Revert D4854240: [EAZY][C2 OSS] Add normalization helpers and proxy to CNNModelHelper

Summary: This reverts commit 3fa594d79960742b34e20d843e8b6ef8aeb601d3

Differential Revision: D4854240

fbshipit-source-id: d08cb30f188f876e1962f53a44f4e6d4ea68297f
diff --git a/caffe2/python/cnn.py b/caffe2/python/cnn.py
index 11bc5d9..c666635 100644
--- a/caffe2/python/cnn.py
+++ b/caffe2/python/cnn.py
@@ -359,19 +359,14 @@
     def Dropout(self, *args, **kwargs):
         return model_helpers.Dropout(self, *args, **kwargs)
 
-    def LRN(self, *args, **kwargs):
-        return model_helpers.LRN(self, *args, **kwargs)
-
-    def Softmax(self, *args, **kwargs):
-        return model_helpers.Softmax(self, *args, use_cudnn=self.use_cudnn,
-                                     **kwargs)
-
-    def SpatialBN(self, *args, **kwargs):
-        return model_helpers.SpatialBN(self, *args, **kwargs)
-
-    def InstanceNorm(self, *args, **kwargs):
-        return model_helpers.InstanceNorm(self, *args,
-                                          use_cudnn=self.use_cudnn, **kwargs)
+    def LRN(self, blob_in, blob_out, **kwargs):
+        """LRN"""
+        return self.net.LRN(
+            blob_in,
+            [blob_out, "_" + blob_out + "_scale"],
+            order=self.order,
+            **kwargs
+        )[0]
 
     def MaxPool(self, *args, **kwargs):
         return model_helpers.MaxPool(self, *args, use_cudnn=self.use_cudnn,
@@ -427,10 +422,93 @@
             kwargs['engine'] = 'CUDNN'
         return self.net.Transpose(blob_in, blob_out, **kwargs)
 
+    def Softmax(self, blob_in, blob_out=None, **kwargs):
+        """Softmax."""
+        if self.use_cudnn:
+            kwargs['engine'] = 'CUDNN'
+        if blob_out is not None:
+            return self.net.Softmax(blob_in, blob_out, **kwargs)
+        else:
+            return self.net.Softmax(blob_in, **kwargs)
+
     def Sum(self, blob_in, blob_out, **kwargs):
         """Sum"""
         return self.net.Sum(blob_in, blob_out, **kwargs)
 
