimeError: Expected 3D or 4D (batch mode) tensor with optional 0 dim
+ # batch size for input, but got:[1, 1, 0]
+ # in test_nn.py TestNNDeviceTypeCPU.test_max_pool1d_corner_cases_cpu_float64
+ torch.nn.functional.max_pool1d,
+
+ # Factory functions need tricky kwarg handling
+ torch.zeros_like,
+}
+
+# These also are known to not work, but they fail in a more special way
+# than the regular "Meta not implemented for aten op" way
+meta_exclude_set |= {
+ # Convolutions have a special error message
+ torch.nn.functional.conv1d,
+ torch.nn.functional.conv2d,
+ torch.nn.functional.conv3d,
+ torch.nn.functional.conv_transpose1d,
+ torch.nn.functional.conv_transpose2d,
+ torch.nn.functional.conv_transpose3d,
+ # complex stuff handle it specially
+ torch.view_as_complex,
+ torch.view_as_real,
+ # These operators happen very frequently, although they should
+ # work with meta we intentionally don't test them to speed
+ # up the test suite
+ torch.Tensor.__getitem__,
+ torch.Tensor.__rsub__,
+ torch.Tensor.__setitem__,
+ torch.Tensor.add,
+ torch.Tensor.add_,
+ torch.Tensor.clone,
+ torch.Tensor.detach,
+ torch.Tensor.div,
+ torch.Tensor.gt,
+ torch.Tensor.lt,
+ torch.Tensor.mul,
+ torch.Tensor.reshape,
+ torch.Tensor.sub,
+ torch.Tensor.sum,
+ torch.rand,
+ # These correctly report NotImplemented but they don't print
+ # correctly from resolve_name
+ torch.ops.quantized.linear_dynamic,
+ torch._VF.unique_dim,
+ torch._C._nn.binary_cross_entropy,
+ torch._C._nn.adaptive_avg_pool2d,
+ torch._C._nn._test_optional_filled_intlist,
+ torch._C._nn._test_optional_floatlist,
+ torch._C._nn._test_optional_intlist,
+ # Meta tensors don't support storage Python bindings at the
+ # moment, to be fixed
+ torch.Tensor.storage,
+ torch.Tensor.storage_type,
+ torch.Tensor.share_memory_,
+ # Weird stuff that hypothetically should work but it's weird
+ torch._make_dual,
+ torch._unpack_dual, # fails because we don't preserve forward ad tangent in test code
+ # These functions cannot, even in principle, be implemented on meta
+ # tensors (because they involve accessing data somehow), so don't test
+ # them.
+ torch.Tensor.__bool__,
+ torch.Tensor.__float__,
+ torch.Tensor.__int__,
+ torch.Tensor.__complex__,
+ torch.Tensor.__index__,
+ torch.Tensor.__contains__,
+ torch.Tensor.cpu,
+ torch.isclose,
+ torch.Tensor.to,
+ torch.Tensor.tolist,
+ torch.Tensor.unbind,
+ torch.Tensor.item,
+ torch.Tensor.is_nonzero,
+ torch.Tensor.copy_,
+ torch.Tensor.numpy,
+ torch.Tensor.allclose,
+ torch.Tensor.argwhere,
+ torch.allclose,
+ torch.argwhere,
+ torch.Tensor.__array__, # doesn't raise NotImplementedError
+ torch.Tensor.__dlpack_device__, # doesn't raise NotImplementedError
+ torch.Tensor.__dlpack__, # doesn't raise NotImplementedError
+ torch.to_dlpack, # doesn't raise NotImplementedError
+ # Utility functions that get frequently invoked; don't test
+ torch.Tensor.__format__,
+ torch.Tensor.__repr__,
+ # These are getters/setters for properties on tensors; it's not
+ # really useful to test meta tensors on them
+ torch.Tensor.device.__get__,
+ torch.Tensor.dtype.__get__,
+ torch.Tensor.grad.__get__,
+ torch.Tensor.grad.__set__,
+ torch.Tensor.is_sparse.__get__,
+ torch.Tensor.layout.__get__,
+ torch.Tensor.shape.__get__,
+ torch.Tensor.requires_grad.__get__,
+ torch.Tensor.requires_grad.__set__,
+ torch.Tensor.data.__get__,
+ torch.Tensor.data.__set__,
+ torch.Tensor._base.__get__,
+ torch.Tensor.is_shared,
+ torch.Tensor.imag.__get__,
+ torch.Tensor.real.__get__,
+ torch.Tensor.__setstate__,
+ torch.Tensor.is_complex,
+ torch.Tensor.is_floating_point,
+ torch.Tensor.numel,
+ torch.Tensor.requires_grad_,
+ torch.Tensor.size,
+ # These perturb RNG and can cause tests to fail, so don't run
+ # them (TODO: this is not a complete list)
+ torch.randint,
+ torch.randn,
+ # Indirect use of conjugate fallback
+ torch.fft.hfft,
+ # These don't raise NotImplementedError, which suggests something
+ # is wrong with how they're registered with the dispatcher
+ torch.fbgemm_pack_gemm_matrix_fp16,
+ torch.fbgemm_pack_quantized_matrix,
+ torch.fbgemm_linear_fp16_weight,
+ torch._empty_per_channel_affine_quantized,
+ torch.fbgemm_linear_int8_weight,
+ torch._grid_sampler_2d_cpu_fallback, # WAT
+ torch._nnpack_spatial_convolution,
+ torch.lstm,
+ torch.Tensor.conj_physical_,
+ torch.rnn_tanh,
+ torch.fbgemm_linear_quantize_weight,
+ torch._reshape_from_tensor,
+ torch.gru,
+ torch.Tensor.unflatten,
+ torch._saturate_weight_to_fp16,
+ torch.choose_qparams_optimized,
+ torch._validate_sparse_coo_tensor_args,
+ torch.sparse.mm,
+ torch.Tensor.new,
+ torch.Tensor.resize, # WTF is this
+ torch._sobol_engine_initialize_state_,
+ torch._sobol_engine_draw,
+ torch._sobol_engine_scramble_,
+ torch._sobol_engine_ff_,
+ torch.tensor_split,
+ torch.Tensor.tensor_split,
+ torch._pack_padded_sequence,
+ torch._pad_packed_sequence,
+ torch.sparse_coo_tensor,
+ torch.linalg.ldl_factor,
+ torch._index_reduce,
+ # IndexError: select() cannot be applied to a 0-dim tensor.
+ # e.g. test_fn_fwgrad_bwgrad_index_add_cpu_complex128 (__main__.TestGradientsCPU)
+ torch.index_add,
+ torch.Tensor.index_add,
+ torch.Tensor.index_add_,
+ # Can't copy out of meta tensor
+ torch.linalg.eigvals,
+ torch.linalg.lu_factor,
+ torch.nn.functional.ctc_loss,
+ # Our conversion to meta is not accurate enough (doesn't
+ # preserve storage_offset, e.g.)
+ torch.Tensor.as_strided,
+ # This one segfaults when you call it
+ torch.Tensor.type,
+ # We don't clone autograd history, so this will generally not work
+ torch.autograd.grad,
+ torch.Tensor.backward,
+ torch.Tensor.__deepcopy__,
+ # Don't do factories
+ torch.ones,
+ torch.full,
+ torch.empty,
+ torch.randperm,
+ torch.logspace,
+ torch.zeros,
+ torch.arange,
+ torch.vander,
+ torch.as_tensor,
+ torch.tensor,
+ torch.randn_like,
+ torch.sparse_csr_tensor,
+ torch._sparse_coo_tensor_unsafe,
+ torch._sparse_csr_tensor_unsafe,
+ torch._validate_sparse_csr_tensor_args,
+}
+
+# This is a __torch_function__ mode that, when enabled, interposes every
+# Torch API call and runs the operator as normal, and then reruns it
+# with meta inputs, and then checks that everything about the output agrees.
+# Most of the logic deals with faithfully replicating the original tensor
+# as a meta tensor, which is nontrivial because there are a lot of subsystems
+# that may potentially be exercised.
