Applies a linear transformation to the incoming data, y = Ax + b
m = nn.Linear(20, 30) input = autograd.Variable(torch.randn(128, 20)) output = m(input) print(output.size())
The input is a 2D mini-batch of samples, each of size in_features The output will be a 2D Tensor of size mini-batch x out_features
Parameter | Default | Description |
---|---|---|
in_features | size of each input sample | |
out_features | size of each output sample | |
bias | True | If set to False, the layer will not learn an additive bias. |
| Shape | Description
------ | ----- | ------------ input | [, in_features] | Input can be of shape minibatch x in_features output | [, out_features] | Output is of shape minibatch x out_features
Parameter | Description |
---|---|
weight | the learnable weights of the module of shape (out_features x in_features) |
bias | the learnable bias of the module of shape (out_features) |