blob: 95c4e110d69eb6be8ffc4a5eb445fd79e61149c2 [file] [log] [blame]
#include <c10d/ProcessGroupNCCL.hpp>
#include <map>
#include <tuple>
#include <unordered_set>
#include <THC/THC.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10d/Utils.hpp>
namespace c10d {
constexpr const char* const kNCCLAbortedCommStoreKey = "NCCLABORTEDCOMM";
namespace {
// RAII helper class to manage NCCL group API and CUDA free mutex.
// The destructor is allowed to throw since this helper class only
// manages group and lock lifetimes.
struct AutoNcclGroup {
AutoNcclGroup() {
(c10::cuda::CUDACachingAllocator::getFreeMutex())->lock();
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
C10D_NCCL_CHECK(ncclGroupStart());
#endif
}
~AutoNcclGroup() noexcept(false) {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
C10D_NCCL_CHECK(ncclGroupEnd());
#endif
(c10::cuda::CUDACachingAllocator::getFreeMutex())->unlock();
}
};
// NCCL op mapping
const std::map<ReduceOp, ncclRedOp_t> ncclOp = {
{ReduceOp::MIN, ncclMin},
{ReduceOp::MAX, ncclMax},
{ReduceOp::SUM, ncclSum},
{ReduceOp::PRODUCT, ncclProd},
};
// NCCL type typing
std::map<at::ScalarType, ncclDataType_t> ncclDataType = {
{at::kChar, ncclInt8},
{at::kByte, ncclUint8},
{at::kFloat, ncclFloat},
{at::kDouble, ncclDouble},
{at::kInt, ncclInt32},
{at::kLong, ncclInt64},
{at::kHalf, ncclHalf},
{at::kBool, ncclUint8},
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION >= 301
{at::kBFloat16, ncclBfloat16},
#endif
};
// Helper function that gets the data type and issues error if not supported
ncclDataType_t getNcclDataType(at::ScalarType type) {
auto it = ncclDataType.find(type);
TORCH_CHECK(
it != ncclDataType.end(),
"Input tensor data type is not supported for NCCL process group: ",
type);
return it->second;
}
ncclRedOp_t getNcclReduceOp(const ReduceOp reduceOp, at::Tensor& input) {
try {
if (reduceOp == ReduceOp::SUM && input.scalar_type() == at::kBool) {
// For bool tensors, map sum to max, which both represent a bitwise or.
// This is to prevent overflow issues with sum, since we use uint8 to
// represent a bool (see ncclDataType mapping).
return ncclMax;
}
return ncclOp.at(reduceOp);
} catch (const std::out_of_range& e) {
switch (reduceOp) {
case ReduceOp::BAND:
throw std::runtime_error("Cannot use ReduceOp.BAND with NCCL");
break;
case ReduceOp::BOR:
throw std::runtime_error("Cannot use ReduceOp.BOR with NCCL");
break;
case ReduceOp::BXOR:
throw std::runtime_error("Cannot use ReduceOp.BXOR with NCCL");
break;
default:
throw std::runtime_error("Unhandled ReduceOp");
break;
}
}
}
// Get the deviceList String from the list of devices
std::string getKeyFromDevices(const std::vector<at::Device>& devices) {
std::string deviceList;
for (auto& device : devices) {
if (deviceList.empty()) {
deviceList = std::to_string(device.index());
} else {
deviceList += "," + std::to_string(device.index());
}
}
return deviceList;
}
// Get the list of devices from list of tensors
std::vector<at::Device> getDeviceList(const std::vector<at::Tensor>& tensors) {
std::vector<at::Device> res;
res.reserve(tensors.size());
for (auto& tensor : tensors) {
res.push_back(tensor.device());
}
return res;
}
// [Sync Streams] Helper that lets the input ncclStreams to wait for the current
// stream. NCCL communications run on ncclStreams, but input tensors are
// allocated on different streams (i.e., current streams). Communications on
// ncclStreams cannot start before pending input tensor ops on current streams
// finish. Otherwise, ops on two streams might read/write same tensors
// concurrently.
//
// The synchronization above alone is not enough. We also need to make sure
// input tensors are not freed before their usages on ncclStreams finish. This
// can be achieved by calling c10::cuda::CUDACachingAllocator::recordStream,
// which remembers the usage stream (ncclStream), creates an event on the usage
// stream when GC attempts to free the input tensor, and delays GC until that
// event is done.
void syncStreams(
const std::vector<at::Device>& devices,
std::vector<at::cuda::CUDAEvent>& ncclEvents,
std::vector<at::cuda::CUDAStream>& ncclStreams) {
for (size_t i = 0; i < devices.size(); ++i) {
at::cuda::CUDAStream& ncclStream = ncclStreams[i];
at::cuda::CUDAEvent& ncclEvent = ncclEvents[i];
ncclEvent.record(at::cuda::getCurrentCUDAStream(devices[i].index()));
ncclEvent.block(ncclStream);
}
}
// Given a ncclUniqueId, convert it to a string representation that can be put
// in the store.
