[deploy][1/n] Make deploy code conform to PyTorch style. (#65861)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65861

First in a series. This PR changes the code in deploy.h/cpp and
interpreter_impl.h/cpp to be camel case instead of snake case. Starting
with this as it has the most impact on downstream users.

Test Plan: Imported from OSS

Reviewed By: shannonzhu

Differential Revision: D31291183

Pulled By: suo

fbshipit-source-id: ba6f74042947c9a08fb9cb3ad7276d8dbb5b2934
diff --git a/test/cpp/api/imethod.cpp b/test/cpp/api/imethod.cpp
index b8c12c6..4110491 100644
--- a/test/cpp/api/imethod.cpp
+++ b/test/cpp/api/imethod.cpp
@@ -24,8 +24,8 @@
   auto scriptMethod = scriptModel.get_method("forward");
 
   torch::deploy::InterpreterManager manager(3);
-  torch::deploy::Package package = manager.load_package(path("SIMPLE", simple));
-  auto pyModel = package.load_pickle("model", "model.pkl");
+  torch::deploy::Package package = manager.loadPackage(path("SIMPLE", simple));
+  auto pyModel = package.loadPickle("model", "model.pkl");
   torch::deploy::PythonMethodWrapper pyMethod(pyModel, "forward");
 
   EXPECT_EQ(scriptMethod.name(), "forward");
@@ -52,8 +52,8 @@
   EXPECT_STREQ(scriptNames[0].c_str(), "input");
 
   torch::deploy::InterpreterManager manager(3);
-  torch::deploy::Package package = manager.load_package(path("SIMPLE", simple));
-  auto pyModel = package.load_pickle("model", "model.pkl");
+  torch::deploy::Package package = manager.loadPackage(path("SIMPLE", simple));
+  auto pyModel = package.loadPickle("model", "model.pkl");
   torch::deploy::PythonMethodWrapper pyMethod(pyModel, "forward");
 
   auto& pyNames = pyMethod.getArgumentNames();
diff --git a/torch/csrc/deploy/deploy.cpp b/torch/csrc/deploy/deploy.cpp
index b90b95d..7c28550 100644
--- a/torch/csrc/deploy/deploy.cpp
+++ b/torch/csrc/deploy/deploy.cpp
@@ -7,9 +7,9 @@
 #include <unistd.h>
 
 struct InterpreterSymbol {
-  const char* start_sym;
-  const char* end_sym;
-  bool custom_loader;
+  const char* startSym;
+  const char* endSym;
+  bool customLoader;
 };
 
 // these symbols are generated by cmake, using ld -r -b binary
@@ -21,7 +21,7 @@
 namespace torch {
 namespace deploy {
 
-const std::initializer_list<InterpreterSymbol> interpreter_search_path = {
+const std::initializer_list<InterpreterSymbol> kInterpreterSearchPath = {
     {"_binary_libtorch_deployinterpreter_all_so_start",
      "_binary_libtorch_deployinterpreter_all_so_end",
      true},
@@ -35,41 +35,41 @@
 
 static bool writeDeployInterpreter(FILE* dst) {
   TORCH_INTERNAL_ASSERT(dst);
-  const char* lib_start = nullptr;
-  const char* lib_end = nullptr;
-  bool custom_loader = false;
-  for (const auto& s : interpreter_search_path) {
-    lib_start = (const char*)dlsym(nullptr, s.start_sym);
-    if (lib_start) {
-      lib_end = (const char*)dlsym(nullptr, s.end_sym);
-      custom_loader = s.custom_loader;
+  const char* libStart = nullptr;
+  const char* libEnd = nullptr;
+  bool customLoader = false;
+  for (const auto& s : kInterpreterSearchPath) {
+    libStart = (const char*)dlsym(nullptr, s.startSym);
+    if (libStart) {
+      libEnd = (const char*)dlsym(nullptr, s.endSym);
+      customLoader = s.customLoader;
       break;
     }
   }
   TORCH_CHECK(
-      lib_start != nullptr && lib_end != nullptr,
+      libStart != nullptr && libEnd != nullptr,
       "torch::deploy requires a build-time dependency on embedded_interpreter or embedded_interpreter_cuda, neither of which were found.  torch::cuda::is_available()=",
       torch::cuda::is_available());
 
-  size_t size = lib_end - lib_start;
-  size_t written = fwrite(lib_start, 1, size, dst);
+  size_t size = libEnd - libStart;
+  size_t written = fwrite(libStart, 1, size, dst);
   TORCH_INTERNAL_ASSERT(size == written, "expected written == size");
-  return custom_loader;
+  return customLoader;
 }
 
-InterpreterManager::InterpreterManager(size_t n_interp) : resources_(n_interp) {
+InterpreterManager::InterpreterManager(size_t nInterp) : resources_(nInterp) {
   TORCH_DEPLOY_TRY
-  for (const auto i : c10::irange(n_interp)) {
+  for (const auto i : c10::irange(nInterp)) {
     instances_.emplace_back(this);
-    auto I = instances_.back().acquire_session();
+    auto I = instances_.back().acquireSession();
     // make torch.version.interp be the interpreter id
     // can be used for balancing work across GPUs
     I.global("torch", "version").attr("__setattr__")({"interp", int(i)});
     // std::cerr << "Interpreter " << i << " initialized\n";
-    instances_.back().pImpl_->set_find_module(
+    instances_.back().pImpl_->setFindModule(
         [this](const std::string& name) -> at::optional<std::string> {
-          auto it = registered_module_sources_.find(name);
-          if (it != registered_module_sources_.end()) {
+          auto it = registeredModuleSource_.find(name);
+          if (it != registeredModuleSource_.end()) {
             return it->second;
           } else {
             return at::nullopt;
@@ -81,7 +81,7 @@
   // Since torch::deploy::Obj.toIValue cannot infer empty list, we hack it to
   // return None for empty list.
   // TODO(jwtan): Make the discovery of these modules easier.
-  register_module_source(
+  reigsterModuleSource(
       "GetArgumentNamesModule",
       "from inspect import signature\n"
       "from typing import Callable, Optional\n"
@@ -93,55 +93,54 @@
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
-Package InterpreterManager::load_package(const std::string& uri) {
+Package InterpreterManager::loadPackage(const std::string& uri) {
   TORCH_DEPLOY_TRY
   return Package(uri, this);
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
-Package InterpreterManager::load_package(
+Package InterpreterManager::loadPackage(
     std::shared_ptr<caffe2::serialize::ReadAdapterInterface> reader) {
   TORCH_DEPLOY_TRY
   return Package(reader, this);
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
-Obj InterpreterSession::from_movable(const ReplicatedObj& obj) {
+Obj InterpreterSession::fromMovable(const ReplicatedObj& obj) {
   TORCH_DEPLOY_TRY
-  return impl_->unpickle_or_get(obj.pImpl_->object_id_, obj.pImpl_->data_);
+  return impl_->unpickleOrGet(obj.pImpl_->objectId_, obj.pImpl_->data_);
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
-InterpreterSession ReplicatedObj::acquire_session(
-    const Interpreter* on_this_interpreter) const {
+InterpreterSession ReplicatedObj::acquireSession(
+    const Interpreter* onThisInterpreter) const {
   TORCH_DEPLOY_TRY
-  InterpreterSession I = on_this_interpreter
-      ? on_this_interpreter->acquire_session()
-      : pImpl_->manager_->acquire_one();
-  I.self = I.from_movable(*this);
+  InterpreterSession I = onThisInterpreter ? onThisInterpreter->acquireSession()
+                                           : pImpl_->manager_->acquireOne();
+  I.self = I.fromMovable(*this);
   return I;
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
 // NOLINTNEXTLINE(bugprone-exception-escape)
 InterpreterSession::~InterpreterSession() {
-  if (manager_ && notify_idx_ >= 0) {
-    manager_->resources_.free(notify_idx_);
+  if (manager_ && notifyIdx_ >= 0) {
+    manager_->resources_.free(notifyIdx_);
   }
 }
 
