| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/loss_op.h" |
| |
| namespace caffe2 { |
| |
| namespace { |
| template <typename T> |
| __global__ void ALGKernel(const int N, const T* dY, T* dX) { |
| const T value = (*dY) / N; |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = value; |
| } |
| } |
| } // namespace |
| |
| class AveragedLossGradientGPUSpecialization final |
| : public Operator<CUDAContext> { |
| public: |
| AveragedLossGradientGPUSpecialization( |
| const OperatorDef& operator_def, Workspace* ws) |
| : Operator<CUDAContext>(operator_def, ws) {} |
| ~AveragedLossGradientGPUSpecialization() {} |
| USE_OPERATOR_FUNCTIONS(CUDAContext); |
| |
| bool RunOnDevice() override { |
| auto& X = Input(0); |
| auto& dY = Input(1); |
| DCHECK_EQ(dY.size(), 1); |
| auto* dX = Output(0); |
| dX->ResizeLike(X); |
| ALGKernel<float><<<CAFFE_GET_BLOCKS(X.size()), CAFFE_CUDA_NUM_THREADS, |
| 0, context_.cuda_stream()>>>( |
| X.size(), dY.data<float>(), dX->mutable_data<float>()); |
| return true; |
| } |
| }; |
| |
| namespace { |
| REGISTER_CUDA_OPERATOR(AveragedLoss, AveragedLoss<float, CUDAContext>); |
| REGISTER_CUDA_OPERATOR(AveragedLossGradient, |
| AveragedLossGradientGPUSpecialization); |
| } // namespace |
| } // namespace caffe2 |
| |