std::string buildNcclUniqueIdStr(const ncclUniqueId& ncclID) {
const uint8_t* bytes = reinterpret_cast<const uint8_t*>(&ncclID);
std::ostringstream oss;
for (size_t i = 0; i < NCCL_UNIQUE_ID_BYTES; i++) {
oss << std::hex << static_cast<int>(bytes[i]);
}
return oss.str();
}
std::string getNcclAbortedCommStoreKey(const std::string ncclIdStr) {
return std::string(kNCCLAbortedCommStoreKey) + ":" + ncclIdStr;
}
#ifdef ENABLE_NCCL_P2P_SUPPORT
ncclResult_t ncclAlltoall(
void* sendbuff,
void* recvbuff,
size_t count,
size_t size,
ncclDataType_t type,
ncclComm_t comm,
cudaStream_t stream) {
int numranks;
size_t rankdiff = count * size;
C10D_NCCL_CHECK(ncclCommCount(comm, &numranks));
C10D_NCCL_CHECK(ncclGroupStart());
for (int r = 0; r < numranks; r++) {
// NCCL uses 0 byte message for synchronization
// Avoid send/recv when message size is zero
if (count != 0) {
C10D_NCCL_CHECK(ncclSend(
((char*)sendbuff) + r * rankdiff, count, type, r, comm, stream));
C10D_NCCL_CHECK(ncclRecv(
((char*)recvbuff) + r * rankdiff, count, type, r, comm, stream));
}
}
C10D_NCCL_CHECK(ncclGroupEnd());
return ncclSuccess;
}
ncclResult_t ncclAlltoallv(
void* sendbuff,
const size_t* sendcounts,
const size_t* senddispls,
void* recvbuff,
const size_t* recvcounts,
const size_t* recvdispls,
size_t size,
ncclDataType_t type,
ncclComm_t comm,
cudaStream_t stream) {
int numranks;
C10D_NCCL_CHECK(ncclCommCount(comm, &numranks));
C10D_NCCL_CHECK(ncclGroupStart());
for (int r = 0; r < numranks; r++) {
// NCCL uses 0 byte message for synchronization
// Avoid send/recv when message size is zero
if (sendcounts[r] != 0) {
C10D_NCCL_CHECK(ncclSend(
((char*)sendbuff) + senddispls[r] * size,
sendcounts[r],
type,
r,
comm,
stream));
}
if (recvcounts[r] != 0) {
C10D_NCCL_CHECK(ncclRecv(
((char*)recvbuff) + recvdispls[r] * size,
recvcounts[r],
type,
r,
comm,
stream));
}
}
C10D_NCCL_CHECK(ncclGroupEnd());
return ncclSuccess;
}
#endif
} // namespace
const int64_t ProcessGroupNCCL::kWatchdogThreadSleepMillis = 10000;
const int64_t ProcessGroupNCCL::kWorkCleanupThreadSleepMillis = 1000;
constexpr int64_t kWaitForAbortCommStoreKey = 1000;
constexpr int64_t kSynchronizeBusyWaitMillis = 10;
const int64_t ProcessGroupNCCL::kProcessGroupNCCLOpTimeoutMillis = 10 * 1000;
ProcessGroupNCCL::WorkNCCL::WorkNCCL(const std::vector<at::Device>& devices)
: devices_(devices), workStartTime_(std::chrono::steady_clock::now()) {
// Creates the CUDA event wrappers
// Note: The actual events are lazily created when first recorded to with
// DEFAULT_FLAGS = cudaEventDisableTiming.
cudaEvents_ =
std::make_shared<std::vector<at::cuda::CUDAEvent>>(devices.size());
ncclComms_.resize(devices.size());
}
ProcessGroupNCCL::WorkNCCL::~WorkNCCL() {}
bool ProcessGroupNCCL::WorkNCCL::isCompleted() {
checkAndSetException();
return exception() || finishedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::isSuccess() const {
if (exception()) {
// Already detected an exception.
return false;
}
return !checkForNCCLErrors(ncclComms_) && finishedGPUExecutionInternal();
}
void ProcessGroupNCCL::WorkNCCL::checkAndSetException() {
if (exception()) {
// We already have an exception.
return;
}
auto exception_ptr = checkForNCCLErrors(ncclComms_);
std::unique_lock<std::mutex> lock(mutex_);
exception_ = exception_ptr;
}
void ProcessGroupNCCL::WorkNCCL::setException(
std::exception_ptr exception_ptr) {
std::unique_lock<std::mutex> lock(mutex_);
exception_ = exception_ptr;
}
// Helper that checks if the NCCL kernels are completed on the GPUs
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecution() {
checkAndSetException();
return finishedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const {
for (size_t i = 0; i < devices_.size(); ++i) {
// Checking the work's corresponding CUDA events' status
auto ret = cudaEventQuery((*cudaEvents_)[i]);
if (ret != cudaSuccess && ret != cudaErrorNotReady) {
AT_CUDA_CHECK(ret);
}
if (ret == cudaErrorNotReady) {
return false;
}
}
return true;
}
void ProcessGroupNCCL::WorkNCCL::checkAndThrowException() {
// Set the appropriate exception if found.
checkAndSetException();
// Throw an exception, only if we have a valid exception.
