blob: f210275beab3e2ff7a4d64c2e61770d5294ac313 [file] [log] [blame]
// This is copy-pasted (with modification) from the following llvm file:
// - https://github.com/llvm/llvm-project/blob/main/libcxx/include/complex
//
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <string>
#include <ATen/cuda/llvm_jit_strings.h>
namespace at {
namespace cuda {
const std::string complex_body = R"ESCAPE(
namespace std {
template<class _Tp> class complex;
template<class _Tp> complex<_Tp> operator*(const complex<_Tp>& __z, const complex<_Tp>& __w);
template<class _Tp> complex<_Tp> operator/(const complex<_Tp>& __x, const complex<_Tp>& __y);
template<class _Tp>
class complex
{
public:
typedef _Tp value_type;
private:
value_type __re_;
value_type __im_;
public:
constexpr
complex(const value_type& __re = value_type(), const value_type& __im = value_type())
: __re_(__re), __im_(__im) {}
template<class _Xp> constexpr
complex(const complex<_Xp>& __c)
: __re_(__c.real()), __im_(__c.imag()) {}
constexpr value_type real() const {return __re_;}
constexpr value_type imag() const {return __im_;}
void real(value_type __re) {__re_ = __re;}
void imag(value_type __im) {__im_ = __im;}
constexpr operator bool() const {
return real() || imag();
}
complex& operator= (const value_type& __re)
{__re_ = __re; __im_ = value_type(); return *this;}
complex& operator+=(const value_type& __re) {__re_ += __re; return *this;}
complex& operator-=(const value_type& __re) {__re_ -= __re; return *this;}
complex& operator*=(const value_type& __re) {__re_ *= __re; __im_ *= __re; return *this;}
complex& operator/=(const value_type& __re) {__re_ /= __re; __im_ /= __re; return *this;}
template<class _Xp> complex& operator= (const complex<_Xp>& __c)
{
__re_ = __c.real();
__im_ = __c.imag();
return *this;
}
template<class _Xp> complex& operator+=(const complex<_Xp>& __c)
{
__re_ += __c.real();
__im_ += __c.imag();
return *this;
}
template<class _Xp> complex& operator-=(const complex<_Xp>& __c)
{
__re_ -= __c.real();
__im_ -= __c.imag();
return *this;
}
template<class _Xp> complex& operator*=(const complex<_Xp>& __c)
{
*this = *this * complex(__c.real(), __c.imag());
return *this;
}
template<class _Xp> complex& operator/=(const complex<_Xp>& __c)
{
*this = *this / complex(__c.real(), __c.imag());
return *this;
}
};
template<> class complex<double>;
template<>
class complex<float>
{
float __re_;
float __im_;
public:
typedef float value_type;
constexpr complex(float __re = 0.0f, float __im = 0.0f)
: __re_(__re), __im_(__im) {}
explicit constexpr complex(const complex<double>& __c);
constexpr float real() const {return __re_;}
constexpr float imag() const {return __im_;}
void real(value_type __re) {__re_ = __re;}
void imag(value_type __im) {__im_ = __im;}
constexpr operator bool() const {
return real() || imag();
}
complex& operator= (float __re)
{__re_ = __re; __im_ = value_type(); return *this;}
complex& operator+=(float __re) {__re_ += __re; return *this;}
complex& operator-=(float __re) {__re_ -= __re; return *this;}
complex& operator*=(float __re) {__re_ *= __re; __im_ *= __re; return *this;}
complex& operator/=(float __re) {__re_ /= __re; __im_ /= __re; return *this;}
template<class _Xp> complex& operator= (const complex<_Xp>& __c)
{
__re_ = __c.real();
__im_ = __c.imag();
return *this;
}
template<class _Xp> complex& operator+=(const complex<_Xp>& __c)
{
__re_ += __c.real();
__im_ += __c.imag();
return *this;
}
template<class _Xp> complex& operator-=(const complex<_Xp>& __c)