-void ReplicatedObjImpl::unload(const Interpreter* on_this_interpreter) {
+void ReplicatedObjImpl::unload(const Interpreter* onThisInterpreter) {
   TORCH_DEPLOY_TRY
-  if (!on_this_interpreter) {
+  if (!onThisInterpreter) {
     // NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
-    for (auto& interp : manager_->all_instances()) {
+    for (auto& interp : manager_->allInstances()) {
       unload(&interp);
     }
     return;
   }
 
-  InterpreterSession I = on_this_interpreter->acquire_session();
-  I.impl_->unload(object_id_);
+  InterpreterSession I = onThisInterpreter->acquireSession();
+  I.impl_->unload(objectId_);
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
@@ -150,20 +149,20 @@
   unload(nullptr);
 }
 
-void ReplicatedObj::unload(const Interpreter* on_this_interpreter) {
+void ReplicatedObj::unload(const Interpreter* onThisInterpreter) {
   TORCH_DEPLOY_TRY
-  pImpl_->unload(on_this_interpreter);
+  pImpl_->unload(onThisInterpreter);
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
-ReplicatedObj InterpreterSession::create_movable(Obj obj) {
+ReplicatedObj InterpreterSession::createMovable(Obj obj) {
   TORCH_DEPLOY_TRY
   TORCH_CHECK(
       manager_,
       "Can only create a movable object when the session was created from an interpreter that is part of a InterpreterManager");
   auto pickled = impl_->pickle(self, obj);
   return ReplicatedObj(std::make_shared<ReplicatedObjImpl>(
-      manager_->next_object_id_++, std::move(pickled), manager_));
+      manager_->nextObjectId_++, std::move(pickled), manager_));
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
@@ -187,24 +186,24 @@
 Interpreter::Interpreter(InterpreterManager* manager)
     : handle_(nullptr), manager_(manager) {
   // NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
-  char library_name[] = "/tmp/torch_deployXXXXXX";
-  int fd = mkstemp(library_name);
+  char libraryName[] = "/tmp/torch_deployXXXXXX";
+  int fd = mkstemp(libraryName);
   TORCH_INTERNAL_ASSERT(fd != -1, "failed to create temporary file");
-  library_name_ = library_name;
+  libraryName_ = libraryName;
   FILE* dst = fdopen(fd, "wb");
 
-  custom_loader_ = writeDeployInterpreter(dst);
+  customLoader_ = writeDeployInterpreter(dst);
   fclose(dst);
   int flags = RTLD_LOCAL | RTLD_LAZY;
-  if (custom_loader_) {
+  if (customLoader_) {
     flags |= RTLD_DEEPBIND;
   }
 
 #ifdef FBCODE_CAFFE2
   static dlopen_t dlopen_ = find_real_dlopen();
-  handle_ = dlopen_(library_name, flags);
+  handle_ = dlopen_(libraryName, flags);
 #else
-  handle_ = dlopen(library_name, flags);
+  handle_ = dlopen(libraryName, flags);
 #endif
 
   if (!handle_) {
@@ -214,30 +213,29 @@
   // note: if you want better debugging symbols for things inside
   // new_intepreter_impl, comment out this line so that the so lasts long enough
   // for the debugger to see it.
-  unlink(library_name_.c_str());
+  unlink(libraryName_.c_str());
 
-  if (custom_loader_) {
+  if (customLoader_) {
     // when using the custom loader we need to link python symbols against
     // the right version of the symbols for the interpreter which an be looked
     // up from the handle_ to this shared library. here we register the handle
     // with the code that does custom loading of python extensions.
-    auto deploy_set_self_ptr =
-        (void (*)(void*))dlsym(handle_, "deploy_set_self");
-    AT_ASSERT(deploy_set_self_ptr);
-    deploy_set_self_ptr(handle_);
+    auto deploySetSelfPtr = (void (*)(void*))dlsym(handle_, "deploy_set_self");
+    AT_ASSERT(deploySetSelfPtr);
+    deploySetSelfPtr(handle_);
   }
 
-  void* new_interpreter_impl = dlsym(handle_, "new_interpreter_impl");
-  AT_ASSERT(new_interpreter_impl);
+  void* newInterpreterImpl = dlsym(handle_, "newInterpreterImpl");
+  AT_ASSERT(newInterpreterImpl);
   pImpl_ = std::unique_ptr<InterpreterImpl>(
-      ((InterpreterImpl * (*)()) new_interpreter_impl)());
+      ((InterpreterImpl * (*)()) newInterpreterImpl)());
 }
 
 Interpreter::~Interpreter() {
   if (handle_) {
     // ensure python uninitialization runs before we dlclose the library
     pImpl_.reset();
-    if (custom_loader_) {
+    if (customLoader_) {
       auto deploy_flush_python_libs =
           (void (*)())dlsym(handle_, "deploy_flush_python_libs");
       deploy_flush_python_libs();
@@ -250,7 +248,7 @@
   TORCH_DEPLOY_TRY
   thread_local int last = 0;
   size_t minusers = SIZE_MAX;
-  int min_idx = 0;
+  int minIdx = 0;
   for (size_t i = 0; i < n_; ++i, ++last) {
     // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
     if (last >= n_) {
@@ -273,14 +271,14 @@
 
     if (prev < minusers) {
       minusers = prev;
-      min_idx = last;
+      minIdx = last;
     }
   }
   // we failed to find a completely free interpreter. heuristically use the
   // one with the least number of user (note that this may have changed since
   // then, so this is only a heuristic).
-  __atomic_fetch_add(&uses_[8 * min_idx], 1ULL, __ATOMIC_SEQ_CST);
-  return min_idx;
+  __atomic_fetch_add(&uses_[8 * minIdx], 1ULL, __ATOMIC_SEQ_CST);
+  return minIdx;
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
@@ -293,8 +291,8 @@
 
 void PythonMethodWrapper::setArgumentNames(
     std::vector<std::string>& argumentNamesOut) const {
-  auto session = model_.acquire_session();
-  auto method = session.self.attr(method_name_.c_str());
+  auto session = model_.acquireSession();
+  auto method = session.self.attr(methodName_.c_str());
   auto iArgumentNames =
       session.global("GetArgumentNamesModule", "getArgumentNames")({method})
           .toIValue();
diff --git a/torch/csrc/deploy/deploy.h b/torch/csrc/deploy/deploy.h
index f34e4bc..7e3411c 100644
--- a/torch/csrc/deploy/deploy.h
+++ b/torch/csrc/deploy/deploy.h
@@ -32,13 +32,13 @@
     return impl_->global(module, name);
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
-  Obj from_ivalue(at::IValue ivalue) {
+  Obj fromIValue(at::IValue ivalue) {
     TORCH_DEPLOY_TRY
-    return impl_->from_ivalue(std::move(ivalue));
+    return impl_->fromIValue(std::move(ivalue));
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
-  ReplicatedObj create_movable(Obj obj);
-  Obj from_movable(const ReplicatedObj& obj);
+  ReplicatedObj createMovable(Obj obj);
+  Obj fromMovable(const ReplicatedObj& obj);
 
  private:
   friend struct ReplicatedObj;
@@ -47,27 +47,27 @@
   friend struct ReplicatedObjImpl;
   std::unique_ptr<InterpreterSessionImpl> impl_;
   InterpreterManager* manager_; // if created from one
-  int64_t notify_idx_ = -1;
+  int64_t notifyIdx_ = -1;
 };
 
 class TORCH_API Interpreter {
  private:
-  std::string library_name_;
+  std::string libraryName_;
   void* handle_;
   std::unique_ptr<InterpreterImpl> pImpl_;
-  bool custom_loader_ = false;
+  bool customLoader_ = false;
   InterpreterManager* manager_; // optional if managed by one
 
  public:
   Interpreter(InterpreterManager* manager);
-  InterpreterSession acquire_session() const {
+  InterpreterSession acquireSession() const {
     TORCH_DEPLOY_TRY
-    return InterpreterSession(pImpl_->acquire_session(), manager_);
+    return InterpreterSession(pImpl_->acquireSession(), manager_);
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
   ~Interpreter();
   Interpreter(Interpreter&& rhs) noexcept
-      : library_name_(std::move(rhs.library_name_)),
+      : libraryName_(std::move(rhs.libraryName_)),
         handle_(rhs.handle_),
         pImpl_(std::move(rhs.pImpl_)),
         manager_(rhs.manager_) {
@@ -108,22 +108,22 @@
 };
 
 struct TORCH_API InterpreterManager {
-  explicit InterpreterManager(size_t n_interp = 2);
+  explicit InterpreterManager(size_t nInterp = 2);
 
-  // get a free model, guarenteed that no other user of acquire_one has the same
+  // get a free model, guarenteed that no other user of acquireOne has the same
   // model. It _is_ possible that other users will be using the interpreter.
-  InterpreterSession acquire_one() {
+  InterpreterSession acquireOne() {
     TORCH_DEPLOY_TRY
     int where = resources_.acquire();
-    InterpreterSession I = instances_[where].acquire_session();
-    I.notify_idx_ = where;
+    InterpreterSession I = instances_[where].acquireSession();
+    I.notifyIdx_ = where;
     return I;
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
 
   // use to make sure something gets run on all interpreters, such as loading or
   // unloading a model eagerly
-  at::ArrayRef<Interpreter> all_instances() {
+  at::ArrayRef<Interpreter> allInstances() {
     TORCH_DEPLOY_TRY
     return instances_;
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
@@ -134,8 +134,8 @@
     resources_.setResourceLimit(N);
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
-  Package load_package(const std::string& uri);
-  Package load_package(
+  Package loadPackage(const std::string& uri);
+  Package loadPackage(
       std::shared_ptr<caffe2::serialize::ReadAdapterInterface> reader);
 
   // convience function for loading some python source code as a module across
@@ -143,8 +143,8 @@
   // execute python code, or for small amounts of application logic that are
   // best written in Python. For larger amounts of code, prefer creating and
   // loading them as packages.
-  void register_module_source(std::string name, std::string src) {
-    registered_module_sources_[std::move(name)] = std::move(src);
+  void reigsterModuleSource(std::string name, std::string src) {
+    registeredModuleSource_[std::move(name)] = std::move(src);
   }
 
   InterpreterManager(const InterpreterManager&) = delete;
@@ -154,10 +154,10 @@
  private:
   friend struct Package;
   friend struct InterpreterSession;
-  size_t next_object_id_ = 0;
+  size_t nextObjectId_ = 0;
   std::vector<Interpreter> instances_;
   LoadBalancer resources_;
-  std::unordered_map<std::string, std::string> registered_module_sources_;
+  std::unordered_map<std::string, std::string> registeredModuleSource_;
 };
 
 struct TORCH_API ReplicatedObjImpl {
@@ -166,51 +166,51 @@
       // NOLINTNEXTLINE(modernize-pass-by-value)
       PickledObject data,
       InterpreterManager* manager)
-      : object_id_(object_id), data_(data), manager_(manager) {}
+      : objectId_(object_id), data_(data), manager_(manager) {}
   // NOLINTNEXTLINE(bugprone-exception-escape)
   ~ReplicatedObjImpl();
-  void unload(const Interpreter* on_this_interpreter);
-  int64_t object_id_;
+  void unload(const Interpreter* onThisInterpreter);
+  int64_t objectId_;
   PickledObject data_;
   InterpreterManager* manager_;
 };
 
 struct TORCH_API ReplicatedObj {
   ReplicatedObj() : pImpl_(nullptr) {}
-  InterpreterSession acquire_session(
-      const Interpreter* on_this_interpreter = nullptr) const;
+  InterpreterSession acquireSession(
+      const Interpreter* onThisInterpreter = nullptr) const;
   at::IValue operator()(at::ArrayRef<at::IValue> args) const {
     TORCH_DEPLOY_TRY
-    auto I = acquire_session();
+    auto I = acquireSession();
     return I.self(args).toIValue();
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
 
