| import torch |
| import torch.nn.quantized.functional |
| |
| class ReLU6(torch.nn.ReLU): |
| r"""Applies the element-wise function: |
| |
| :math:`\text{ReLU6}(x) = \min(\max(x_0, x), q(6))`, where :math:`x_0` is the |
| zero_point, and :math:`q(6)` is the quantized representation of number 6. |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ReLU6.png |
| |
| Examples:: |
| |
| >>> m = nn.quantized.ReLU6() |
| >>> input = torch.randn(2) |
| >>> input = torch.quantize_per_tensor(input, 1.0, 0, dtype=torch.qint32) |
| >>> output = m(input) |
| """ |
| def __init__(self, inplace=False): |
| super(ReLU6, self).__init__(inplace) |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return torch.ops.quantized.relu6(input, self.inplace) |
| |
| def _get_name(self): |
| return 'QuantizedReLU6' |
| |
| @staticmethod |
| def from_float(mod): |
| return ReLU6(mod.inplace) |
| |
| class Hardswish(torch.nn.Hardswish): |
| r"""This is the quantized version of :class:`~torch.nn.Hardswish`. |
| |
| Args: |
| scale: quantization scale of the output tensor |
| zero_point: quantization zero point of the output tensor |
| """ |
| def __init__(self, scale, zero_point): |
| super(Hardswish, self).__init__() |
| self.scale = scale |
| self.zero_point = zero_point |
| |
| def forward(self, input): |
| return torch.nn.quantized.functional.hardswish( |
| input, scale=self.scale, zero_point=self.zero_point) |
| |
| def _get_name(self): |
| return 'QuantizedHardswish' |
| |
| @staticmethod |
| def from_float(mod): |
| scale, zero_point = mod.activation_post_process.calculate_qparams() |
| return Hardswish(float(scale), int(zero_point)) |
| |
| class ELU(torch.nn.ELU): |
| r"""This is the quantized equivalent of :class:`~torch.nn.ELU`. |
| |
| Args: |
| scale: quantization scale of the output tensor |
| zero_point: quantization zero point of the output tensor |
| alpha: the alpha constant |
| """ |
| def __init__(self, scale, zero_point, alpha=1.): |
| super(ELU, self).__init__(alpha) |
| self.scale = scale |
| self.zero_point = zero_point |
| |
| def forward(self, input): |
| return torch.nn.quantized.functional.elu( |
| input, self.scale, self.zero_point, self.alpha) |
| |
| def _get_name(self): |
| return 'QuantizedELU' |
| |
| @staticmethod |
| def from_float(mod): |
| scale, zero_point = mod.activation_post_process.calculate_qparams() |
| return ELU(float(scale), int(zero_point), mod.alpha) |
| |
| class LeakyReLU(torch.nn.LeakyReLU): |
| r"""This is the quantized equivalent of :class:`~torch.nn.LeakyReLU`. |
| |
| Args: |
| scale: quantization scale of the output tensor |
| zero_point: quantization zero point of the output tensor |
| negative_slope: Controls the angle of the negative slope. Default: 1e-2 |
| """ |
| def __init__(self, scale: float, zero_point: int, negative_slope: float = 1e-2, |
| inplace: bool = False, device=None, dtype=None) -> None: |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| super().__init__(negative_slope, inplace) |
| self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) |
| self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) |
| |
| def forward(self, input): |
| return torch.ops.quantized.leaky_relu( |
| input, self.negative_slope, self.inplace, self.scale, self.zero_point) |
| |
| def _get_name(self): |
| return 'QuantizedLeakyReLU' |
| |
| @classmethod |
| def from_float(cls, mod): |
| scale, zero_point = mod.activation_post_process.calculate_qparams() |
| return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace) |
| |
| class Sigmoid(torch.nn.Sigmoid): |
| r"""This is the quantized equivalent of :class:`~torch.nn.Sigmoid`. |
| |
| Args: |
| scale: quantization scale of the output tensor |
| zero_point: quantization zero point of the output tensor |
| """ |
| |
| def __init__(self, output_scale: float, output_zero_point: int): |
| super().__init__() |
| self.output_scale = output_scale |
| self.output_zero_point = output_zero_point |
| |
| def forward(self, input): |
| return torch.ops.quantized.sigmoid(input, self.output_scale, self.output_zero_point) |
| |
| @classmethod |
| def from_float(cls, mod): |
| output_scale, output_zero_point = mod.activation_post_process.calculate_qparams() |
| return cls(float(output_scale), int(output_zero_point)) |