if (exception()) {
std::rethrow_exception(exception());
}
}
void ProcessGroupNCCL::WorkNCCL::handleNCCLGuard() {
std::lock_guard<std::mutex> lock(mutex_);
completed_ = true;
if (exception_) {
std::rethrow_exception(exception_);
}
}
void ProcessGroupNCCL::WorkNCCL::synchronize() {
// Call Synchronize without a timeout. We use this method to avoid adding a
// timeout argument to the public synchronize API.
synchronizeInternal(kNoTimeout);
}
void ProcessGroupNCCL::WorkNCCL::synchronizeStreams() {
for (size_t i = 0; i < devices_.size(); ++i) {
auto currentStream = at::cuda::getCurrentCUDAStream(devices_[i].index());
// Block the current stream on the NCCL stream
(*cudaEvents_)[i].block(currentStream);
}
}
// Waiting on the work's corresponding CUDA events
void ProcessGroupNCCL::WorkNCCL::synchronizeInternal(
std::chrono::milliseconds timeout) {
synchronizeStreams();
// In case of blocking, wait for the operation to complete.
if (blockingWait_) {
// Use the passed in timeout if provided, otherwise use the default
// opTimeout for each WorkNCCL object.
std::chrono::milliseconds workTimeout =
timeout == kNoTimeout ? opTimeout_ : timeout;
// Wait for the operation to complete.
while (!isCompleted()) {
if (timedOut()) {
// When operation times out due to some errors that are not
// detected by nccl communicators, ncclCommWatchdog can not check this
// time out error and thus can not abort ncclComms accordingly.
// So explicitly abort ncclComms here before throwing this timed out
// exception to users, after this, ncclCommWatchdog can detect nccl
// communicators are aborted and clean up devNCCLCommMap_ accordingly.
// if throwing timed out excepiton without aborting nccl communicators
// here, it was observed that CUDA GPU will have 100% utilization and
// can not run new events successfully.
for (const auto& ncclComm : ncclComms_) {
ncclComm->ncclCommAbort();
const auto& storeKey = getNcclAbortedCommStoreKey(
buildNcclUniqueIdStr(ncclComm->getNcclId()));
store_->set(storeKey, {});
LOG(INFO) << "Wrote aborted communicator id to store: " << storeKey;
}
throw std::runtime_error("Operation timed out!");
}
// Check for errors and throw appropriate exception.
checkAndThrowException();
std::this_thread::sleep_for(
std::chrono::milliseconds(kSynchronizeBusyWaitMillis));
}
checkAndThrowException();
}
// Device synchronize only after we've completed timeout checks.
if (!barrierTensors_.empty()) {
// If we use the work to do barrier, we should block here
for (size_t i = 0; i < devices_.size(); ++i) {
at::cuda::CUDAGuard gpuGuard(devices_[i]);
AT_CUDA_CHECK(cudaDeviceSynchronize());
}
}
}
// Same as calling synchronize().
bool ProcessGroupNCCL::WorkNCCL::wait(std::chrono::milliseconds timeout) {
synchronizeInternal(timeout);
// Always return true, because abort API is not implemented.
return true;
}
void ProcessGroupNCCL::WorkNCCL::abort() {
TORCH_CHECK(false, "ProcessGroupNCCL::WorkNCCL::abort not implemented.");
}
void ProcessGroupNCCL::parseNcclBlockingWait() {
char* blockingWait = getenv(NCCL_BLOCKING_WAIT);
if (blockingWait != nullptr) {
auto val = std::stoi(blockingWait);
if (val == 1) {
// Make wait() and synchronize() a blocking call.
blockingWait_ = true;
} else if (val != 0) {
throw std::runtime_error(
"Invalid value for environment variable: " +
std::string(NCCL_BLOCKING_WAIT));
}
}
}
bool ProcessGroupNCCL::WorkNCCL::timedOut() {
auto currentTimepoint = std::chrono::steady_clock::now();
return (
std::chrono::duration_cast<std::chrono::milliseconds>(
currentTimepoint - workStartTime_) >= opTimeout_);
}
ProcessGroupNCCL::ProcessGroupNCCL(
const std::shared_ptr<Store>& store,
int rank,
int size,
const std::chrono::milliseconds& opTimeout)
: ProcessGroup(rank, size),
store_(store),
ncclCommCounter_(0),
terminateProcessGroup_(false),
opTimeout_(opTimeout) {
try {
parseNcclBlockingWait();
} catch (std::exception& e) {
throw std::runtime_error(
"Invalid value for environment variable: " +
std::string(NCCL_BLOCKING_WAIT));
}
// If single-process single-device mode, WorkNCCL::getFuture is supported,
// so get a dedicated stream for each device to run FutureNCCL then callbacks.
// Depending on the device index of collective outputs, WorkNCCL passes
// the corresponding device's then callback stream to FutureNCCL.
futureNCCLCallbackStreams_.reserve(c10::cuda::device_count());
for (int device_index = 0; device_index < c10::cuda::device_count();
device_index++) {
futureNCCLCallbackStreams_.push_back(std::make_shared<at::cuda::CUDAStream>(
at::cuda::getStreamFromPool(device_index)));
}
#ifdef ENABLE_NCCL_ERROR_CHECKING
ncclCommWatchdogThread_ =
std::thread(&ProcessGroupNCCL::ncclCommWatchdog, this);
#endif
workCleanupThread_ = std::thread(&ProcessGroupNCCL::workCleanupLoop, this);
}
ProcessGroupNCCL::~ProcessGroupNCCL() {
terminateProcessGroup_.store(true);
watchdogCV_.notify_one();
workListCV_.notify_one();
std::unique_lock<std::mutex> lock(workListMutex_);
// TODO: We can potentially merge this functionality into the workCleanup
// thread or just allow the destructor to free workList_.