{
__re_ -= __c.real();
__im_ -= __c.imag();
return *this;
}
template<class _Xp> complex& operator*=(const complex<_Xp>& __c)
{
*this = *this * complex(__c.real(), __c.imag());
return *this;
}
template<class _Xp> complex& operator/=(const complex<_Xp>& __c)
{
*this = *this / complex(__c.real(), __c.imag());
return *this;
}
};
template<>
class complex<double>
{
double __re_;
double __im_;
public:
typedef double value_type;
constexpr complex(double __re = 0.0, double __im = 0.0)
: __re_(__re), __im_(__im) {}
constexpr complex(const complex<float>& __c);
constexpr double real() const {return __re_;}
constexpr double imag() const {return __im_;}
void real(value_type __re) {__re_ = __re;}
void imag(value_type __im) {__im_ = __im;}
constexpr operator bool() const {
return real() || imag();
}
complex& operator= (double __re)
{__re_ = __re; __im_ = value_type(); return *this;}
complex& operator+=(double __re) {__re_ += __re; return *this;}
complex& operator-=(double __re) {__re_ -= __re; return *this;}
complex& operator*=(double __re) {__re_ *= __re; __im_ *= __re; return *this;}
complex& operator/=(double __re) {__re_ /= __re; __im_ /= __re; return *this;}
template<class _Xp> complex& operator= (const complex<_Xp>& __c)
{
__re_ = __c.real();
__im_ = __c.imag();
return *this;
}
template<class _Xp> complex& operator+=(const complex<_Xp>& __c)
{
__re_ += __c.real();
__im_ += __c.imag();
return *this;
}
template<class _Xp> complex& operator-=(const complex<_Xp>& __c)
{
__re_ -= __c.real();
__im_ -= __c.imag();
return *this;
}
template<class _Xp> complex& operator*=(const complex<_Xp>& __c)
{
*this = *this * complex(__c.real(), __c.imag());
return *this;
}
template<class _Xp> complex& operator/=(const complex<_Xp>& __c)
{
*this = *this / complex(__c.real(), __c.imag());
return *this;
}
};
inline
constexpr
complex<float>::complex(const complex<double>& __c)
: __re_(__c.real()), __im_(__c.imag()) {}
inline
constexpr
complex<double>::complex(const complex<float>& __c)
: __re_(__c.real()), __im_(__c.imag()) {}
// 26.3.6 operators:
template<class _Tp>
inline
complex<_Tp>
operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
complex<_Tp> __t(__x);
__t += __y;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator+(const complex<_Tp>& __x, const _Tp& __y)
{
complex<_Tp> __t(__x);
__t += __y;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator+(const _Tp& __x, const complex<_Tp>& __y)
{
complex<_Tp> __t(__y);
__t += __x;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
complex<_Tp> __t(__x);
__t -= __y;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator-(const complex<_Tp>& __x, const _Tp& __y)
{
complex<_Tp> __t(__x);
__t -= __y;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator-(const _Tp& __x, const complex<_Tp>& __y)
{
complex<_Tp> __t(-__y);
__t += __x;
return __t;
}
template<class _Tp>
complex<_Tp>
operator*(const complex<_Tp>& __z, const complex<_Tp>& __w)
{
_Tp __a = __z.real();
_Tp __b = __z.imag();
_Tp __c = __w.real();
_Tp __d = __w.imag();
_Tp __ac = __a * __c;
_Tp __bd = __b * __d;
_Tp __ad = __a * __d;
_Tp __bc = __b * __c;
_Tp __x = __ac - __bd;
_Tp __y = __ad + __bc;
if (isnan(__x) && isnan(__y))
{
bool __recalc = false;
if (isinf(__a) || isinf(__b))
{
__a = copysign(isinf(__a) ? _Tp(1) : _Tp(0), __a);
__b = copysign(isinf(__b) ? _Tp(1) : _Tp(0), __b);
if (isnan(__c))
__c = copysign(_Tp(0), __c);
if (isnan(__d))
__d = copysign(_Tp(0), __d);
__recalc = true;
}
if (isinf(__c) || isinf(__d))
{