+    def InstanceNorm(self, blob_in, blob_out, dim_in, **kwargs):
+        blob_out = blob_out or self.net.NextName()
+        # Input: input, scale, bias
+        # Output: output, saved_mean, saved_inv_std
+        # scale: initialize with ones
+        # bias: initialize with zeros
+
+        def init_blob(value, suffix):
+            return self.param_init_net.ConstantFill(
+                [], blob_out + "_" + suffix, shape=[dim_in], value=value)
+        scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
+
+        self.params.extend([scale, bias])
+        self.weights.append(scale)
+        self.biases.append(bias)
+        blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"]
+        if 'is_test' in kwargs and kwargs['is_test']:
+            blob_outputs = self.net.InstanceNorm(
+                [blob_in, scale, bias], [blob_out],
+                order=self.order, **kwargs)
+            return blob_outputs
+        else:
+            blob_outputs = self.net.InstanceNorm(
+                [blob_in, scale, bias], blob_outs,
+                order=self.order, **kwargs)
+            # Return the output
+            return blob_outputs[0]
+
+    def SpatialBN(self, blob_in, blob_out, dim_in, **kwargs):
+        blob_out = blob_out or self.net.NextName()
+        # Input: input, scale, bias, est_mean, est_inv_var
+        # Output: output, running_mean, running_inv_var, saved_mean,
+        #         saved_inv_var
+        # scale: initialize with ones
+        # bias: initialize with zeros
+        # est mean: zero
+        # est var: ones
+
+        def init_blob(value, suffix):
+            return self.param_init_net.ConstantFill(
+                [], blob_out + "_" + suffix, shape=[dim_in], value=value)
+
+        if self.init_params:
+            scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
+            running_mean = init_blob(0.0, "rm")
+            running_inv_var = init_blob(1.0, "riv")
+        else:
+            scale = core.ScopedBlobReference(
+                    blob_out + '_s', self.param_init_net)
+            bias = core.ScopedBlobReference(
+                    blob_out + '_b', self.param_init_net)
+            running_mean = core.ScopedBlobReference(
+                    blob_out + '_rm', self.param_init_net)
+            running_inv_var = core.ScopedBlobReference(
+                    blob_out + '_riv', self.param_init_net)
+
+        self.params.extend([scale, bias])
+        self.computed_params.extend([running_mean, running_inv_var])
+        self.weights.append(scale)
+        self.biases.append(bias)
+        blob_outs = [blob_out, running_mean, running_inv_var,
+                     blob_out + "_sm", blob_out + "_siv"]
+        if 'is_test' in kwargs and kwargs['is_test']:
+            blob_outputs = self.net.SpatialBN(
+                [blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out],
+                order=self.order, **kwargs)
+            return blob_outputs
+        else:
+            blob_outputs = self.net.SpatialBN(
+                [blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs,
+                order=self.order, **kwargs)
+            # Return the output
+            return blob_outputs[0]
+
     def Iter(self, blob_out, **kwargs):
         if 'device_option' in kwargs:
             del kwargs['device_option']
diff --git a/caffe2/python/helpers/normalization.py b/caffe2/python/helpers/normalization.py
deleted file mode 100644
index 6b3bea3..0000000
--- a/caffe2/python/helpers/normalization.py
+++ /dev/null
@@ -1,111 +0,0 @@
-## @package normalization
-# Module caffe2.python.helpers.normalization
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-from __future__ import unicode_literals
-
-from caffe2.python import core
-
-__all__ = [
-    'LRN',
-    'Softmax',
-    'InstanceNorm',
-    'SpatialBN',
-]
-
-
-def LRN(model, blob_in, blob_out, **kwargs):
-    """LRN"""
-    return model.net.LRN(
-        blob_in,
-        [blob_out, "_" + blob_out + "_scale"],
-        order=model.order,
-        **kwargs
-    )[0]
-
-
-def Softmax(model, blob_in, blob_out=None, use_cudnn=False, **kwargs):
-    """Softmax."""
-    if use_cudnn:
-        kwargs['engine'] = 'CUDNN'
-    if blob_out is not None:
-        return model.net.Softmax(blob_in, blob_out, **kwargs)
-    else:
-        return model.net.Softmax(blob_in, **kwargs)
-
-
-def InstanceNorm(model, blob_in, blob_out, dim_in, **kwargs):
-    blob_out = blob_out or model.net.NextName()
-    # Input: input, scale, bias
-    # Output: output, saved_mean, saved_inv_std
-    # scale: initialize with ones
-    # bias: initialize with zeros
-
-    def init_blob(value, suffix):
-        return model.param_init_net.ConstantFill(
-            [], blob_out + "_" + suffix, shape=[dim_in], value=value)
-    scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
-
-    model.params.extend([scale, bias])
-    model.weights.append(scale)
-    model.biases.append(bias)
-    blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"]
-    if 'is_test' in kwargs and kwargs['is_test']:
-        blob_outputs = model.net.InstanceNorm(
-            [blob_in, scale, bias], [blob_out],
-            order=model.order, **kwargs)
-        return blob_outputs
-    else:
-        blob_outputs = model.net.InstanceNorm(
-            [blob_in, scale, bias], blob_outs,
-            order=model.order, **kwargs)
-        # Return the output
-        return blob_outputs[0]
-
-
-def SpatialBN(model, blob_in, blob_out, dim_in, **kwargs):
-    blob_out = blob_out or model.net.NextName()
-    # Input: input, scale, bias, est_mean, est_inv_var
-    # Output: output, running_mean, running_inv_var, saved_mean,
-    #         saved_inv_var
-    # scale: initialize with ones
-    # bias: initialize with zeros
-    # est mean: zero
-    # est var: ones
-
-    def init_blob(value, suffix):
-        return model.param_init_net.ConstantFill(
-            [], blob_out + "_" + suffix, shape=[dim_in], value=value)
-
-    if model.init_params:
-        scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
-        running_mean = init_blob(0.0, "rm")
-        running_inv_var = init_blob(1.0, "riv")
-    else:
-        scale = core.ScopedBlobReference(
-            blob_out + '_s', model.param_init_net)
-        bias = core.ScopedBlobReference(
-            blob_out + '_b', model.param_init_net)
-        running_mean = core.ScopedBlobReference(
-            blob_out + '_rm', model.param_init_net)
-        running_inv_var = core.ScopedBlobReference(
-            blob_out + '_riv', model.param_init_net)
-
-    model.params.extend([scale, bias])
-    model.computed_params.extend([running_mean, running_inv_var])
-    model.weights.append(scale)
-    model.biases.append(bias)
-    blob_outs = [blob_out, running_mean, running_inv_var,
-                 blob_out + "_sm", blob_out + "_siv"]
-    if 'is_test' in kwargs and kwargs['is_test']:
-        blob_outputs = model.net.SpatialBN(
-            [blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out],
-            order=model.order, **kwargs)
-        return blob_outputs
-    else:
-        blob_outputs = model.net.SpatialBN(
-            [blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs,
-            order=model.order, **kwargs)
-        # Return the output
-        return blob_outputs[0]
diff --git a/caffe2/python/model_helpers.py b/caffe2/python/model_helpers.py
index e0f14d3..ab77d6c 100644
--- a/caffe2/python/model_helpers.py
+++ b/caffe2/python/model_helpers.py
@@ -10,4 +10,3 @@
 from caffe2.python.helpers.dropout import *
 from caffe2.python.helpers.fc import *
 from caffe2.python.helpers.pooling import *
-from caffe2.python.helpers.normalization import *