+#
+# That being said, this class is a little overkill for what it is doing in
+# this test file (since I could have just inlined __torch_function__ on the
+# OpInfo call, and OpInfos generally have very regular inputs), but it will be
+# useful for more comprehensive testing e.g., as seen in
+# https://github.com/pytorch/pytorch/pull/75994
+class MetaCrossRefMode(torch.overrides.TorchFunctionMode):
+ test_case: TestCase
+ run_excludes_anyway: bool
+
+ def __init__(self, test_case, *, run_excludes_anyway):
+ self.test_case = test_case
+ self.run_excludes_anyway = run_excludes_anyway
+
+ def __torch_function__(self, func, types, args=(), kwargs=None):
+ kwargs = kwargs or {}
+
+ hit = 0
+ miss = 0
+
+ # Doesn't actually return a storage
+ @functools.lru_cache(None)
+ def meta_storage(s):
+ return torch.empty(s.size(), dtype=s.dtype, device='meta')
+
+ def safe_is_leaf(t):
+ try:
+ return t.is_leaf
+ except RuntimeError:
+ # inference mode can trigger this
+ return False
+
+ @functools.lru_cache(None)
+ def meta_tensor(t):
+ with torch.inference_mode(t.is_inference()):
+ s = meta_storage(t.storage())
+ is_leaf = safe_is_leaf(t)
+ if is_leaf or not t._is_view():
+ r = torch.empty(
+ (0,), dtype=t.dtype, device='meta'
+ )
+ r.set_(s, t.storage_offset(), t.size(), t.stride())
+ r.requires_grad = t.requires_grad
+ if not is_leaf and t.requires_grad:
+ with torch.enable_grad():
+ r = r.clone()
+ else:
+ base = torch.empty(
+ (0,), dtype=t.dtype, device='meta'
+ )
+ base.set_(s, 0, s.size(), (1,))
+ base.requires_grad = t.requires_grad
+ with torch.enable_grad():
+ if t._is_view() and not safe_is_leaf(t._base):
+ base = base.clone()
+ r = base.as_strided(t.size(), t.stride(), t.storage_offset())
+ torch._C._set_conj(r, t.is_conj())
+ torch._C._set_neg(r, t.is_neg())
+ return r
+
+ def to_meta(t):
+ nonlocal hit, miss
+ # TODO: zero tensors? We appear to have eliminated them by
+ # excluding complex for now
+ if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
+ if any([
+ t.is_sparse_csr, t.is_sparse, t.is_mkldnn, t.is_quantized,
+ t.is_nested, torch._is_functional_tensor(t),
+ # these are supported in meta conversion but the fallbacks
+ # don't work
+ t.is_neg(), t.is_conj(),
+ # conjugate fallback does not support meta tensors
+ t.dtype in (torch.complex128, torch.complex64),
+ ]):
+ # TODO: sparse should support meta
+ # NB technically to('meta') does work but our logging
+ # instrumentation will see the meta conversions and the
+ # tests all break so we just exclude this. In any case
+ # the to conversion isn't really right anyhow.
+ miss += 1
+ return t
+ elif any([
+ t.device.type in ("lazy", "meta"), t.is_complex(),
+ # We need a way to test if a tensor is batched but there
+ # is no official APi to do it
+ # torch._C._is_batched(t),
+ ]):
+ # TODO: this stuff should support storage
+ # (well, maybe not batched)
+ hit += 1
+ return t.to("meta")
+ else:
+ hit += 1
+ r = meta_tensor(t)
+ if type(t) is torch.nn.Parameter:
+ r = torch.nn.Parameter(r, requires_grad=r.requires_grad)
+ return r
+ elif torch.overrides.is_tensor_like(t):
+ # Blindly converting tensor subclasses to meta can cause
+ # unpredictable problems; e.g., FX tests will trace meta
+ # tensors into their trace / some subclasses don't correctly
+ # support meta. Trying to YOLO this is more trouble than it's
+ # worth.