__c = copysign(isinf(__c) ? _Tp(1) : _Tp(0), __c);
__d = copysign(isinf(__d) ? _Tp(1) : _Tp(0), __d);
if (isnan(__a))
__a = copysign(_Tp(0), __a);
if (isnan(__b))
__b = copysign(_Tp(0), __b);
__recalc = true;
}
if (!__recalc && (isinf(__ac) || isinf(__bd) ||
isinf(__ad) || isinf(__bc)))
{
if (isnan(__a))
__a = copysign(_Tp(0), __a);
if (isnan(__b))
__b = copysign(_Tp(0), __b);
if (isnan(__c))
__c = copysign(_Tp(0), __c);
if (isnan(__d))
__d = copysign(_Tp(0), __d);
__recalc = true;
}
if (__recalc)
{
__x = _Tp(INFINITY) * (__a * __c - __b * __d);
__y = _Tp(INFINITY) * (__a * __d + __b * __c);
}
}
return complex<_Tp>(__x, __y);
}
template<class _Tp>
inline
complex<_Tp>
operator*(const complex<_Tp>& __x, const _Tp& __y)
{
complex<_Tp> __t(__x);
__t *= __y;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator*(const _Tp& __x, const complex<_Tp>& __y)
{
complex<_Tp> __t(__y);
__t *= __x;
return __t;
}
template<class _Tp>
complex<_Tp>
operator/(const complex<_Tp>& __z, const complex<_Tp>& __w)
{
int __ilogbw = 0;
_Tp __a = __z.real();
_Tp __b = __z.imag();
_Tp __c = __w.real();
_Tp __d = __w.imag();
_Tp __logbw = logb(fmax(fabs(__c), fabs(__d)));
if (isfinite(__logbw))
{
__ilogbw = static_cast<int>(__logbw);
__c = scalbn(__c, -__ilogbw);
__d = scalbn(__d, -__ilogbw);
}
_Tp __denom = __c * __c + __d * __d;
_Tp __x = scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
_Tp __y = scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
if (isnan(__x) && isnan(__y))
{
if ((__denom == _Tp(0)) && (!isnan(__a) || !isnan(__b)))
{
__x = copysign(_Tp(INFINITY), __c) * __a;
__y = copysign(_Tp(INFINITY), __c) * __b;
}
else if ((isinf(__a) || isinf(__b)) && isfinite(__c) && isfinite(__d))
{
__a = copysign(isinf(__a) ? _Tp(1) : _Tp(0), __a);
__b = copysign(isinf(__b) ? _Tp(1) : _Tp(0), __b);
__x = _Tp(INFINITY) * (__a * __c + __b * __d);
__y = _Tp(INFINITY) * (__b * __c - __a * __d);
}
else if (isinf(__logbw) && __logbw > _Tp(0) && isfinite(__a) && isfinite(__b))
{
__c = copysign(isinf(__c) ? _Tp(1) : _Tp(0), __c);
__d = copysign(isinf(__d) ? _Tp(1) : _Tp(0), __d);
__x = _Tp(0) * (__a * __c + __b * __d);
__y = _Tp(0) * (__b * __c - __a * __d);
}
}
return complex<_Tp>(__x, __y);
}
template<class _Tp>
inline
complex<_Tp>
operator/(const complex<_Tp>& __x, const _Tp& __y)
{
return complex<_Tp>(__x.real() / __y, __x.imag() / __y);
}
template<class _Tp>
inline
complex<_Tp>
operator/(const _Tp& __x, const complex<_Tp>& __y)
{
complex<_Tp> __t(__x);
__t /= __y;
return __t;
}
template<class _Tp>
inline
complex<_Tp>
operator+(const complex<_Tp>& __x)
{
return __x;
}
template<class _Tp>
inline
complex<_Tp>
operator-(const complex<_Tp>& __x)
{
return complex<_Tp>(-__x.real(), -__x.imag());
}
template<class _Tp>
inline constexpr
bool
operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return __x.real() == __y.real() && __x.imag() == __y.imag();
}
template<class _Tp>
inline constexpr
bool
operator==(const complex<_Tp>& __x, const _Tp& __y)
{
return __x.real() == __y && __x.imag() == 0;
}
template<class _Tp>
inline constexpr
bool
operator==(const _Tp& __x, const complex<_Tp>& __y)
{
return __x == __y.real() && 0 == __y.imag();
}
template<class _Tp>
inline constexpr
bool
operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return !(__x == __y);
}
template<class _Tp>
inline constexpr
bool
operator!=(const complex<_Tp>& __x, const _Tp& __y)
{
return !(__x == __y);
}
template<class _Tp>
inline constexpr
bool
operator!=(const _Tp& __x, const complex<_Tp>& __y)