// Clean up any remaining items in the workList_ instead of waiting for the
// workCleanup Thread to be scheduled again.
for (auto it = workList_.begin(); it != workList_.end();
/* no increment*/) {
auto& work = *it;
if (work->isCompleted()) {
it = workList_.erase(it);
} else {
++it;
}
}
// Wait for workList_ to become empty before proceeding with shutdown.
workListCV_.wait(lock, [&]() -> bool { return workList_.empty(); });
lock.unlock();
#ifdef ENABLE_NCCL_ERROR_CHECKING
ncclCommWatchdogThread_.join();
#endif
{
// Abort all NCCL Communicators on Process Group Destruction
std::lock_guard<std::mutex> lock(mutex_);
for (auto it = devNCCLCommMap_.begin(); it != devNCCLCommMap_.end(); it++) {
auto& ncclComms = it->second;
for (const auto& ncclComm : ncclComms) {
ncclComm->ncclCommAbort();
}
}
}
workCleanupThread_.join();
}
void ProcessGroupNCCL::ncclCommWatchdog() {
try {
ncclCommWatchdogInternal();
LOG(INFO) << "NCCL watchdog thread terminated normally";
} catch (std::exception& e) {
LOG(INFO) << "NCCL watchdog thread terminated with exception: " << e.what();
} catch (...) {
LOG(INFO) << "NCCL watchdog thread terminated with unknown exception";
}
}
void ProcessGroupNCCL::ncclCommWatchdogInternal() {
while (!terminateProcessGroup_.load()) {
std::unordered_set<std::string> abortedCommIds;
std::unordered_set<std::string> allCommIds;
{
// Loop through the cache of communicators for NCCL errors.
std::lock_guard<std::mutex> lock(mutex_);
for (auto it = devNCCLCommMap_.begin(); it != devNCCLCommMap_.end();
it++) {
auto& ncclComms = it->second;
for (const auto& ncclComm : ncclComms) {
allCommIds.emplace(buildNcclUniqueIdStr(ncclComm->getNcclId()));
}
if (checkForNCCLErrors(ncclComms)) {
LOG(INFO) << "Received NCCL errors for communicators in the cache";
LOG(INFO) << "Aborting communicators that received errors";
// We abort NCCL communicators that have received errors from this
// thread, and exceptions are set on the corresponding work objects.
// The workCleanupThread will then loop through the unfinished
// collectives and throw exceptions if an exception has been set on
// any of the work objects from this thread.
for (const auto& ncclComm : ncclComms) {
ncclComm->ncclCommAbort();
// Note that we don't remove the aborted communicators from the
// cache. The reason is that if we do remove the communicator
// from the cache, it is possible that a new collective operation
// calls `ncclCommInitRank` to create a new communicator whereas
// other ranks might have failed/timed out and didn't enter
// `ncclCommInitRank`. As a result, when there is a failure on
// a communicator the application receives an exception and its
// their responsibility to destroy the process group and recreate
// it to recover from errors.
abortedCommIds.emplace(buildNcclUniqueIdStr(ncclComm->getNcclId()));
}
}
}
}
{
std::unique_lock<std::mutex> lock(workListMutex_);
for (auto& work : workList_) {
work->checkAndSetException();
// Aborting NCCL Communicators due to errors is already handled above.
if (work->exception()) {
continue;
}
// Check for Timeouts in the WorkNCCL Operations, and abort all
// communicators accordingly.
if (work->timedOut()) {
std::exception_ptr exception_ptr = std::make_exception_ptr(
std::runtime_error("NCCL Operation Timed Out"));
work->setException(exception_ptr);
for (const auto& ncclComm : work->ncclComms_) {
ncclComm->ncclCommAbort();
abortedCommIds.emplace(buildNcclUniqueIdStr(ncclComm->getNcclId()));
}
}
}
}
if (blockingWait_) {
// When we abort a communicator on one rank, it is likely that might cause
// other ranks to hang indefinitely. As a result, whenever we abort a
// communicator, we write its ID to the store. The watchdog on other ranks
// then monitor the store, find an aborted communicator ID and abort their
// respective communicator as well.
