blob: 33b142fe7140cbd11a62bb03352c82d80a926a8b [file] [log] [blame]
#pragma once
#if defined(__AVX__) && !defined(__NVCC__) && \
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__))
#define CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
#include <immintrin.h>
#endif
#include <c10/util/Half.h>
namespace caffe2 {
namespace internal {
// The following functions inside internal namespace are inlined because they
// are performance critical.
template <typename T>
static inline void adagrad_update_base_inlined(
int N,
const T* w,
const float* g,
const T* h,
T* nw,
T* nh,
float decay,
float epsilon,
float lr) {
for (auto i = 0; i < N; ++i) {
float gi = g[i];
float hi = decay * h[i] + gi * gi;
nh[i] = hi;
nw[i] = w[i] + lr * gi / (std::sqrt(hi) + epsilon);
}
}
// version with prefetching
// TODO(msmelyan)
// Crux of the computation is computing a / (sqrt(b) + epsilon),
// where a and b are vectors and epsilon is very small (eg., 10^-5) and does not
// change. Today it's computed using two vector sqrt and vector divide simd
// instructions. It is slow. We can take advantage of existing fast vector
// VRSQRTPS instruction that computes approximate reciprocals of square roots
// of the vector. It is 6x faster than vsrt and vdiv combinations. Since the
// addition of epsilon is just done to avoid division by zero, we approximate a
// / (sqrt(b) + epsilon) by a / (sqrt(b + sqrt(epsilon)) If we do that, we can
// use VRSQRTPS instead now. VRSQRTPS is not very accurate. Specifically, for
// the test on random numbers between 0.1 and 1 the absolute error was about
// 10^-3 compared to using slower but more accurate combination of vsqrt and
// vdiv. Extend Marat's function with more NR iterations to get more accuracy
// for training
// TODO(msmelyan)
// explore streaming stores, but need to have unique indices (deduplication)
inline void adagrad_update_prefetch_inlined(
int N,
const float* w,
#ifdef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
const float* w_n, // prefetch ptr
#else
const float* /* unused */,
#endif
const float* g,
const float* h,
#ifdef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
const float* h_n, // prefetch ptr
#else
const float* /* unused */,
#endif
float* nw,
#ifdef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
float* nw_n, // prefetch ptr
#else
float* /* unused */,
#endif
float* nh,
#ifdef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
float* nh_n, // prefetch ptr
#else
float* /* unused */,
#endif
float epsilon,
float lr) {
auto i = 0;
#ifdef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
constexpr int kSize = 8;
for (; i + kSize <= N; i += kSize) {
_mm_prefetch(reinterpret_cast<const char*>(&w_n[i]), _MM_HINT_T0);
_mm_prefetch(reinterpret_cast<const char*>(&h_n[i]), _MM_HINT_T0);
_mm_prefetch(reinterpret_cast<const char*>(&nw_n[i]), _MM_HINT_T0);
_mm_prefetch(reinterpret_cast<const char*>(&nh_n[i]), _MM_HINT_T0);
__m256 gi = _mm256_loadu_ps(g + i);
__m256 hi = _mm256_loadu_ps(h + i);
__m256 wi = _mm256_loadu_ps(w + i);
__m256 nhi = _mm256_add_ps(hi, _mm256_mul_ps(gi, gi));
_mm256_storeu_ps(nh + i, nhi);
__m256 vtmp = _mm256_div_ps(
_mm256_mul_ps(_mm256_set1_ps(lr), gi),
_mm256_add_ps(_mm256_sqrt_ps(nhi), _mm256_set1_ps(epsilon)));
_mm256_storeu_ps(nw + i, _mm256_add_ps(wi, vtmp));
}
#endif
adagrad_update_base_inlined(
N - i, w + i, g + i, h + i, nw + i, nh + i, 1.0f, epsilon, lr);
}
} // namespace internal
// version with prefetching
// TODO(msmelyan)
// Crux of the computation is computing a / (sqrt(b) + epsilon),
// where a and b are vectors and epsilon is very small (eg., 10^-5) and does not
// change. Today it's computed using two vector sqrt and vector divide simd
// instructions. It is slow. We can take advantage of existing fast vector
// VRSQRTPS instruction that computes approximate reciprocals of square roots
// of the vector. It is 6x faster than vsrt and vdiv combinations. Since the
// addition of epsilon is just done to avoid division by zero, we approximate a
// / (sqrt(b) + epsilon) by a / (sqrt(b + sqrt(epsilon)) If we do that, we can
// use VRSQRTPS instead now. VRSQRTPS is not very accurate. Specifically, for
// the test on random numbers between 0.1 and 1 the absolute error was about
// 10^-3 compared to using slower but more accurate combination of vsqrt and
// vdiv. Extend Marat's function with more NR iterations to get more accuracy
// for training
// TODO(msmelyan)
// explore streaming stores, but need to have inuque indices (deduplication)
void adagrad_update_prefetch(
int N,
const float* w,
const float* w_n, // prefetch ptr
const float* g,
const float* h,
const float* h_n, // prefetch ptr
float* nw,
float* nw_n, // prefetch ptr
float* nh,
float* nh_n, // prefetch ptr
float epsilon,
float lr);
// Version with prefetching for embeddings and
// momentum using fp16
void adagrad_fp16_update_prefetch(
int N,
const at::Half* w,
const at::Half* w_n, // prefetch ptr
const float* g,
const at::Half* h,
const at::Half* h_n, // prefetch ptr
at::Half* nw,
at::Half* nw_n, // prefetch ptr
at::Half* nh,
at::Half* nh_n, // prefetch ptr
float epsilon,
float lr);
// version without prefetching
void adagrad_update(
int N,
const float* w,
const float* g,
const float* h,
float* nw,
float* nh,
float epsilon,
float decay,
float lr);
} // namespace caffe2
#ifdef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
#undef CAFFE2_PERFKERNELS_ADAGRAD_H_USE_INTRINSIC
#endif