{
return !(__x == __y);
}
template<class _Tp>
inline constexpr
bool
operator&&(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return bool(__x) && bool(__y);
}
template<class _Tp>
inline constexpr
bool
isnan(const complex<_Tp>& __x)
{
return isnan(__x.real()) || isnan(__x.imag());
}
template<class _Tp>
inline constexpr
bool
operator||(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return bool(__x) || bool(__y);
}
// 26.3.7 values:
template <class _Tp, bool = is_integral<_Tp>::value,
bool = is_floating_point<_Tp>::value
>
struct __libcpp_complex_overload_traits {};
// Integral Types
template <class _Tp>
struct __libcpp_complex_overload_traits<_Tp, true, false>
{
typedef double _ValueType;
typedef complex<double> _ComplexType;
};
// Floating point types
template <class _Tp>
struct __libcpp_complex_overload_traits<_Tp, false, true>
{
typedef _Tp _ValueType;
typedef complex<_Tp> _ComplexType;
};
// real
template<class _Tp>
inline constexpr
_Tp
real(const complex<_Tp>& __c)
{
return __c.real();
}
template <class _Tp>
inline constexpr
typename __libcpp_complex_overload_traits<_Tp>::_ValueType
real(_Tp __re)
{
return __re;
}
// imag
template<class _Tp>
inline constexpr
_Tp
imag(const complex<_Tp>& __c)
{
return __c.imag();
}
template <class _Tp>
inline constexpr
typename __libcpp_complex_overload_traits<_Tp>::_ValueType
imag(_Tp)
{
return 0;
}
// abs
template<class _Tp>
inline
_Tp
abs(const complex<_Tp>& __c)
{
return hypot(__c.real(), __c.imag());
}
// arg
template<class _Tp>
inline
_Tp
arg(const complex<_Tp>& __c)
{
return atan2(__c.imag(), __c.real());
}
template<class _Tp>
inline
typename enable_if
<
is_integral<_Tp>::value || is_same<_Tp, double>::value,
double
>::type
arg(_Tp __re)
{
return atan2(0., __re);
}
template <class _Tp>
inline
typename enable_if<
is_same<_Tp, float>::value,
float
>::type
arg(_Tp __re)
{
return atan2f(0.F, __re);
}
}
)ESCAPE";
const std::string complex_half_body = R"ESCAPE(
namespace std {
template <>
struct alignas(2) complex<at::Half> {
at::Half real_;
at::Half imag_;
// Constructors
complex() = default;
// implicit casting to and from `complex<float>`.
// NOTE: computation of `complex<Half>` will occur in `complex<float>`
__host__ __device__ inline complex(const std::complex<float>& value)
: real_(value.real()), imag_(value.imag()) {}
inline __host__ __device__ operator std::complex<float>() const {
return {real_, imag_};
}
at::Half real() const {return real_;}
at::Half imag() const {return imag_;}
};
}
)ESCAPE";
const std::string &get_complex_body_string() {
return complex_body;
}
const std::string &get_complex_half_body_string() {
return complex_half_body;
}
const std::string complex_math = R"ESCAPE(
namespace std {
// norm
template<class _Tp>
inline
_Tp
norm(const complex<_Tp>& __c)
{
if (isinf(__c.real()))
return abs(__c.real());
if (isinf(__c.imag()))
return abs(__c.imag());
return __c.real() * __c.real() + __c.imag() * __c.imag();
}
template <class _Tp>
inline
typename __libcpp_complex_overload_traits<_Tp>::_ValueType
norm(_Tp __re)
{
typedef typename __libcpp_complex_overload_traits<_Tp>::_ValueType _ValueType;
return static_cast<_ValueType>(__re) * __re;
}
// conj
template<class _Tp>
inline
complex<_Tp>
conj(const complex<_Tp>& __c)
{
return complex<_Tp>(__c.real(), -__c.imag());
}
template <class _Tp>
inline
typename __libcpp_complex_overload_traits<_Tp>::_ComplexType
conj(_Tp __re)
{
typedef typename __libcpp_complex_overload_traits<_Tp>::_ComplexType _ComplexType;