// Record the aborted communicators locally and in the store.
for (const auto& abortedCommId : abortedCommIds) {
abortedComms_.emplace(abortedCommId);
const auto& storeKey = getNcclAbortedCommStoreKey(abortedCommId);
store_->set(storeKey, {});
LOG(INFO) << "Watchdog wrote aborted communicator id to store: "
<< storeKey;
}
// Check for any communicators in the store and abort them if needed.
for (const auto& commId : allCommIds) {
if (abortedComms_.find(commId) == abortedComms_.end()) {
// Check if we need to abort them if not already aborted (shouldn't
// wait more than the watchdog sleep time.).
const auto& storeKey = getNcclAbortedCommStoreKey(commId);
try {
store_->wait(
{storeKey},
std::chrono::milliseconds(kWaitForAbortCommStoreKey));
LOG(INFO) << "Found key in store: " << storeKey
<< ", aborting appropriate communicators";
// Now abort the appropriate communicators.
std::lock_guard<std::mutex> lock(mutex_);
auto it = ncclIdToCommMap_.find(commId);
TORCH_INTERNAL_ASSERT(it != ncclIdToCommMap_.end());
for (const auto& ncclComm : it->second) {
ncclComm->ncclCommAbort();
}
abortedComms_.emplace(commId);
LOG(INFO) << "Aborted communicators for key in store: " << storeKey;
} catch (std::exception& e) {
VLOG(1) << "Did not find key in store: " << storeKey
<< ", error: " << e.what();
}
}
}
}
std::unique_lock<std::mutex> lock(watchdogCVMutex_);
watchdogCV_.wait_for(
lock,
std::chrono::milliseconds(kWatchdogThreadSleepMillis),
[&]() -> bool { return terminateProcessGroup_.load(); });
}
}
void ProcessGroupNCCL::workCleanupLoop() {
while (!terminateProcessGroup_.load()) {
std::unique_lock<std::mutex> lock(workListMutex_);
// We busy-poll the work vector every kWatchdogThreadSleepMillis
// milliseconds as long as the atomic is True.
workListCV_.wait_for(
lock,
std::chrono::milliseconds(kWorkCleanupThreadSleepMillis),
[&]() -> bool { return terminateProcessGroup_.load(); });
for (auto it = workList_.begin(); it != workList_.end();
/* no increment*/) {
auto& work = *it;
if (work->isCompleted()) {
// Handle Exceptions on failed GPU operations and remove completed
// workNCCL objects from work vector.
work->handleNCCLGuard();
it = workList_.erase(it);
} else {
// Increment the iterator if the current WorkNCCL object is not
// completed.
++it;
}
}
if (workList_.empty()) {
// Notify the main thread if it is blocked in the shutdown sequence,
// waiting for the work vector to become empty.
lock.unlock();
workListCV_.notify_one();
}
}
}
std::exception_ptr ProcessGroupNCCL::WorkNCCL::checkForNCCLErrors(
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) const {
return checkForNCCLErrorsInternal(ncclComms);
}
std::exception_ptr ProcessGroupNCCL::checkForNCCLErrors(
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) {
return checkForNCCLErrorsInternal(ncclComms);
}
std::exception_ptr ProcessGroupNCCL::checkForNCCLErrorsInternal(
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) {
for (const auto& ncclComm : ncclComms) {
ncclResult_t ncclAsyncErr = ncclComm->checkForNcclError();
if (ncclAsyncErr != ncclSuccess) {
return std::make_exception_ptr(std::runtime_error(
"NCCL error: " + ncclGetErrorWithVersion(ncclAsyncErr)));
}
}
return nullptr;
}
void ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId* ncclID) {
// For every NCCL communicator that we create we need to broadcast
// a unique ID from rank 0 to all other ranks. This broadcast is
// done by rank 0 setting a key in the store and all other ranks
// retrieving the contents of that key. A single process group
// may create multiple NCCL communicators, so we use a sequence
// number to differentiate between them.
std::string storeKey = std::to_string(ncclCommCounter_++);
if (rank_ == 0) {
auto vec = std::vector<uint8_t>(
reinterpret_cast<uint8_t*>(ncclID),
reinterpret_cast<uint8_t*>(ncclID) + NCCL_UNIQUE_ID_BYTES);
store_->set(storeKey, vec);
} else {
auto vec = store_->get(storeKey);
TORCH_CHECK(vec.size() == NCCL_UNIQUE_ID_BYTES);
std::memcpy(ncclID, vec.data(), vec.size());
}
}
std::vector<std::shared_ptr<NCCLComm>>& ProcessGroupNCCL::getNCCLComm(
const std::string& devicesKey,
const std::vector<at::Device>& devices) {
// Sanity check
if (devicesKey.empty()) {
throw std::runtime_error(
"Not able to create/get the NCCL Communicator since "
"the GPU devices are not known");
}
for (auto& device : devices) {
usedDeviceIdxs_.insert(device.index());
}
{
std::lock_guard<std::mutex> lock(mutex_);
if (devNCCLCommMap_.find(devicesKey) != devNCCLCommMap_.end()) {
// Reuse the cached communicator if there is one.
