[Inductor][FlexAttention] Correct partial/full blocks naming (#131993)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131993
Approved by: https://github.com/drisspg
diff --git a/torch/nn/attention/flex_attention.py b/torch/nn/attention/flex_attention.py
index 3cce513..2829419 100644
--- a/torch/nn/attention/flex_attention.py
+++ b/torch/nn/attention/flex_attention.py
@@ -538,19 +538,19 @@
     KV_BLOCK_SIZE: int = _DEFAULT_SPARSE_BLOCK_SIZE,
     Q_BLOCK_SIZE: int = _DEFAULT_SPARSE_BLOCK_SIZE,
 ) -> BlockMask:
-    full_blocks, partial_blocks = block_mask
+    partial_blocks, full_blocks = block_mask
 
-    full_bm = _dense_to_ordered(full_blocks)
-    if partial_blocks is not None:
-        partial_bm = _dense_to_ordered(partial_blocks)
+    partial_bm = _dense_to_ordered(partial_blocks)
+    if full_blocks is not None:
+        full_bm = _dense_to_ordered(full_blocks)
     else:
-        partial_bm = (None, None)
+        full_bm = (None, None)
 
     return BlockMask(  # type: ignore[call-arg]
-        full_bm[0],
-        full_bm[1],
         partial_bm[0],
         partial_bm[1],
+        full_bm[0],
+        full_bm[1],
         BLOCK_SIZE=(KV_BLOCK_SIZE, Q_BLOCK_SIZE),
         mask_mod=mask_mod,
     )
@@ -622,14 +622,14 @@
     with the __torch_function__ mode.
     """
     mask_tensor = create_mask(mask_mod, B, H, Q_LEN, KV_LEN, device, _compile=True)
-    full_block_mask, partial_block_mask = _convert_mask_to_block_mask(
+    partial_block_mask, full_block_mask = _convert_mask_to_block_mask(
         mask_tensor,
         KV_BLOCK_SIZE=KV_BLOCK_SIZE,
         Q_BLOCK_SIZE=Q_BLOCK_SIZE,
         separate_full_blocks=True,
     )
     return _create_sparse_block_from_block_mask(
-        (full_block_mask, partial_block_mask), mask_mod
+        (partial_block_mask, full_block_mask), mask_mod
     )