Ports logdet from method_tests() to op_db (#55743)

Summary:
Per title. Also updates some tensor construction helpers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55743

Reviewed By: ngimel

Differential Revision: D27702060

Pulled By: mruberry

fbshipit-source-id: f64b7bee855733ad1f4fd182819ceec5831d9878
diff --git a/test/test_torch.py b/test/test_torch.py
index 9ae8a13..a171772 100644
--- a/test/test_torch.py
+++ b/test/test_torch.py
@@ -4490,7 +4490,7 @@
 
         def make_arg(batch_sizes, n, dim, contig):
             size_arg = batch_sizes[:dim] + (n,) + batch_sizes[dim:]
-            return make_tensor(size_arg, device, dtype, low=None, high=None, discontiguous=not contig)
+            return make_tensor(size_arg, device, dtype, low=None, high=None, noncontiguous=not contig)
 
         def ref_index_copy(tgt, dim, idx, src):
             for i in range(idx.size(0)):
@@ -4598,7 +4598,7 @@
 
         def make_arg(batch_sizes, n, dim, contig):
             size_arg = batch_sizes[:dim] + (n,) + batch_sizes[dim:]
-            return make_tensor(size_arg, device, dtype, low=None, high=None, discontiguous=not contig)
+            return make_tensor(size_arg, device, dtype, low=None, high=None, noncontiguous=not contig)
 
         def ref_index_select(src, dim, idx):
             # bfloat16 is just used on GPU, so it's not supported on numpy
@@ -4613,7 +4613,7 @@
             for other_sizes in ((), (4, 5)):
                 for dim in range(len(other_sizes)):
                     src = make_arg(other_sizes, num_src, dim, src_contig)
-                    idx = make_tensor((num_out,), device, dtype=torch.int64, low=0, high=num_src, discontiguous=not idx_contig)
+                    idx = make_tensor((num_out,), device, dtype=torch.int64, low=0, high=num_src, noncontiguous=not idx_contig)
                     out = torch.index_select(src, dim, idx)
                     out2 = ref_index_select(src, dim, idx)
                     self.assertEqual(out, out2)
@@ -4622,7 +4622,7 @@
             other_sizes = (3, 2)
             dim = 1
             src = make_arg(other_sizes, num_src, dim, True)
-            idx = make_tensor((num_out,), device, dtype=idx_type, low=0, high=num_src, discontiguous=False)
+            idx = make_tensor((num_out,), device, dtype=idx_type, low=0, high=num_src, noncontiguous=False)
             out = torch.index_select(src, dim, idx)
             out2 = ref_index_select(src, dim, idx)
             self.assertEqual(out, out2)
@@ -4652,8 +4652,8 @@
 
         for src_contig, idx_contig, idx_reshape in product([True, False], repeat=3):
             for src_size in ((5,), (4, 5)):
-                src = make_arg(src_size, discontiguous=not src_contig)
-                idx = make_idx(idx_size, high=src.numel(), discontiguous=not idx_contig)
+                src = make_arg(src_size, noncontiguous=not src_contig)
+                idx = make_idx(idx_size, high=src.numel(), noncontiguous=not idx_contig)
                 if idx_reshape:
                     idx = idx.reshape(2, 2)
                 out = torch.take(src, idx)
@@ -4685,8 +4685,8 @@
 
         for dst_contig, src_contig, idx_contig, idx_reshape, accumulate in product([True, False], repeat=5):
             for dst_size in ((5,), (4, 5)):
-                dst = make_arg(dst_size, discontiguous=not dst_contig)
-                src = make_arg(src_size, discontiguous=not src_contig)
+                dst = make_arg(dst_size, noncontiguous=not dst_contig)
+                src = make_arg(src_size, noncontiguous=not src_contig)
 
                 # If accumulate=True, `put_` should be deterministic regardless of the inputs on CPU
                 # On CUDA it may not be, but the test has enough tolerance to account for this