blob: 5898701942dacdcef6fbb14703056d908f5b239e [file] [log] [blame]
/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include <openssl/objects.h>
#ifndef OPENSSL_NO_COMP
#include <openssl/comp.h>
#endif
#ifndef OPENSSL_NO_ENGINE
#include <openssl/engine.h>
#endif
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_NULL_IDX 5
#define SSL_ENC_AES128_IDX 6
#define SSL_ENC_AES256_IDX 7
#define SSL_ENC_CAMELLIA128_IDX 8
#define SSL_ENC_CAMELLIA256_IDX 9
#define SSL_ENC_GOST89_IDX 10
#define SSL_ENC_SEED_IDX 11
#define SSL_ENC_AES128GCM_IDX 12
#define SSL_ENC_AES256GCM_IDX 13
#define SSL_ENC_NUM_IDX 14
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_GOST94_IDX 2
#define SSL_MD_GOST89MAC_IDX 3
#define SSL_MD_SHA256_IDX 4
#define SSL_MD_SHA384_IDX 5
/*Constant SSL_MAX_DIGEST equal to size of digests array should be
* defined in the
* ssl_locl.h */
#define SSL_MD_NUM_IDX SSL_MAX_DIGEST
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={
NULL,NULL,NULL,NULL,NULL,NULL
};
/* PKEY_TYPE for GOST89MAC is known in advance, but, because
* implementation is engine-provided, we'll fill it only if
* corresponding EVP_PKEY_METHOD is found
*/
static int ssl_mac_pkey_id[SSL_MD_NUM_IDX]={
EVP_PKEY_HMAC,EVP_PKEY_HMAC,EVP_PKEY_HMAC,NID_undef,
EVP_PKEY_HMAC,EVP_PKEY_HMAC
};
static int ssl_mac_secret_size[SSL_MD_NUM_IDX]={
0,0,0,0,0,0
};
static int ssl_handshake_digest_flag[SSL_MD_NUM_IDX]={
SSL_HANDSHAKE_MAC_MD5,SSL_HANDSHAKE_MAC_SHA,
SSL_HANDSHAKE_MAC_GOST94, 0, SSL_HANDSHAKE_MAC_SHA256,
SSL_HANDSHAKE_MAC_SHA384
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st
{
const SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next,*prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[]={
/* "ALL" doesn't include eNULL (must be specifically enabled) */
{0,SSL_TXT_ALL,0, 0,0,~SSL_eNULL,0,0,0,0,0,0},
/* "COMPLEMENTOFALL" */
{0,SSL_TXT_CMPALL,0, 0,0,SSL_eNULL,0,0,0,0,0,0},
/* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in ALL!) */
{0,SSL_TXT_CMPDEF,0, SSL_kEDH|SSL_kEECDH,SSL_aNULL,~SSL_eNULL,0,0,0,0,0,0},
/* key exchange aliases
* (some of those using only a single bit here combine
* multiple key exchange algs according to the RFCs,
* e.g. kEDH combines DHE_DSS and DHE_RSA) */
{0,SSL_TXT_kRSA,0, SSL_kRSA, 0,0,0,0,0,0,0,0},
{0,SSL_TXT_kDHr,0, SSL_kDHr, 0,0,0,0,0,0,0,0}, /* no such ciphersuites supported! */
{0,SSL_TXT_kDHd,0, SSL_kDHd, 0,0,0,0,0,0,0,0}, /* no such ciphersuites supported! */
{0,SSL_TXT_kDH,0, SSL_kDHr|SSL_kDHd,0,0,0,0,0,0,0,0}, /* no such ciphersuites supported! */
{0,SSL_TXT_kEDH,0, SSL_kEDH, 0,0,0,0,0,0,0,0},