return _ComplexType(__re);
}
// proj
template<class _Tp>
inline
complex<_Tp>
proj(const complex<_Tp>& __c)
{
complex<_Tp> __r = __c;
if (isinf(__c.real()) || isinf(__c.imag()))
__r = complex<_Tp>(INFINITY, copysign(_Tp(0), __c.imag()));
return __r;
}
template <class _Tp>
inline
typename enable_if
<
is_floating_point<_Tp>::value,
typename __libcpp_complex_overload_traits<_Tp>::_ComplexType
>::type
proj(_Tp __re)
{
if (isinf(__re))
__re = abs(__re);
return complex<_Tp>(__re);
}
template <class _Tp>
inline
typename enable_if
<
is_integral<_Tp>::value,
typename __libcpp_complex_overload_traits<_Tp>::_ComplexType
>::type
proj(_Tp __re)
{
typedef typename __libcpp_complex_overload_traits<_Tp>::_ComplexType _ComplexType;
return _ComplexType(__re);
}
// polar
template<class _Tp>
complex<_Tp>
polar(const _Tp& __rho, const _Tp& __theta = _Tp())
{
if (isnan(__rho) || signbit(__rho))
return complex<_Tp>(_Tp(NAN), _Tp(NAN));
if (isnan(__theta))
{
if (isinf(__rho))
return complex<_Tp>(__rho, __theta);
return complex<_Tp>(__theta, __theta);
}
if (isinf(__theta))
{
if (isinf(__rho))
return complex<_Tp>(__rho, _Tp(NAN));
return complex<_Tp>(_Tp(NAN), _Tp(NAN));
}
_Tp __x = __rho * cos(__theta);
if (isnan(__x))
__x = 0;
_Tp __y = __rho * sin(__theta);
if (isnan(__y))
__y = 0;
return complex<_Tp>(__x, __y);
}
// log
template<class _Tp>
inline
complex<_Tp>
log(const complex<_Tp>& __x)
{
return complex<_Tp>(log(abs(__x)), arg(__x));
}
// log10
template<class _Tp>
inline
complex<_Tp>
log10(const complex<_Tp>& __x)
{
return log(__x) / log(_Tp(10));
}
// log2
template<class _Tp>
inline
complex<_Tp>
log2(const complex<_Tp>& __x)
{
return log(__x) / log(_Tp(2));
}
// sqrt
template<class _Tp>
complex<_Tp>
sqrt(const complex<_Tp>& __x)
{
if (isinf(__x.imag()))
return complex<_Tp>(_Tp(INFINITY), __x.imag());
if (isinf(__x.real()))
{
if (__x.real() > _Tp(0))
return complex<_Tp>(__x.real(), isnan(__x.imag()) ? __x.imag() : copysign(_Tp(0), __x.imag()));
return complex<_Tp>(isnan(__x.imag()) ? __x.imag() : _Tp(0), copysign(__x.real(), __x.imag()));
}
return polar(sqrt(abs(__x)), arg(__x) / _Tp(2));
}
// exp
template<class _Tp>
complex<_Tp>
exp(const complex<_Tp>& __x)
{
_Tp __i = __x.imag();
if (__i == 0) {
return complex<_Tp>(exp(__x.real()), copysign(_Tp(0), __x.imag()));
}
if (isinf(__x.real()))
{
if (__x.real() < _Tp(0))
{
if (!isfinite(__i))
__i = _Tp(1);
}
else if (__i == 0 || !isfinite(__i))
{
if (isinf(__i))
__i = _Tp(NAN);
return complex<_Tp>(__x.real(), __i);
}
}
_Tp __e = exp(__x.real());
return complex<_Tp>(__e * cos(__i), __e * sin(__i));
}
// pow
template<class _Tp>
inline
complex<_Tp>
pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return exp(__y * log(__x));
}
template<class _Tp, class _Up>
inline
complex<typename __promote<_Tp, _Up>::type>
pow(const complex<_Tp>& __x, const complex<_Up>& __y)
{
typedef complex<typename __promote<_Tp, _Up>::type> result_type;
return std::pow(result_type(__x), result_type(__y));
}
template<class _Tp, class _Up>
inline
typename enable_if
<
is_arithmetic<_Up>::value,
complex<typename __promote<_Tp, _Up>::type>
>::type
pow(const complex<_Tp>& __x, const _Up& __y)
{
typedef complex<typename __promote<_Tp, _Up>::type> result_type;
return std::pow(result_type(__x), result_type(__y));
}
template<class _Tp, class _Up>
inline
typename enable_if
<
is_arithmetic<_Tp>::value,
complex<typename __promote<_Tp, _Up>::type>
>::type
pow(const _Tp& __x, const complex<_Up>& __y)
{