-  [[nodiscard]] at::IValue call_kwargs(
+  [[nodiscard]] at::IValue callKwargs(
       std::vector<at::IValue> args,
       std::unordered_map<std::string, c10::IValue> kwargs) const {
     TORCH_DEPLOY_TRY
-    auto I = acquire_session();
-    return I.self.call_kwargs(std::move(args), std::move(kwargs)).toIValue();
+    auto I = acquireSession();
+    return I.self.callKwargs(std::move(args), std::move(kwargs)).toIValue();
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
 
-  [[nodiscard]] at::IValue call_kwargs(
+  [[nodiscard]] at::IValue callKwargs(
       std::unordered_map<std::string, c10::IValue> kwargs) const {
     TORCH_DEPLOY_TRY
-    auto I = acquire_session();
-    return I.self.call_kwargs(std::move(kwargs)).toIValue();
+    auto I = acquireSession();
+    return I.self.callKwargs(std::move(kwargs)).toIValue();
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
 
   [[nodiscard]] bool hasattr(const char* name) const {
     TORCH_DEPLOY_TRY
-    auto I = acquire_session();
+    auto I = acquireSession();
     return I.self.hasattr(name);
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
 
-  void unload(const Interpreter* on_this_interpreter = nullptr);
+  void unload(const Interpreter* onThisInterpreter = nullptr);
 
  private:
   ReplicatedObj(std::shared_ptr<ReplicatedObjImpl> pImpl)
@@ -229,11 +229,11 @@
   // TODO(whc) make bound method pickleable, then directly construct from that
   PythonMethodWrapper(
       torch::deploy::ReplicatedObj model,
-      std::string method_name)
-      : model_(std::move(model)), method_name_(std::move(method_name)) {}
+      std::string methodName)
+      : model_(std::move(model)), methodName_(std::move(methodName)) {}
 
   const std::string& name() const override {
-    return method_name_;
+    return methodName_;
   }
 
   c10::IValue operator()(
@@ -241,35 +241,33 @@
       const IValueMap& kwargs = IValueMap()) const override {
     // TODO(whc) ideally, pickle the method itself as replicatedobj, to skip
     // this lookup each time
-    auto model_session = model_.acquire_session();
-    auto method = model_session.self.attr(method_name_.c_str());
-    return method.call_kwargs(args, kwargs).toIValue();
+    auto modelSession = model_.acquireSession();
+    auto method = modelSession.self.attr(methodName_.c_str());
+    return method.callKwargs(args, kwargs).toIValue();
   }
 
  private:
   void setArgumentNames(std::vector<std::string>&) const override;
 
   torch::deploy::ReplicatedObj model_;
-  std::string method_name_;
+  std::string methodName_;
 };
 
 struct TORCH_API Package {
   // shorthand for getting the object as a pickle resource in the package
-  ReplicatedObj load_pickle(
-      const std::string& module,
-      const std::string& file) {
+  ReplicatedObj loadPickle(const std::string& module, const std::string& file) {
     TORCH_DEPLOY_TRY
-    auto I = acquire_session();
+    auto I = acquireSession();
     auto loaded = I.self.attr("load_pickle")({module, file});
-    return I.create_movable(loaded);
+    return I.createMovable(loaded);
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
 
-  InterpreterSession acquire_session() {
+  InterpreterSession acquireSession() {
     TORCH_DEPLOY_TRY
-    auto I = manager_->acquire_one();
-    I.self = I.impl_->create_or_get_package_importer_from_container_file(
-        container_file_);
+    auto I = manager_->acquireOne();
+    I.self =
+        I.impl_->createOrGetPackageImporterFromContainerFile(containerFile_);
     return I;
     TORCH_DEPLOY_SAFE_CATCH_RETHROW
   }
@@ -280,19 +278,19 @@
       InterpreterManager*
           pm) // or really any of the constructors to our zip file format
       : manager_(pm),
-        container_file_(
+        containerFile_(
             std::make_shared<caffe2::serialize::PyTorchStreamReader>(uri)) {}
   Package(
       std::shared_ptr<caffe2::serialize::ReadAdapterInterface> reader,
       InterpreterManager*
           pm) // or really any of the constructors to our zip file format
       : manager_(pm),
-        container_file_(
+        containerFile_(
             std::make_shared<caffe2::serialize::PyTorchStreamReader>(reader)) {}
   friend struct ReplicatedObj;
   friend struct InterpreterManager;
   InterpreterManager* manager_;
-  std::shared_ptr<caffe2::serialize::PyTorchStreamReader> container_file_;
+  std::shared_ptr<caffe2::serialize::PyTorchStreamReader> containerFile_;
 };
 
 } // namespace deploy
diff --git a/torch/csrc/deploy/example/benchmark.cpp b/torch/csrc/deploy/example/benchmark.cpp
index d2f1142..39a8ece 100644
--- a/torch/csrc/deploy/example/benchmark.cpp
+++ b/torch/csrc/deploy/example/benchmark.cpp
@@ -55,12 +55,12 @@
 struct RunPython {
   static torch::deploy::ReplicatedObj load_and_wrap(
       torch::deploy::Package& package) {
-    auto I = package.acquire_session();
+    auto I = package.acquireSession();
     auto obj = I.self.attr("load_pickle")({"model", "model.pkl"});
     if (cuda) {
       obj = I.global("gpu_wrapper", "GPUWrapper")({obj});
     }
-    return I.create_movable(obj);
+    return I.createMovable(obj);
   }
   // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
   RunPython(
@@ -69,7 +69,7 @@
       const torch::deploy::Interpreter* interps)
       : obj_(load_and_wrap(package)), eg_(std::move(eg)), interps_(interps) {}
   void operator()(int i) {
-    auto I = obj_.acquire_session();
+    auto I = obj_.acquireSession();
     if (cuda) {
       // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
       std::vector<at::IValue> eg2 = {i};
@@ -189,12 +189,12 @@
     pthread_barrier_init(&first_run_, nullptr, n_threads_ + 1);
 
     // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
-    torch::deploy::Package package = manager_.load_package(file_to_run_);
+    torch::deploy::Package package = manager_.loadPackage(file_to_run_);
 
     // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
     std::vector<at::IValue> eg;
     {
-      auto I = package.acquire_session();
+      auto I = package.acquireSession();
 
       eg = I.global("builtins", "tuple")(
                 I.self.attr("load_pickle")({"model", "example.pkl"}))
@@ -208,7 +208,7 @@
       run_one_work_item = RunJIT(file_to_run_, std::move(eg));
     } else {
       run_one_work_item =
-          RunPython(package, std::move(eg), manager_.all_instances().data());
+          RunPython(package, std::move(eg), manager_.allInstances().data());
     }
 
     // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
@@ -305,8 +305,8 @@
   torch::deploy::InterpreterManager manager(max_thread);
 
   // make sure gpu_wrapper.py is in the import path
-  for (auto& interp : manager.all_instances()) {
-    auto I = interp.acquire_session();
+  for (auto& interp : manager.allInstances()) {
+    auto I = interp.acquireSession();
     I.global("sys", "path").attr("append")({"torch/csrc/deploy/example"});
   }
 
diff --git a/torch/csrc/deploy/example/gpu_wrapper.py b/torch/csrc/deploy/example/gpu_wrapper.py
index 8897396..e40f0f8 100644
--- a/torch/csrc/deploy/example/gpu_wrapper.py
+++ b/torch/csrc/deploy/example/gpu_wrapper.py
@@ -57,8 +57,8 @@
     from torch.package import PackageImporter
     i = PackageImporter(sys.argv[1])
     torch.version.interp = 0
-    model = i.load_pickle('model', 'model.pkl')
-    eg = i.load_pickle('model', 'example.pkl')
+    model = i.loadPickle('model', 'model.pkl')
+    eg = i.loadPickle('model', 'example.pkl')
     r = model(*eg)
 
     gpu_model = GPUWrapper(model)
diff --git a/torch/csrc/deploy/interpreter/hide_symbols.script b/torch/csrc/deploy/interpreter/hide_symbols.script
index 9f93f96..2d515de 100644
--- a/torch/csrc/deploy/interpreter/hide_symbols.script
+++ b/torch/csrc/deploy/interpreter/hide_symbols.script
@@ -1,4 +1,4 @@
 INTERPRETER_0.1 {
-  global: new_interpreter_impl;
+  global: newInterpreterImpl;
   local: *;
 };
diff --git a/torch/csrc/deploy/interpreter/interpreter_impl.cpp b/torch/csrc/deploy/interpreter/interpreter_impl.cpp
index 7c81568..ba71229 100644
--- a/torch/csrc/deploy/interpreter/interpreter_impl.cpp
+++ b/torch/csrc/deploy/interpreter/interpreter_impl.cpp
@@ -371,9 +371,9 @@
 
     // we cache these so we don't have to repeat the conversion of strings into
     // Python and hash table lookups to get to these object
-    save_storage = global_impl("torch._deploy", "_save_storages");
-    load_storage = global_impl("torch._deploy", "_load_storages");
-    get_package = global_impl("torch._deploy", "_get_package");
+    saveStorage = global_impl("torch._deploy", "_save_storages");
+    loadStorage = global_impl("torch._deploy", "_load_storages");
+    getPackage = global_impl("torch._deploy", "_get_package");
     objects = global_impl("torch._deploy", "_deploy_objects");
     // Release the GIL that PyInitialize acquires
     PyEval_SaveThread();
@@ -385,16 +385,16 @@
     // note: this leads the referneces to these objects, but we are about to
     // deinit python anyway so it doesn't matter
     objects.release();
-    save_storage.release();
-    load_storage.release();
-    get_package.release();
+    saveStorage.release();
+    loadStorage.release();
+    getPackage.release();
     if (Py_FinalizeEx() != 0) {
       exit(1); // can't use TORCH_INTERNAL_ASSERT because we are in a
                // non-throwing destructor.
     }
   }
 
-  void set_find_module(
+  void setFindModule(
       std::function<at::optional<std::string>(const std::string&)> find_module)
       override {
     std::function<py::object(const std::string&)> wrapped_find_module =
@@ -410,10 +410,10 @@
         .attr("append")(register_module_importer);
   }
 
-  torch::deploy::InterpreterSessionImpl* acquire_session() override;
-  py::object save_storage;
-  py::object load_storage;
-  py::object get_package;
+  torch::deploy::InterpreterSessionImpl* acquireSession() override;
+  py::object saveStorage;
+  py::object loadStorage;
+  py::object getPackage;
   py::dict objects;
   std::mutex init_lock_;
 };
@@ -426,18 +426,18 @@
     return wrap(global_impl(module, name));
   }
 
-  Obj from_ivalue(IValue value) override {
+  Obj fromIValue(IValue value) override {
     return wrap(torch::jit::toPyObject(value));
   }
-  Obj create_or_get_package_importer_from_container_file(
+  Obj createOrGetPackageImporterFromContainerFile(
       const std::shared_ptr<caffe2::serialize::PyTorchStreamReader>&
-          container_file_) override {
+          containerFile_) override {
     InitLockAcquire guard(interp_->init_lock_);
-    return wrap(interp_->get_package(container_file_));
+    return wrap(interp_->getPackage(containerFile_));
   }
 
   PickledObject pickle(Obj container, Obj obj) override {
-    py::tuple result = interp_->save_storage(unwrap(container), unwrap(obj));
+    py::tuple result = interp_->saveStorage(unwrap(container), unwrap(obj));
     py::bytes bytes = py::cast<py::bytes>(result[0]);
     py::list storages = py::cast<py::list>(result[1]);
     py::list dtypes = py::cast<py::list>(result[2]);
@@ -458,7 +458,7 @@
         std::move(dtypes_c),
         std::move(container_file)};
   }
-  Obj unpickle_or_get(int64_t id, const PickledObject& obj) override {
+  Obj unpickleOrGet(int64_t id, const PickledObject& obj) override {
     py::dict objects = interp_->objects;
     py::object id_p = py::cast(id);
     if (objects.contains(id_p)) {
@@ -479,8 +479,8 @@
               obj.storages_[i], scalarTypeToTypeMeta(obj.types_[i])));
       storages[i] = std::move(new_storage);
     }
-    py::object result = interp_->load_storage(
-        id, obj.container_file_, py::bytes(obj.data_), storages);
+    py::object result = interp_->loadStorage(
+        id, obj.containerFile_, py::bytes(obj.data_), storages);
     return wrap(result);
   }
   void unload(int64_t id) override {
@@ -511,7 +511,7 @@
     return wrap(call(unwrap(obj), m_args));
   }
 
-  Obj call_kwargs(
+  Obj callKwargs(
       Obj obj,
       std::vector<at::IValue> args,
       std::unordered_map<std::string, c10::IValue> kwargs) override {
@@ -528,10 +528,10 @@
     return wrap(call(unwrap(obj), py_args, py_kwargs));
   }
 
-  Obj call_kwargs(Obj obj, std::unordered_map<std::string, c10::IValue> kwargs)
+  Obj callKwargs(Obj obj, std::unordered_map<std::string, c10::IValue> kwargs)
       override {
     std::vector<at::IValue> args;
-    return call_kwargs(obj, args, kwargs);
+    return callKwargs(obj, args, kwargs);
   }
 
   bool hasattr(Obj obj, const char* attr) override {
@@ -571,12 +571,12 @@
 };
 
 torch::deploy::InterpreterSessionImpl* ConcreteInterpreterImpl::
-    acquire_session() {
+    acquireSession() {
   return new ConcreteInterpreterSessionImpl(this);
 }
 
 extern "C" __attribute__((visibility("default")))
 torch::deploy::InterpreterImpl*
-new_interpreter_impl(void) {
+newInterpreterImpl(void) {
   return new ConcreteInterpreterImpl();
 }
diff --git a/torch/csrc/deploy/interpreter/interpreter_impl.h b/torch/csrc/deploy/interpreter/interpreter_impl.h
index ed7f8e7..47175e7 100644
--- a/torch/csrc/deploy/interpreter/interpreter_impl.h
+++ b/torch/csrc/deploy/interpreter/interpreter_impl.h
@@ -56,7 +56,7 @@
   // types for the storages, required to
   // reconstruct correct Python storages
   std::vector<at::ScalarType> types_;
-  std::shared_ptr<caffe2::serialize::PyTorchStreamReader> container_file_;
+  std::shared_ptr<caffe2::serialize::PyTorchStreamReader> containerFile_;
 };
 
 // this is a wrapper class that refers to a PyObject* instance in a particular
@@ -74,10 +74,10 @@
   at::IValue toIValue() const;
   Obj operator()(at::ArrayRef<Obj> args);
   Obj operator()(at::ArrayRef<at::IValue> args);
-  Obj call_kwargs(
+  Obj callKwargs(
       std::vector<at::IValue> args,
       std::unordered_map<std::string, c10::IValue> kwargs);
-  Obj call_kwargs(std::unordered_map<std::string, c10::IValue> kwargs);
+  Obj callKwargs(std::unordered_map<std::string, c10::IValue> kwargs);
   bool hasattr(const char* attr);
   Obj attr(const char* attr);
 
@@ -97,23 +97,23 @@
 
  private:
   virtual Obj global(const char* module, const char* name) = 0;
-  virtual Obj from_ivalue(at::IValue value) = 0;
-  virtual Obj create_or_get_package_importer_from_container_file(
+  virtual Obj fromIValue(at::IValue value) = 0;
+  virtual Obj createOrGetPackageImporterFromContainerFile(
       const std::shared_ptr<caffe2::serialize::PyTorchStreamReader>&
-          container_file_) = 0;
+          containerFile_) = 0;
   virtual PickledObject pickle(Obj container, Obj obj) = 0;
-  virtual Obj unpickle_or_get(int64_t id, const PickledObject& obj) = 0;
+  virtual Obj unpickleOrGet(int64_t id, const PickledObject& obj) = 0;
   virtual void unload(int64_t id) = 0;
 
   virtual at::IValue toIValue(Obj obj) const = 0;
 
   virtual Obj call(Obj obj, at::ArrayRef<Obj> args) = 0;
   virtual Obj call(Obj obj, at::ArrayRef<at::IValue> args) = 0;
-  virtual Obj call_kwargs(
+  virtual Obj callKwargs(
       Obj obj,
       std::vector<at::IValue> args,
       std::unordered_map<std::string, c10::IValue> kwargs) = 0;
-  virtual Obj call_kwargs(
+  virtual Obj callKwargs(
       Obj obj,
       std::unordered_map<std::string, c10::IValue> kwargs) = 0;
   virtual Obj attr(Obj obj, const char* attr) = 0;
@@ -126,8 +126,8 @@
 };
 
 struct InterpreterImpl {
-  virtual InterpreterSessionImpl* acquire_session() = 0;
-  virtual void set_find_module(
+  virtual InterpreterSessionImpl* acquireSession() = 0;
+  virtual void setFindModule(
       std::function<at::optional<std::string>(const std::string&)>
           find_module) = 0;
   virtual ~InterpreterImpl() = default; // this will uninitialize python
@@ -154,17 +154,17 @@
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 
-inline Obj Obj::call_kwargs(
+inline Obj Obj::callKwargs(
     std::vector<at::IValue> args,
     std::unordered_map<std::string, c10::IValue> kwargs) {
   TORCH_DEPLOY_TRY
-  return interaction_->call_kwargs(*this, std::move(args), std::move(kwargs));
+  return interaction_->callKwargs(*this, std::move(args), std::move(kwargs));
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
-inline Obj Obj::call_kwargs(
+inline Obj Obj::callKwargs(
     std::unordered_map<std::string, c10::IValue> kwargs) {
   TORCH_DEPLOY_TRY
-  return interaction_->call_kwargs(*this, std::move(kwargs));
+  return interaction_->callKwargs(*this, std::move(kwargs));
   TORCH_DEPLOY_SAFE_CATCH_RETHROW
 }
 inline bool Obj::hasattr(const char* attr) {
diff --git a/torch/csrc/deploy/test_deploy.cpp b/torch/csrc/deploy/test_deploy.cpp
index 34e3e38..1eb2e74 100644
--- a/torch/csrc/deploy/test_deploy.cpp
+++ b/torch/csrc/deploy/test_deploy.cpp
@@ -21,11 +21,11 @@
 void compare_torchpy_jit(const char* model_filename, const char* jit_filename) {
   // Test
   torch::deploy::InterpreterManager m(1);
-  torch::deploy::Package p = m.load_package(model_filename);
-  auto model = p.load_pickle("model", "model.pkl");
+  torch::deploy::Package p = m.loadPackage(model_filename);
+  auto model = p.loadPickle("model", "model.pkl");
   at::IValue eg;
   {
-    auto I = p.acquire_session();
+    auto I = p.acquireSession();
     eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
   }
 
@@ -49,9 +49,9 @@
 
 TEST(TorchpyTest, LoadLibrary) {
   torch::deploy::InterpreterManager m(1);
-  torch::deploy::Package p = m.load_package(
+  torch::deploy::Package p = m.loadPackage(
       path("LOAD_LIBRARY", "torch/csrc/deploy/example/generated/load_library"));
-  auto model = p.load_pickle("fn", "fn.pkl");
+  auto model = p.loadPickle("fn", "fn.pkl");
   model({});
 }
 