+ miss += 1
+ return t
+ else:
+ # non-Tensor types don't count as hit or miss
+ return t
+
+ do_meta = (
+ (self.run_excludes_anyway or func not in meta_exclude_set) and
+ not torch.jit.is_tracing() and
+ not isinstance(func, torch.ScriptMethod)
+ )
+
+ if do_meta:
+ try:
+ meta_args = tree_map(to_meta, args)
+ meta_kwargs = tree_map(to_meta, kwargs)
+ except Exception as e:
+ raise RuntimeError(
+ f"failed to convert args to meta; "
+ f"originally (*{args}, **{kwargs})") from e
+
+ rs = func(*args, **kwargs)
+
+ # TODO: also handle cases where func raise an exception
+
+ # For now, only attempt if we managed to convert all tensor types
+ # (if any of them failed, we're in a mixed device situation and
+ # this isn't well supported)
+ if do_meta and hit > 0 and miss == 0:
+ try:
+ # suppress warnings
+ with warnings.catch_warnings():
+ warnings.simplefilter("ignore")
+ meta_rs = func(*meta_args, **meta_kwargs)
+ except Exception as e:
+ suppress = False
+ """
+ # This code can be helpful for full crossref test to filter
+ # out "pedestrian" omissions
+ if isinstance(e, NotImplementedError):
+ m = RE_NOT_IMPLEMENTED_MSG.search(e.args[0])
+ if m and m.group(1) not in ("aten::_efficientzerotensor", "aten::view_as_real"):
+ suppress = True
+ """
+ if not suppress:
+ raise RuntimeError(f"""\
+failed to run: {func}(
+ *{meta_args},
+ **{meta_kwargs}
+ )""") from e
+ else:
+ def test_assert(cond, msg):
+ if not cond:
+ raise RuntimeError(f"""\
+meta disagrees with real impl:
+{func}(
+ *{meta_args},
+ **{meta_kwargs}
+) = {meta_r}
+{msg}
+""")
+ flat_meta_rs, _ = tree_flatten(meta_rs)
+ flat_rs, _ = tree_flatten(rs)
+ self.test_case.assertEqual(len(flat_meta_rs), len(flat_rs))
+ for i, meta_r, r in zip(range(len(flat_rs)), flat_meta_rs, flat_rs):
+ if isinstance(r, torch.Tensor):
+ test_assert(isinstance(meta_r, torch.Tensor), f"but real {i}th result is Tensor")
+ test_assert(meta_r.dtype == r.dtype, f"but real dtype was {r.dtype}")
+ test_assert(meta_r.shape == r.shape, f"but real shape was {r.shape}")
+ test_assert(meta_r.stride() == r.stride(), f"but real stride was {r.stride()}")
+ test_assert(
+ meta_r.storage_offset() == r.storage_offset(),
+ f"but real storage_offset was {r.storage_offset()}")
+ test_assert(meta_r.requires_grad == r.requires_grad, f"but real requires_grad was {r.requires_grad}")
+ test_assert(meta_r.is_conj() == r.is_conj(), f"but real is_conj was {r.is_conj()}")
+ test_assert(meta_r.is_neg() == r.is_neg(), f"but real is_neg was {r.is_neg()}")
+
+ return rs
+
+class TestMeta(TestCase):
+ @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
+ @onlyNativeDeviceTypes
+ @skipIfCrossRef
+ @suppress_warnings
+ @ops(op_db)
+ def test_meta(self, device, dtype, op):
+ # run the OpInfo sample inputs, cross-referencing them with the
+ # meta implementation and check the results are the same. All
+ # the heavy lifting happens in MetaCrossRefMode
+ func = op.get_op()
+
+ def do_test(run_excludes_anyway=False):
+ samples = op.sample_inputs(device, dtype, requires_grad=False)
+ for sample_input in samples:
+ args = [sample_input.input] + list(sample_input.args)
+ kwargs = sample_input.kwargs
+ with push_torch_function_mode(partial(MetaCrossRefMode, self, run_excludes_anyway=run_excludes_anyway)):
+ expected = func(*args, **kwargs)
+ if isinstance(expected, torch.Tensor) and op.supports_out:
+ func(*args, **kwargs, out=expected)
+
+ if func in overload_exclude_set:
+ self.skipTest('permanently excluded')
+ elif func in meta_exclude_set and dtype not in (torch.complex128, torch.complex64):
+ try:
+ do_test(run_excludes_anyway=True)
+ except Exception:
+ pass
+ else:
+ self.fail('expected failure, but succeeded')
+ else:
+ do_test()
+
+instantiate_device_type_tests(TestMeta, globals())
+
+if __name__ == "__main__":
+ run_tests()
diff --git a/torch/testing/_internal/common_methods_invocations.py b/torch/testing/_internal/common_methods_invocations.py