typedef complex<typename __promote<_Tp, _Up>::type> result_type;
return std::pow(result_type(__x), result_type(__y));
}
// __sqr, computes pow(x, 2)
template<class _Tp>
inline
complex<_Tp>
__sqr(const complex<_Tp>& __x)
{
return complex<_Tp>((__x.real() - __x.imag()) * (__x.real() + __x.imag()),
_Tp(2) * __x.real() * __x.imag());
}
// asinh
template<class _Tp>
complex<_Tp>
asinh(const complex<_Tp>& __x)
{
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.real()))
{
if (isnan(__x.imag()))
return __x;
if (isinf(__x.imag()))
return complex<_Tp>(__x.real(), copysign(__pi * _Tp(0.25), __x.imag()));
return complex<_Tp>(__x.real(), copysign(_Tp(0), __x.imag()));
}
if (isnan(__x.real()))
{
if (isinf(__x.imag()))
return complex<_Tp>(__x.imag(), __x.real());
if (__x.imag() == 0)
return __x;
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.imag()))
return complex<_Tp>(copysign(__x.imag(), __x.real()), copysign(__pi/_Tp(2), __x.imag()));
complex<_Tp> __z = log(__x + sqrt(__sqr(__x) + _Tp(1)));
return complex<_Tp>(copysign(__z.real(), __x.real()), copysign(__z.imag(), __x.imag()));
}
// acosh
template<class _Tp>
complex<_Tp>
acosh(const complex<_Tp>& __x)
{
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.real()))
{
if (isnan(__x.imag()))
return complex<_Tp>(abs(__x.real()), __x.imag());
if (isinf(__x.imag()))
{
if (__x.real() > 0)
return complex<_Tp>(__x.real(), copysign(__pi * _Tp(0.25), __x.imag()));
else
return complex<_Tp>(-__x.real(), copysign(__pi * _Tp(0.75), __x.imag()));
}
if (__x.real() < 0)
return complex<_Tp>(-__x.real(), copysign(__pi, __x.imag()));
return complex<_Tp>(__x.real(), copysign(_Tp(0), __x.imag()));
}
if (isnan(__x.real()))
{
if (isinf(__x.imag()))
return complex<_Tp>(abs(__x.imag()), __x.real());
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.imag()))
return complex<_Tp>(abs(__x.imag()), copysign(__pi/_Tp(2), __x.imag()));
complex<_Tp> __z = log(__x + sqrt(__sqr(__x) - _Tp(1)));
return complex<_Tp>(copysign(__z.real(), _Tp(0)), copysign(__z.imag(), __x.imag()));
}
// atanh
template<class _Tp>
complex<_Tp>
atanh(const complex<_Tp>& __x)
{
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.imag()))
{
return complex<_Tp>(copysign(_Tp(0), __x.real()), copysign(__pi/_Tp(2), __x.imag()));
}
if (isnan(__x.imag()))
{
if (isinf(__x.real()) || __x.real() == 0)
return complex<_Tp>(copysign(_Tp(0), __x.real()), __x.imag());
return complex<_Tp>(__x.imag(), __x.imag());
}
if (isnan(__x.real()))
{
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.real()))
{
return complex<_Tp>(copysign(_Tp(0), __x.real()), copysign(__pi/_Tp(2), __x.imag()));
}
if (abs(__x.real()) == _Tp(1) && __x.imag() == _Tp(0))
{
return complex<_Tp>(copysign(_Tp(INFINITY), __x.real()), copysign(_Tp(0), __x.imag()));
}
complex<_Tp> __z = log((_Tp(1) + __x) / (_Tp(1) - __x)) / _Tp(2);
return complex<_Tp>(copysign(__z.real(), __x.real()), copysign(__z.imag(), __x.imag()));
}
// sinh
template<class _Tp>
complex<_Tp>
sinh(const complex<_Tp>& __x)
{
if (isinf(__x.real()) && !isfinite(__x.imag()))
return complex<_Tp>(__x.real(), _Tp(NAN));
if (__x.real() == 0 && !isfinite(__x.imag()))
return complex<_Tp>(__x.real(), _Tp(NAN));
if (__x.imag() == 0 && !isfinite(__x.real()))
return __x;
return complex<_Tp>(sinh(__x.real()) * cos(__x.imag()), cosh(__x.real()) * sin(__x.imag()));
}
// cosh
template<class _Tp>
complex<_Tp>
cosh(const complex<_Tp>& __x)
{
if (isinf(__x.real()) && !isfinite(__x.imag()))
return complex<_Tp>(abs(__x.real()), _Tp(NAN));