@@ -62,14 +62,14 @@
 
 TEST(TorchpyTest, DifferentInterps) {
   torch::deploy::InterpreterManager m(2);
-  m.register_module_source("check_none", "check = id(None)\n");
+  m.reigsterModuleSource("check_none", "check = id(None)\n");
   int64_t id0 = 0, id1 = 0;
   {
-    auto I = m.all_instances()[0].acquire_session();
+    auto I = m.allInstances()[0].acquireSession();
     id0 = I.global("check_none", "check").toIValue().toInt();
   }
   {
-    auto I = m.all_instances()[1].acquire_session();
+    auto I = m.allInstances()[1].acquireSession();
     id1 = I.global("check_none", "check").toIValue().toInt();
   }
   ASSERT_NE(id0, id1);
@@ -89,18 +89,18 @@
   torch::deploy::InterpreterManager m(1);
   torch::deploy::ReplicatedObj obj;
   {
-    auto I = m.acquire_one();
+    auto I = m.acquireOne();
     auto model =
         I.global("torch.nn", "Module")(std::vector<torch::deploy::Obj>());
-    obj = I.create_movable(model);
+    obj = I.createMovable(model);
   }
-  obj.acquire_session();
+  obj.acquireSession();
 }
 
 TEST(TorchpyTest, MultiSerialSimpleModel) {
   torch::deploy::InterpreterManager manager(3);
-  torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
-  auto model = p.load_pickle("model", "model.pkl");
+  torch::deploy::Package p = manager.loadPackage(path("SIMPLE", simple));
+  auto model = p.loadPickle("model", "model.pkl");
   auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
 
   auto input = torch::ones({10, 20});
@@ -124,13 +124,13 @@
   std::vector<c10::IValue> args;
   args.emplace_back(input);
   std::unordered_map<std::string, c10::IValue> kwargs_empty;
-  auto jit_output_args = model.call_kwargs(args, kwargs_empty).toTensor();
+  auto jit_output_args = model.callKwargs(args, kwargs_empty).toTensor();
   ASSERT_TRUE(ref_output.equal(jit_output_args));
 
   // and with kwargs only
   std::unordered_map<std::string, c10::IValue> kwargs;
   kwargs["input"] = input;
-  auto jit_output_kwargs = model.call_kwargs(kwargs).toTensor();
+  auto jit_output_kwargs = model.callKwargs(kwargs).toTensor();
   ASSERT_TRUE(ref_output.equal(jit_output_kwargs));
 
   // test hasattr
@@ -142,8 +142,8 @@
   size_t nthreads = 3;
   torch::deploy::InterpreterManager manager(nthreads);
 
-  torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
-  auto model = p.load_pickle("model", "model.pkl");
+  torch::deploy::Package p = manager.loadPackage(path("SIMPLE", simple));
+  auto model = p.loadPickle("model", "model.pkl");
   auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
 
   auto input = torch::ones({10, 20});
@@ -179,13 +179,13 @@
   // See explanation in deploy.h
   torch::deploy::InterpreterManager manager(3);
   // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
-  EXPECT_THROW(manager.load_package("some garbage path"), c10::Error);
+  EXPECT_THROW(manager.loadPackage("some garbage path"), c10::Error);
 
-  torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
+  torch::deploy::Package p = manager.loadPackage(path("SIMPLE", simple));
   // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
-  EXPECT_THROW(p.load_pickle("some other", "garbage path"), c10::Error);
+  EXPECT_THROW(p.loadPickle("some other", "garbage path"), c10::Error);
 
-  auto model = p.load_pickle("model", "model.pkl");
+  auto model = p.loadPickle("model", "model.pkl");
   // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
   EXPECT_THROW(model(at::IValue("unexpected input")), c10::Error);
 }
@@ -193,30 +193,30 @@
 TEST(TorchpyTest, AcquireMultipleSessionsInTheSamePackage) {
   torch::deploy::InterpreterManager m(1);
 
-  torch::deploy::Package p = m.load_package(path("SIMPLE", simple));
-  auto I = p.acquire_session();
+  torch::deploy::Package p = m.loadPackage(path("SIMPLE", simple));
+  auto I = p.acquireSession();
 
-  auto I1 = p.acquire_session();
+  auto I1 = p.acquireSession();
 }
 
 TEST(TorchpyTest, AcquireMultipleSessionsInDifferentPackages) {
   torch::deploy::InterpreterManager m(1);
 
-  torch::deploy::Package p = m.load_package(path("SIMPLE", simple));
-  auto I = p.acquire_session();
+  torch::deploy::Package p = m.loadPackage(path("SIMPLE", simple));
+  auto I = p.acquireSession();
 
-  torch::deploy::Package p1 = m.load_package(
+  torch::deploy::Package p1 = m.loadPackage(
       path("RESNET", "torch/csrc/deploy/example/generated/resnet"));
-  auto I1 = p1.acquire_session();
+  auto I1 = p1.acquireSession();
 }
 
 TEST(TorchpyTest, TensorSharingNotAllowed) {
   size_t nthreads = 2;
   torch::deploy::InterpreterManager m(nthreads);
   // generate a tensor from one interpreter
-  auto I0 = m.all_instances()[0].acquire_session();
-  auto I1 = m.all_instances()[1].acquire_session();
-  auto obj = I0.global("torch", "empty")({I0.from_ivalue(2)});
+  auto I0 = m.allInstances()[0].acquireSession();
+  auto I1 = m.allInstances()[1].acquireSession();
+  auto obj = I0.global("torch", "empty")({I0.fromIValue(2)});
   auto t = obj.toIValue().toTensor();
   // try to feed it to the other interpreter, should error
   // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
@@ -237,9 +237,9 @@
     std::atomic<int64_t> failed(0);
     at::parallel_for(0, nthreads, 1, [&](int64_t begin, int64_t end) {
       for (const auto i : c10::irange(begin, end)) {
-        auto I = m.all_instances()[i].acquire_session();
+        auto I = m.allInstances()[i].acquireSession();
         try {
-          I.from_ivalue(t);
+          I.fromIValue(t);
           success++;
         } catch (const c10::Error& e) {
           failed++;
@@ -255,20 +255,20 @@
   at::Tensor t = torch::empty(2);
   {
     torch::deploy::InterpreterManager m(1);
-    auto I = m.acquire_one();
-    I.from_ivalue(t);
+    auto I = m.acquireOne();
+    I.fromIValue(t);
   } // unload the old interpreter
   torch::deploy::InterpreterManager m(1);
-  auto I = m.acquire_one();
+  auto I = m.acquireOne();
   // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
-  ASSERT_THROW(I.from_ivalue(t), c10::Error); // NOT a segfault
+  ASSERT_THROW(I.fromIValue(t), c10::Error); // NOT a segfault
 }
 
