Fix OOM in test_large_block_sizes (#113153)

This test is causing flakyness on CPU, see #113134

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113153
Approved by: https://github.com/lezcano
diff --git a/test/inductor/test_torchinductor.py b/test/inductor/test_torchinductor.py
index 1e9ce1c..c6944ab 100644
--- a/test/inductor/test_torchinductor.py
+++ b/test/inductor/test_torchinductor.py
@@ -7481,9 +7481,11 @@
         Inductor will try triton configs like x = 64 and y = 1024 which will
         result in out of shared memory if dtype is fp32.
 
-        Currnelty inductor will skip such bad configs and pick the best one
+        Currently inductor will skip such bad configs and pick the best one
         from the remaining configs.
         """
+        if not _has_sufficient_memory(self.device, 3 * 2**24 * 65 * 4):
+            raise unittest.SkipTest("insufficient memory")
 
         @torch.compile
         def fn(x, y):
@@ -7491,11 +7493,8 @@
 
         # Use shape (2**24, 65) rather than (2**24, 128) potentially avoid OOM in
         # CI while still keep the same up-rounded size-hints.
-        try:
-            a = torch.randn(2**24, 65, device=self.device)
-            b = torch.randn(65, 2**24, device=self.device)
-        except RuntimeError:
-            return  # skip testing if OOM
+        a = torch.randn(2**24, 65, device=self.device)
+        b = torch.randn(65, 2**24, device=self.device)
         fn(a, b)