if (__x.real() == 0 && !isfinite(__x.imag()))
return complex<_Tp>(_Tp(NAN), __x.real());
if (__x.real() == 0 && __x.imag() == 0)
return complex<_Tp>(_Tp(1), __x.imag());
if (__x.imag() == 0 && !isfinite(__x.real()))
return complex<_Tp>(abs(__x.real()), __x.imag());
return complex<_Tp>(cosh(__x.real()) * cos(__x.imag()), sinh(__x.real()) * sin(__x.imag()));
}
// tanh
template<class _Tp>
complex<_Tp>
tanh(const complex<_Tp>& __x)
{
if (isinf(__x.real()))
{
if (!isfinite(__x.imag()))
return complex<_Tp>(copysign(_Tp(1), __x.real()), _Tp(0));
return complex<_Tp>(copysign(_Tp(1), __x.real()), copysign(_Tp(0), sin(_Tp(2) * __x.imag())));
}
if (isnan(__x.real()) && __x.imag() == 0)
return __x;
_Tp __2r(_Tp(2) * __x.real());
_Tp __2i(_Tp(2) * __x.imag());
_Tp __d(cosh(__2r) + cos(__2i));
_Tp __2rsh(sinh(__2r));
if (isinf(__2rsh) && isinf(__d))
return complex<_Tp>(__2rsh > _Tp(0) ? _Tp(1) : _Tp(-1),
__2i > _Tp(0) ? _Tp(0) : _Tp(-0.));
return complex<_Tp>(__2rsh/__d, sin(__2i)/__d);
}
// asin
template<class _Tp>
complex<_Tp>
asin(const complex<_Tp>& __x)
{
complex<_Tp> __z = asinh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// acos
template<class _Tp>
complex<_Tp>
acos(const complex<_Tp>& __x)
{
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.real()))
{
if (isnan(__x.imag()))
return complex<_Tp>(__x.imag(), __x.real());
if (isinf(__x.imag()))
{
if (__x.real() < _Tp(0))
return complex<_Tp>(_Tp(0.75) * __pi, -__x.imag());
return complex<_Tp>(_Tp(0.25) * __pi, -__x.imag());
}
if (__x.real() < _Tp(0))
return complex<_Tp>(__pi, signbit(__x.imag()) ? -__x.real() : __x.real());
return complex<_Tp>(_Tp(0), signbit(__x.imag()) ? __x.real() : -__x.real());
}
if (isnan(__x.real()))
{
if (isinf(__x.imag()))
return complex<_Tp>(__x.real(), -__x.imag());
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.imag()))
return complex<_Tp>(__pi/_Tp(2), -__x.imag());
if (__x.real() == 0 && (__x.imag() == 0 || isnan(__x.imag())))
return complex<_Tp>(__pi/_Tp(2), -__x.imag());
complex<_Tp> __z = log(__x + sqrt(__sqr(__x) - _Tp(1)));
if (signbit(__x.imag()))
return complex<_Tp>(abs(__z.imag()), abs(__z.real()));
return complex<_Tp>(abs(__z.imag()), -abs(__z.real()));
}
// atan
template<class _Tp>
complex<_Tp>
atan(const complex<_Tp>& __x)
{
complex<_Tp> __z = atanh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// sin
template<class _Tp>
complex<_Tp>
sin(const complex<_Tp>& __x)
{
complex<_Tp> __z = sinh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// cos
template<class _Tp>
inline
complex<_Tp>
cos(const complex<_Tp>& __x)
{
return cosh(complex<_Tp>(-__x.imag(), __x.real()));
}
// tan
template<class _Tp>
complex<_Tp>
tan(const complex<_Tp>& __x)
{
complex<_Tp> __z = tanh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// Literal suffix for complex number literals [complex.literals]
inline namespace literals
{
inline namespace complex_literals
{
constexpr complex<double> operator""i(long double __im)
{
return { 0.0, static_cast<double>(__im) };
}
constexpr complex<double> operator""i(unsigned long long __im)
{
return { 0.0, static_cast<double>(__im) };
}
constexpr complex<float> operator""if(long double __im)
{
return { 0.0f, static_cast<float>(__im) };
}
constexpr complex<float> operator""if(unsigned long long __im)
{
return { 0.0f, static_cast<float>(__im) };
}
} // namespace complex_literals
} // namespace literals
} // namespace std
)ESCAPE";
const std::string &get_complex_math_string() {
return complex_math;
}
}} // namespace at::cuda