Enable norm gradgradchecks by lowering precision requirements.
diff --git a/test/test_autograd.py b/test/test_autograd.py
index b288e10..f8b4cdc 100644
--- a/test/test_autograd.py
+++ b/test/test_autograd.py
@@ -1911,9 +1911,12 @@
 
 ))
 
-gradgradcheck_exclude_classes = set((
-    'Norm',
-))
+# these are just empirical observations, we should improve
+gradgradcheck_precision_override = {
+    'test_NormFunction_1_5': {'atol': 1e-2, 'rtol': 1e-2},
+    'test_NormFunction_2': {'atol': 1e-2, 'rtol': 1e-2},
+    'test_NormFunction_3': {'atol': 5e-2, 'rtol': 1e-2},
+}
 
 for test in function_tests:
     cls, constructor_args, call_args = test[:3]
@@ -1968,14 +1971,18 @@
                         self.assertTrue(type(inp.data) == type(inp.grad.data))
                         self.assertTrue(inp.size() == inp.grad.size())
 
-            if cls.__name__ not in gradgradcheck_exclude_classes:
-                dummy_out = apply_fn(*input)
-                if isinstance(dummy_out, tuple):
-                    grad_y = tuple(Variable(torch.randn(x.size()), requires_grad=x.requires_grad)
-                                   for x in dummy_out if isinstance(x, Variable))
-                else:
-                    grad_y = (Variable(torch.randn(dummy_out.size()), requires_grad=dummy_out.requires_grad),)
+            dummy_out = apply_fn(*input)
+            if isinstance(dummy_out, tuple):
+                grad_y = tuple(Variable(torch.randn(x.size()), requires_grad=x.requires_grad)
+                               for x in dummy_out if isinstance(x, Variable))
+            else:
+                grad_y = (Variable(torch.randn(dummy_out.size()), requires_grad=dummy_out.requires_grad),)
 
+            if test_name in gradgradcheck_precision_override:
+                atol = gradgradcheck_precision_override[test_name]['atol']
+                rtol = gradgradcheck_precision_override[test_name]['rtol']
+                self.assertTrue(gradgradcheck(apply_fn, input, grad_y, atol=atol, rtol=rtol))
+            else:
                 self.assertTrue(gradgradcheck(apply_fn, input, grad_y,))
 
             # can't broadcast inplace to left hand side