blob: 745840e82affcbc1612940a92dc13943bd5ebd94 [file] [log] [blame]
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/dropout_op.h"
namespace caffe2 {
namespace {
__global__ void DropoutKernel(
const int N,
const float ratio,
const float* Xdata,
float* Ydata,
bool* maskdata) {
const float scale = 1. / (1. - ratio);
CUDA_1D_KERNEL_LOOP(i, N) {
maskdata[i] = (Ydata[i] > ratio);
Ydata[i] = Xdata[i] * scale * maskdata[i];
}
}
} // namespace
template <>
bool DropoutOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0);
Y->Resize(X.dims());
if (is_test_) {
if (Y != &X) {
context_.Copy<float, CUDAContext, CUDAContext>(
X.size(), X.data<float>(), Y->mutable_data<float>());
}
return true;
} else {
// We do a simple trick here: since curand cannot generate random
// boolean numbers, we will generate into dY and write the result to
// mask.
float* Ydata = Y->mutable_data<float>();
auto* mask = Output(1);
mask->Resize(X.dims());
CAFFE_ENFORCE(X.data<float>() != Ydata, "In-place GPU dropout is broken");
CURAND_ENFORCE(
curandGenerateUniform(context_.curand_generator(), Ydata, X.size()));
DropoutKernel<<<
CAFFE_GET_BLOCKS(X.size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
X.size(), ratio_, X.data<float>(), Ydata, mask->mutable_data<bool>());
return true;
}
}
namespace {
__global__ void DropoutGradientKernel(
const int N,
const float* dYdata,
const bool* maskdata,
const float scale,
float* dXdata) {
CUDA_1D_KERNEL_LOOP(i, N) {
dXdata[i] = dYdata[i] * maskdata[i] * scale;
}
}
} // namespace
template <>
bool DropoutGradientOp<float, CUDAContext>::RunOnDevice() {
auto& dY = Input(0);
auto* dX = Output(0);
dX->Resize(dY.dims());
if (is_test_) {
if (dX != &dY) {
context_.Copy<float, CUDAContext, CUDAContext>(
dY.size(), dY.data<float>(), dX->mutable_data<float>());
}
return true;
} else {
auto& mask = Input(1);
CAFFE_ENFORCE_EQ(dY.size(), mask.size());
const float scale = 1. / (1. - ratio_);
DropoutGradientKernel<<<
CAFFE_GET_BLOCKS(dY.size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
dY.size(),
dY.data<float>(),
mask.data<bool>(),
scale,
dX->mutable_data<float>());
return true;
}
}
REGISTER_CUDA_OPERATOR(Dropout, DropoutOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(DropoutGrad, DropoutGradientOp<float, CUDAContext>);
} // namespace caffe2