return devNCCLCommMap_[devicesKey];
}
}
// NCCL communicator not cached, create a new entry
std::vector<std::shared_ptr<NCCLComm>> ncclComms;
ncclComms.resize(devices.size());
// Create the unique NCCL ID and broadcast it
ncclUniqueId ncclID;
if (rank_ == 0) {
C10D_NCCL_CHECK(ncclGetUniqueId(&ncclID));
}
// Broadcast so that each process can have a unique NCCL ID
broadcastUniqueNCCLID(&ncclID);
at::cuda::OptionalCUDAGuard gpuGuard;
std::vector<at::cuda::CUDAStream> streamVal;
streamVal.reserve(devices.size());
// Create the NCCL communicators for each GPU
C10D_NCCL_CHECK(ncclGroupStart());
for (size_t i = 0; i < devices.size(); ++i) {
// GPU world size and GPU rank
int numRanks = getSize() * devices.size();
int rank = getRank() * devices.size() + i;
gpuGuard.set_index(devices[i].index());
ncclComms[i] = NCCLComm::create(numRanks, rank, ncclID);
// Creates the NCCL streams
streamVal.push_back(at::cuda::getStreamFromPool());
}
C10D_NCCL_CHECK(ncclGroupEnd());
ncclStreams_.emplace(devicesKey, std::move(streamVal));
// Note: these events are created with the (default) cudaEventDisableTiming
// flag This flag provides the best performance when used with
// cudaStreamWaitEvent() and cudaEventQuery(). Since we here don't measure the
// performance using cudaEvent, this should be set.
ncclEvents_.emplace(
std::piecewise_construct,
std::make_tuple(devicesKey),
std::make_tuple(devices.size()));
// Hold the lock before modifying the cache.
std::lock_guard<std::mutex> lock(mutex_);
// Record the communicators based on ncclUniqueId.
ncclIdToCommMap_.emplace(buildNcclUniqueIdStr(ncclID), ncclComms);
// Move the NCCL resource to cache
devNCCLCommMap_.emplace(devicesKey, std::move(ncclComms));
return devNCCLCommMap_[devicesKey];
}
namespace {
// Check validity of tensor
void check_gpu_single_tensor(const at::Tensor& tensor) {
if (!tensor.is_cuda() || tensor.is_sparse()) {
throw std::runtime_error("Tensors must be CUDA and dense");
}
if (!tensor.is_contiguous()) {
throw std::runtime_error("Tensors must be contiguous");
}
}
// Check that all `tensors' have the same type and shape and are distributed
// across distinct GPUs.
void check_gpu_tensors(const std::vector<at::Tensor>& tensors) {
if (tensors.size() == 0) {
throw std::runtime_error("Tensor list must be nonempty");
}
if (tensors.size() > static_cast<size_t>(at::cuda::getNumGPUs())) {
throw std::runtime_error(
"Tensor list mustn't be larger than the number of available GPUs");
}
const auto& first = tensors.front();
// Set for ensuring that tensors are on separate devices.
std::unordered_set<decltype(first.get_device())> usedDevices;
usedDevices.reserve(tensors.size());
for (const auto& t : tensors) {
if (!t.is_cuda() || t.is_sparse()) {
throw std::runtime_error("Tensors must be CUDA and dense");
}
if (t.scalar_type() != first.scalar_type()) {
throw std::runtime_error("Tensors must have identical type");
}
if (t.sizes() != first.sizes()) {
throw std::runtime_error("Tensors must have identical size");
}
if (t.strides() != first.strides()) {
throw std::runtime_error("Tensors must have identical strides");
}
if (!t.is_non_overlapping_and_dense()) {
throw std::runtime_error("Tensors must be non-overlapping and dense");
}
const auto inserted = usedDevices.insert(t.get_device()).second;
if (!inserted) {
throw std::runtime_error("Tensors must be on distinct GPU devices");
}
}
}
// Flatten each list in `tensor_lists' for a gather or scatter operation, and
// ensure compatibility with the corresponding tensor in `other'.
std::vector<at::Tensor> flatten_for_scatter_gather(
std::vector<std::vector<at::Tensor>>& tensor_lists,
std::vector<at::Tensor>& other,
size_t world_size) {
if (tensor_lists.size() != other.size()) {
throw std::runtime_error(
"Tensor list operands to scatter/gather must have the same length");
}
const auto num_devices = tensor_lists.size();
std::vector<at::Tensor> flattened;
flattened.resize(num_devices);
for (auto i = size_t{}; i < num_devices; ++i) {
if (tensor_lists[i].size() != world_size * num_devices) {
throw std::runtime_error(
"Tensor list input to scatter/gather must match number of collective"
" participants");
}
// Only check device match for the first tensor in the list; the call to
// newLikeFlat() below will check the rest.
if (tensor_lists[i].front().get_device() != other[i].get_device()) {
throw std::runtime_error(
"Corresponding input/output tensors to scatter/gather must all reside"
" on the same device");
}
for (const auto& t : tensor_lists[i]) {
if (t.numel() != other[i].numel()) {
throw std::runtime_error(
"All tensor operands to scatter/gather must have the same number of elements");
}
}
// Flatten the tensors (from all ranks) into a single big tensor.
flattened[i] = newLikeFlat(tensor_lists, i);
}
return flattened;
}
} // namespace
std::shared_ptr<ProcessGroupNCCL::WorkNCCL> ProcessGroupNCCL::initWork(
std::vector<at::Device> devices) {
return std::make_shared<ProcessGroupNCCL::WorkNCCL>(devices);
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupNCCL::WorkNCCL::
getFuture() {
TORCH_INTERNAL_ASSERT(
outputs_->size() == 1,
"WorkNCCL's getFuture API is only supported for single-process single-device mode.");
auto deviceIndex = (*outputs_)[0].device().index();
// Create a new FutureNCCL object after checking for single-process
// single-device mode.
