tree: 63fb1ef05d50110c7df3e7c6926b55f4b7075b46 [path history] [tgz]
  1. amd_build/
  2. autograd/
  3. clang_format_hash/
  4. code_analyzer/
  5. code_coverage/
  6. codegen/
  7. config/
  8. docker/
  9. jit/
  10. pyi/
  11. rules/
  12. setup_helpers/
  13. shared/
  14. __init__.py
  15. aten_mirror.sh
  16. build_libtorch.py
  17. build_pytorch_libs.py
  18. build_variables.bzl
  19. clang_format_all.py
  20. clang_format_ci.sh
  21. clang_format_utils.py
  22. clang_tidy.py
  23. download_mnist.py
  24. flake8_hook.py
  25. generate_torch_version.py
  26. generated_dirs.txt
  27. git-clang-format
  28. git-pre-commit
  29. git_add_generated_dirs.sh
  30. git_reset_generated_dirs.sh
  31. nightly.py
  32. pytorch.version
  33. README.md
  34. update_disabled_tests.sh
tools/README.md

This folder contains a number of scripts which are used as part of the PyTorch build process. This directory also doubles as a Python module hierarchy (thus the __init__.py).

Overview

Modern infrastructure:

  • autograd - Code generation for autograd. This includes definitions of all our derivatives.
  • jit - Code generation for JIT
  • shared - Generic infrastructure that scripts in tools may find useful.
    • module_loader.py - Makes it easier to import arbitrary Python files in a script, without having to add them to the PYTHONPATH first.

Legacy infrastructure (we should kill this):

  • cwrap - Implementation of legacy code generation for THNN/THCUNN. This is used by nnwrap.

Build system pieces:

  • setup_helpers - Helper code for searching for third-party dependencies on the user system.
  • build_pytorch_libs.py - cross-platform script that builds all of the constituent libraries of PyTorch, but not the PyTorch Python extension itself.
  • build_libtorch.py - Script for building libtorch, a standalone C++ library without Python support. This build script is tested in CI.

Developer tools which you might find useful:

Important if you want to run on AMD GPU:

  • amd_build - HIPify scripts, for transpiling CUDA into AMD HIP. Right now, PyTorch and Caffe2 share logic for how to do this transpilation, but have separate entry-points for transpiling either PyTorch or Caffe2 code.
    • build_amd.py - Top-level entry point for HIPifying our codebase.

Tools which are only situationally useful: