[SPMD][EASY] Remove unnecessary torch.ops prefix (#99331)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99331
Approved by: https://github.com/dracifer
diff --git a/torch/distributed/_spmd/distribute.py b/torch/distributed/_spmd/distribute.py
index 2f26a4c..408d6cd 100644
--- a/torch/distributed/_spmd/distribute.py
+++ b/torch/distributed/_spmd/distribute.py
@@ -188,9 +188,9 @@
     def is_sym_int_or_int(arg: Union[int, torch.fx.Node]) -> bool:
         if isinstance(arg, torch.fx.Node):
             return arg.target in [
-                torch.ops.aten.sym_size,
-                torch.ops.aten.sym_numel,
-                torch.ops.aten.sym_stride,
+                aten.sym_size,
+                aten.sym_numel,
+                aten.sym_stride,
             ]
         return isinstance(arg, int)
 
@@ -370,12 +370,12 @@
                 )
             return None
 
-        if node.target == torch.ops.aten.view.default:
+        if node.target == aten.view.default:
             # HACK: this is a hack to get around with the fact that some
             # view operations on a "global" tensor is invalid usage
             # but somehow the view operation on the batch input might hit it
             # so we convert the view op to reshape before calling DTensor
-            op_overload = torch.ops.aten.reshape.default
+            op_overload = aten.reshape.default
 
         # DSymInt args are not sharded on any dimension, local value and global
         # value should be the same
diff --git a/torch/distributed/_spmd/graph_optimization.py b/torch/distributed/_spmd/graph_optimization.py
index f5ef2d1..caa9ac9 100644
--- a/torch/distributed/_spmd/graph_optimization.py
+++ b/torch/distributed/_spmd/graph_optimization.py
@@ -824,7 +824,7 @@
                 )
                 orig_step_outputs.append(orig_optim_block.step.outputs[idx])
             step = gm.graph.call_function(
-                torch.ops.aten._foreach_add.Scalar,
+                aten._foreach_add.Scalar,
                 (step_args, 1),
             )
         step_block = ForeachAddBlock(step, generate_output=True)
@@ -844,7 +844,7 @@
         # topo sort order is the last.
         with gm.graph.inserting_after(step_block.outputs[0]):
             optim = gm.graph.call_function(
-                torch.ops.aten._fused_adam.default,
+                aten._fused_adam.default,
                 optim_args[group_idx],
                 orig_optim_block.optim.optim_node.kwargs,
             )