return c10::make_intrusive<FutureNCCL>(
at::IValue(*outputs_),
deviceIndex,
cudaEvents_,
futureNCCLCallbackStreams_[deviceIndex]);
}
void ProcessGroupNCCL::workEnqueue(
std::shared_ptr<ProcessGroupNCCL::WorkNCCL> work) {
if (!terminateProcessGroup_.load()) {
std::lock_guard<std::mutex> lock(workListMutex_);
workList_.emplace_back(std::move(work));
}
}
template <typename Fn, typename PreProcess, typename PostProcess>
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::collective(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn,
PreProcess pre,
PostProcess post) {
const auto devices = getDeviceList(inputs);
const auto key = getKeyFromDevices(devices);
auto& ncclComms = getNCCLComm(key, devices);
// First let NCCL streams wait for input tensors allocation streams
syncStreams(devices, ncclEvents_[key], ncclStreams_[key]);
// Work itself will create the CUDA events on all GPUs of tensors
auto work = initWork(devices);
// Store references to outputs and futureNCCLCallbackStream to be used by
// WorkNCCL::getFuture.
work->outputs_ = std::make_shared<std::vector<at::Tensor>>(outputs);
work->futureNCCLCallbackStreams_ = futureNCCLCallbackStreams_;
at::cuda::OptionalCUDAGuard gpuGuard;
pre(ncclStreams_[key]);
for (size_t i = 0; i < inputs.size(); ++i) {
gpuGuard.set_index(devices[i].index());
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
// Both `inputs' and `outputs' are created on a worker stream and used in
// different ncclStreams. Hence, both must record the ncclStream to
// prevent being freed before the collective finishes.
//
// We only record `inputs' here, and leave recording `outputs' to `fn' for
// operations where `inputs' and `outputs' are not the same.
//
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
inputs[i].storage().data_ptr(), ncclStream);
}
{
AutoNcclGroup nccl_group_guard;
for (size_t i = 0; i < inputs.size(); ++i) {
gpuGuard.set_index(devices[i].index());
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
C10D_NCCL_CHECK(
fn(inputs[i], outputs[i], ncclComms[i]->getNcclComm(), ncclStream));
}
}
post(ncclStreams_[key]);
// Event should only be recorded after the ncclGroupEnd()
for (size_t i = 0; i < inputs.size(); ++i) {
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
(*work->cudaEvents_)[i].record(ncclStream);
work->ncclComms_[i] = ncclComms[i];
work->blockingWait_ = blockingWait_;
work->opTimeout_ = opTimeout_;
work->store_ = store_;
}
workEnqueue(work);
return work;
}
template <typename Fn>
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::collective(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn) {
return collective(
inputs,
outputs,
fn,
[](std::vector<at::cuda::CUDAStream>&) {},
[](std::vector<at::cuda::CUDAStream>&) {});
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::allreduce(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
check_gpu_tensors(tensors);
return collective(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
return ncclAllReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
getNcclReduceOp(opts.reduceOp, input),
comm,
stream.stream());
});
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts) {
throw std::runtime_error(
"allreduce_coalesced is currently not supported with NCCL");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::broadcast(
std::vector<at::Tensor>& tensors,
const BroadcastOptions& opts) {
check_gpu_tensors(tensors);
return collective(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank * tensors.size() + opts.rootTensor;
return ncclBcast(
input.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
root,
comm,
stream.stream());
});
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::reduce(
std::vector<at::Tensor>& tensors,
const ReduceOptions& opts) {
check_gpu_tensors(tensors);
return collective(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank * tensors.size() + opts.rootTensor;
return ncclReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
getNcclReduceOp(opts.reduceOp, input),
root,
comm,
stream.stream());
});
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::allgather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts) {
check_gpu_tensors(inputTensors);
auto outputFlattened =
flatten_for_scatter_gather(outputTensors, inputTensors, size_);
check_gpu_tensors(outputFlattened);
return collective(
inputTensors,
outputFlattened,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
return ncclAllGather(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {
// Copy the flattened output tensors to the outputs.
for (size_t i = 0; i < outputTensors.size(); ++i) {
at::cuda::CUDAStreamGuard guard(ncclStreams[i]);
for (size_t j = 0; j < outputTensors[0].size(); ++j) {
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
outputTensors[i][j].storage().data_ptr(), ncclStreams[i]);
outputTensors[i][j].copy_(outputFlattened[i][j], true);
}
}
});
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::allgather_coalesced(
std::vector<std::vector<at::Tensor>>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const AllgatherOptions& /* unused */) {
throw std::runtime_error(
"ProcessGroupNCCL does not support allgather_coalesced");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::reduce_scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ReduceScatterOptions& opts) {
check_gpu_tensors(outputTensors);
auto inputFlattened =
flatten_for_scatter_gather(inputTensors, outputTensors, size_);
check_gpu_tensors(inputFlattened);
return collective(
inputFlattened,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
return ncclReduceScatter(
input.data_ptr(),
output.data_ptr(),
output.numel(),
getNcclDataType(input.scalar_type()),
getNcclReduceOp(opts.reduceOp, input),
comm,
stream.stream());
},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {
// Copy the input tensors to the flattened inputs.
for (size_t i = 0; i < inputTensors.size(); ++i) {
at::cuda::CUDAStreamGuard guard(ncclStreams[i]);
for (size_t j = 0; j < inputTensors[0].size(); ++j) {
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
inputTensors[i][j].storage().data_ptr(), ncclStreams[i]);
inputFlattened[i][j].copy_(inputTensors[i][j], true);
}
}
},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {});
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::barrier(
const BarrierOptions& opts) {
std::vector<at::Device> devices;
if (usedDeviceIdxs_.empty()) {
// This means there is not yet a NCCL collective being called
// Here we have to use the best guesses and will use a single GPU to call
// allreduce to achieve barrier.