 TEST(TorchpyTest, RegisterModule) {
   torch::deploy::InterpreterManager m(2);
-  m.register_module_source("foomodule", "def add1(x): return x + 1\n");
-  for (const auto& interp : m.all_instances()) {
-    auto I = interp.acquire_session();
+  m.reigsterModuleSource("foomodule", "def add1(x): return x + 1\n");
+  for (const auto& interp : m.allInstances()) {
+    auto I = interp.acquireSession();
     AT_ASSERT(3 == I.global("foomodule", "add1")({2}).toIValue().toInt());
   }
 }
@@ -276,9 +276,9 @@
 TEST(TorchpyTest, FxModule) {
   size_t nthreads = 3;
   torch::deploy::InterpreterManager manager(nthreads);
-  torch::deploy::Package p = manager.load_package(path(
+  torch::deploy::Package p = manager.loadPackage(path(
       "SIMPLE_LEAF_FX", "torch/csrc/deploy/example/generated/simple_leaf_fx"));
-  auto model = p.load_pickle("model", "model.pkl");
+  auto model = p.loadPickle("model", "model.pkl");
 
   std::vector<at::Tensor> outputs;
   auto input = torch::ones({5, 10});
@@ -304,8 +304,8 @@
 TEST(TorchpyTest, SharedLibraryLoad) {
   torch::deploy::InterpreterManager manager(2);
   auto no_args = at::ArrayRef<torch::deploy::Obj>();
-  for (auto& interp : manager.all_instances()) {
-    auto I = interp.acquire_session();
+  for (auto& interp : manager.allInstances()) {
+    auto I = interp.acquireSession();
 
     const char* test_lib_path = getenv("LIBTEST_DEPLOY_LIB");
     if (!test_lib_path) {
@@ -329,8 +329,8 @@
     // I.global("numpy", "array"); // force numpy to load here so it is loaded
     //                             // twice before we run the tests
   }
-  for (auto& interp : manager.all_instances()) {
-    auto I = interp.acquire_session();
+  for (auto& interp : manager.allInstances()) {
+    auto I = interp.acquireSession();
     // auto i =
     //     I.global("test_deploy_python", "numpy_test")({1}).toIValue().toInt();
     I.global("libtest_deploy_lib", "raise_and_catch_exception")({true});
@@ -372,16 +372,16 @@
       "USES_DISTRIBUTED",
       "torch/csrc/deploy/example/generated/uses_distributed");
   torch::deploy::InterpreterManager m(1);
-  torch::deploy::Package p = m.load_package(model_filename);
+  torch::deploy::Package p = m.loadPackage(model_filename);
   {
-    auto I = p.acquire_session();
+    auto I = p.acquireSession();
     I.self.attr("import_module")({"uses_distributed"});
   }
 }
 
 TEST(TorchpyTest, Autograd) {
   torch::deploy::InterpreterManager m(2);
-  m.register_module_source("autograd_test", R"PYTHON(
+  m.reigsterModuleSource("autograd_test", R"PYTHON(
 import torch
 
 x = torch.ones(5)  # input tensor
@@ -396,11 +396,11 @@
 )PYTHON");
   at::Tensor w_grad0, w_grad1;
   {
-    auto I = m.all_instances()[0].acquire_session();
+    auto I = m.allInstances()[0].acquireSession();
     w_grad0 = I.global("autograd_test", "result").toIValue().toTensor();
   }
   {
-    auto I = m.all_instances()[1].acquire_session();
+    auto I = m.allInstances()[1].acquireSession();
     w_grad1 = I.global("autograd_test", "result").toIValue().toTensor();
   }
   EXPECT_TRUE(w_grad0.equal(w_grad1));
diff --git a/torch/csrc/deploy/test_deploy_gpu.cpp b/torch/csrc/deploy/test_deploy_gpu.cpp
index dab8724..6e33103 100644
--- a/torch/csrc/deploy/test_deploy_gpu.cpp
+++ b/torch/csrc/deploy/test_deploy_gpu.cpp
@@ -30,15 +30,15 @@
 
   // Test
   torch::deploy::InterpreterManager m(1);
-  torch::deploy::Package p = m.load_package(model_filename);
-  auto model = p.load_pickle("model", "model.pkl");
+  torch::deploy::Package p = m.loadPackage(model_filename);
+  auto model = p.loadPickle("model", "model.pkl");
   {
-    auto M = model.acquire_session();
+    auto M = model.acquireSession();
     M.self.attr("to")({"cuda"});
   }
   std::vector<at::IValue> inputs;
   {
-    auto I = p.acquire_session();
+    auto I = p.acquireSession();
     auto eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
     inputs = eg.toTuple()->elements();
     inputs[0] = inputs[0].toTensor().to("cuda");
@@ -59,9 +59,9 @@
       "USES_DISTRIBUTED",
       "torch/csrc/deploy/example/generated/uses_distributed");
   torch::deploy::InterpreterManager m(1);
-  torch::deploy::Package p = m.load_package(model_filename);
+  torch::deploy::Package p = m.loadPackage(model_filename);
   {
-    auto I = p.acquire_session();
+    auto I = p.acquireSession();
     I.self.attr("import_module")({"uses_distributed"});
   }
 }
@@ -73,10 +73,10 @@
   auto packagePath = path(
       "MAKE_TRT_MODULE", "torch/csrc/deploy/example/generated/make_trt_module");
   torch::deploy::InterpreterManager m(1);
-  torch::deploy::Package p = m.load_package(packagePath);
-  auto makeModel = p.load_pickle("make_trt_module", "model.pkl");
+  torch::deploy::Package p = m.loadPackage(packagePath);
+  auto makeModel = p.loadPickle("make_trt_module", "model.pkl");
   {
-    auto I = makeModel.acquire_session();
+    auto I = makeModel.acquireSession();
     auto model = I.self(at::ArrayRef<at::IValue>{});
     auto input = at::ones({1, 2, 3}).cuda();
     auto output = input * 2;
diff --git a/torch/csrc/deploy/test_deploy_python_ext.cpp b/torch/csrc/deploy/test_deploy_python_ext.cpp
index 59a04f5..a4bc5f2 100644
--- a/torch/csrc/deploy/test_deploy_python_ext.cpp
+++ b/torch/csrc/deploy/test_deploy_python_ext.cpp
@@ -6,14 +6,14 @@
 
 bool run() {
   torch::deploy::InterpreterManager m(2);
-  m.register_module_source("check_none", "check = id(None)\n");
+  m.reigsterModuleSource("check_none", "check = id(None)\n");
   int64_t id0 = 0, id1 = 0;
   {
-    auto I = m.all_instances()[0].acquire_session();
+    auto I = m.allInstances()[0].acquireSession();
     id0 = I.global("check_none", "check").toIValue().toInt();
   }
   {
-    auto I = m.all_instances()[1].acquire_session();
+    auto I = m.allInstances()[1].acquireSession();
     id1 = I.global("check_none", "check").toIValue().toInt();
   }
   return id0 != id1;