index 08d680c..b788fd7 100644
--- a/torch/testing/_internal/common_methods_invocations.py
+++ b/torch/testing/_internal/common_methods_invocations.py
@@ -9709,6 +9709,7 @@
# Reference: https://github.com/pytorch/pytorch/issues/50747
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager',
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16)),
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta', dtypes=(torch.bool,)),
),
sample_inputs_func=sample_inputs_addr,
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
@@ -11019,6 +11020,8 @@
skips=(
# Skip since real and imag don't have out variants.
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta',
+ dtypes=(torch.complex32,)),
)),
OpInfo('gradient',
dtypes=floating_and_complex_types_and(torch.int8, torch.int16,
@@ -12143,6 +12146,7 @@
skips=(
# AssertionError: Resizing an out= argument with no elements threw a resize warning!
DecorateInfo(unittest.expectedFailure, 'TestCommon', 'test_out', device_type='cpu'),
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta', device_type='cpu'),
)),
OpInfo('as_strided',
op=lambda x, size, stride, storage_offset=0:
@@ -12868,6 +12872,8 @@
# Pre-existing condition; Needs to be fixed
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_operator', device_type='cpu'),
# RuntimeError: "max_pool1d_impl" not implemented for 'BFloat16'
+ DecorateInfo(unittest.skip("Works on some configs"), 'TestMeta',
+ 'test_meta', dtypes=(torch.bfloat16,)),
DecorateInfo(unittest.skip("Works on some configs"), 'TestNNCOpInfo',
'test_nnc_correctness', dtypes=(torch.bfloat16,)),
DecorateInfo(unittest.skip("Works on some conifgs"), 'TestCudaFuserOpInfo',
@@ -13899,6 +13905,8 @@
skips=(
# Skip since real and imag don't have out variants.
DecorateInfo(unittest.expectedFailure, 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta',
+ dtypes=(torch.complex32,)),
)),
OpInfo('roll',
ref=np.roll,
@@ -14779,6 +14787,9 @@
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad', dtypes=(torch.complex128,)),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
+ # stride mismatch
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta', device_type='cuda',
+ dtypes=(torch.float32, torch.float64), active_if=not TEST_WITH_ROCM),
)),
OpInfo('linalg.svd',
op=torch.linalg.svd,
@@ -14797,6 +14808,9 @@
DecorateInfo(unittest.expectedFailure, 'TestGradients', 'test_fn_fwgrad_bwgrad', dtypes=(torch.complex128,)),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
+ # stride mismatch
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta', device_type='cuda',
+ dtypes=(torch.float32, torch.float64), active_if=not TEST_WITH_ROCM),
)),
OpInfo('linalg.svdvals',
op=torch.linalg.svdvals,
@@ -14835,6 +14849,8 @@
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
+ # stride mismatch
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta', device_type='cuda', active_if=not TEST_WITH_ROCM),
)),
OpInfo('pca_lowrank',
op=lambda *args, **kwargs: wrapper_set_seed(
@@ -14859,6 +14875,8 @@
DecorateInfo(unittest.expectedFailure, 'TestJit', 'test_variant_consistency_jit'),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_backward'),
DecorateInfo(unittest.expectedFailure, 'TestCompositeCompliance', 'test_forward_ad'),
+ # stride mismatch
+ DecorateInfo(unittest.expectedFailure, 'TestMeta', 'test_meta', device_type='cuda', active_if=not TEST_WITH_ROCM),
)),
BinaryUfuncInfo('polar',
dtypes=floating_types(),