// In case the multiple processes fall into the same node, we use rank to
// ensure that each process is on a different GPU
auto numGPUs = at::cuda::getNumGPUs();
int16_t deviceIdx = static_cast<int16_t>(rank_ % numGPUs);
devices.push_back(at::Device(at::DeviceType::CUDA, deviceIdx));
} else {
for (auto usedDeviceIdx : usedDeviceIdxs_) {
devices.push_back(at::Device(at::DeviceType::CUDA, usedDeviceIdx));
}
}
std::vector<at::Tensor> barrierTensors;
barrierTensors.reserve(devices.size());
at::cuda::OptionalCUDAGuard gpuGuard;
for (auto& device : devices) {
gpuGuard.set_index(device.index());
barrierTensors.push_back(at::empty(
{1},
at::TensorOptions().device(at::DeviceType::CUDA).dtype(at::kByte)));
}
// All reduce to achieve the barrier
auto work = allreduce(barrierTensors);
// Work will take over barrierTensors
auto ncclWork = dynamic_cast<ProcessGroupNCCL::WorkNCCL*>(work.get());
TORCH_CHECK(ncclWork);
ncclWork->barrierTensors_ = std::move(barrierTensors);
return work;
}
#ifdef ENABLE_NCCL_P2P_SUPPORT
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputSplitSizes,
std::vector<int64_t>& inputSplitSizes,
const AllToAllOptions& /* unused */) {
check_gpu_single_tensor(outputTensor);
check_gpu_single_tensor(inputTensor);
if (outputSplitSizes.size() == 0 && inputSplitSizes.size() == 0) {
std::vector<at::Tensor> inputTensors = {inputTensor};
std::vector<at::Tensor> outputTensors = {outputTensor};
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
return ncclAlltoall(
input.data_ptr(),
output.data_ptr(),
input.numel() / size_,
input.element_size(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
});
} else {
c10d::checkSplitSizes(inputSplitSizes, inputTensor, size_);
c10d::checkSplitSizes(outputSplitSizes, outputTensor, size_);
std::vector<at::Tensor> inputTensors = {inputTensor};
std::vector<at::Tensor> outputTensors = {outputTensor};
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
std::vector<size_t> send_lengths(size_);
std::vector<size_t> recv_lengths(size_);
std::vector<size_t> send_offsets(size_);
std::vector<size_t> recv_offsets(size_);
c10d::computeLengthsAndOffsets(
inputSplitSizes, input, &send_lengths, &send_offsets);
c10d::computeLengthsAndOffsets(
outputSplitSizes, output, &recv_lengths, &recv_offsets);
return ncclAlltoallv(
input.data_ptr(),
send_lengths.data(),
send_offsets.data(),
output.data_ptr(),
recv_lengths.data(),
recv_offsets.data(),
input.element_size(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
});
}
}
#else
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::alltoall_base(
at::Tensor& /* unused */,
at::Tensor& /* unused */,
std::vector<int64_t>& /* unused */,
std::vector<int64_t>& /* unused */,
const AllToAllOptions& /* unused */) {
throw std::runtime_error(
"ProcessGroupNCCL only supports alltoall* for NCCL lib version >= 2.7.0");
}
#endif
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::alltoall(
std::vector<at::Tensor>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const AllToAllOptions& /* unused */) {
throw std::runtime_error("ProcessGroupNCCL does not support alltoall");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::gather(
std::vector<std::vector<at::Tensor>>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const GatherOptions& /* unused */) {
throw std::runtime_error("ProcessGroupNCCL does not support gather");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::scatter(
std::vector<at::Tensor>& /* unused */,
std::vector<std::vector<at::Tensor>>& /* unused */,
const ScatterOptions& /* unused */) {
throw std::runtime_error("ProcessGroupNCCL does not support scatter");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::send(
std::vector<at::Tensor>& /* unused */,
int /* unused */,
int /* unused */) {
throw std::runtime_error("ProcessGroupNCCL does not support send");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::recv(
std::vector<at::Tensor>& /* unused */,
int /* unused */,
int /* unused */) {
throw std::runtime_error("ProcessGroupNCCL does not support recv");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::recvAnysource(
std::vector<at::Tensor>& /* unused */,
int /* unused */) {
throw std::runtime_error("ProcessGroupNCCL does not support recv");
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupNCCL::allgather_base(
at::Tensor& /*unused */,
at::Tensor& /*unused */,
const AllgatherOptions& /*unused */) {
throw std::runtime_error(
"no support for allgather_base in NCCL process group");
}
} // namespace c10d