{0,SSL_TXT_DH,0, SSL_kDHr|SSL_kDHd|SSL_kEDH,0,0,0,0,0,0,0,0},
{0,SSL_TXT_kKRB5,0, SSL_kKRB5, 0,0,0,0,0,0,0,0},
{0,SSL_TXT_kECDHr,0, SSL_kECDHr,0,0,0,0,0,0,0,0},
{0,SSL_TXT_kECDHe,0, SSL_kECDHe,0,0,0,0,0,0,0,0},
{0,SSL_TXT_kECDH,0, SSL_kECDHr|SSL_kECDHe,0,0,0,0,0,0,0,0},
{0,SSL_TXT_kEECDH,0, SSL_kEECDH,0,0,0,0,0,0,0,0},
{0,SSL_TXT_ECDH,0, SSL_kECDHr|SSL_kECDHe|SSL_kEECDH,0,0,0,0,0,0,0,0},
{0,SSL_TXT_kPSK,0, SSL_kPSK, 0,0,0,0,0,0,0,0},
{0,SSL_TXT_kSRP,0, SSL_kSRP, 0,0,0,0,0,0,0,0},
{0,SSL_TXT_kGOST,0, SSL_kGOST,0,0,0,0,0,0,0,0},
/* server authentication aliases */
{0,SSL_TXT_aRSA,0, 0,SSL_aRSA, 0,0,0,0,0,0,0},
{0,SSL_TXT_aDSS,0, 0,SSL_aDSS, 0,0,0,0,0,0,0},
{0,SSL_TXT_DSS,0, 0,SSL_aDSS, 0,0,0,0,0,0,0},
{0,SSL_TXT_aKRB5,0, 0,SSL_aKRB5, 0,0,0,0,0,0,0},
{0,SSL_TXT_aNULL,0, 0,SSL_aNULL, 0,0,0,0,0,0,0},
{0,SSL_TXT_aDH,0, 0,SSL_aDH, 0,0,0,0,0,0,0}, /* no such ciphersuites supported! */
{0,SSL_TXT_aECDH,0, 0,SSL_aECDH, 0,0,0,0,0,0,0},
{0,SSL_TXT_aECDSA,0, 0,SSL_aECDSA,0,0,0,0,0,0,0},
{0,SSL_TXT_ECDSA,0, 0,SSL_aECDSA, 0,0,0,0,0,0,0},
{0,SSL_TXT_aPSK,0, 0,SSL_aPSK, 0,0,0,0,0,0,0},
{0,SSL_TXT_aGOST94,0,0,SSL_aGOST94,0,0,0,0,0,0,0},
{0,SSL_TXT_aGOST01,0,0,SSL_aGOST01,0,0,0,0,0,0,0},
{0,SSL_TXT_aGOST,0,0,SSL_aGOST94|SSL_aGOST01,0,0,0,0,0,0,0},
/* aliases combining key exchange and server authentication */
{0,SSL_TXT_EDH,0, SSL_kEDH,~SSL_aNULL,0,0,0,0,0,0,0},
{0,SSL_TXT_EECDH,0, SSL_kEECDH,~SSL_aNULL,0,0,0,0,0,0,0},
{0,SSL_TXT_NULL,0, 0,0,SSL_eNULL, 0,0,0,0,0,0},
{0,SSL_TXT_KRB5,0, SSL_kKRB5,SSL_aKRB5,0,0,0,0,0,0,0},
{0,SSL_TXT_RSA,0, SSL_kRSA,SSL_aRSA,0,0,0,0,0,0,0},
{0,SSL_TXT_ADH,0, SSL_kEDH,SSL_aNULL,0,0,0,0,0,0,0},
{0,SSL_TXT_AECDH,0, SSL_kEECDH,SSL_aNULL,0,0,0,0,0,0,0},
{0,SSL_TXT_PSK,0, SSL_kPSK,SSL_aPSK,0,0,0,0,0,0,0},
{0,SSL_TXT_SRP,0, SSL_kSRP,0,0,0,0,0,0,0,0},
/* symmetric encryption aliases */
{0,SSL_TXT_DES,0, 0,0,SSL_DES, 0,0,0,0,0,0},
{0,SSL_TXT_3DES,0, 0,0,SSL_3DES, 0,0,0,0,0,0},
{0,SSL_TXT_RC4,0, 0,0,SSL_RC4, 0,0,0,0,0,0},
{0,SSL_TXT_RC2,0, 0,0,SSL_RC2, 0,0,0,0,0,0},
{0,SSL_TXT_IDEA,0, 0,0,SSL_IDEA, 0,0,0,0,0,0},
{0,SSL_TXT_SEED,0, 0,0,SSL_SEED, 0,0,0,0,0,0},
{0,SSL_TXT_eNULL,0, 0,0,SSL_eNULL, 0,0,0,0,0,0},
{0,SSL_TXT_AES128,0, 0,0,SSL_AES128|SSL_AES128GCM,0,0,0,0,0,0},
{0,SSL_TXT_AES256,0, 0,0,SSL_AES256|SSL_AES256GCM,0,0,0,0,0,0},
{0,SSL_TXT_AES,0, 0,0,SSL_AES,0,0,0,0,0,0},
{0,SSL_TXT_AES_GCM,0, 0,0,SSL_AES128GCM|SSL_AES256GCM,0,0,0,0,0,0},
{0,SSL_TXT_CAMELLIA128,0,0,0,SSL_CAMELLIA128,0,0,0,0,0,0},
{0,SSL_TXT_CAMELLIA256,0,0,0,SSL_CAMELLIA256,0,0,0,0,0,0},
{0,SSL_TXT_CAMELLIA ,0,0,0,SSL_CAMELLIA128|SSL_CAMELLIA256,0,0,0,0,0,0},
/* MAC aliases */
{0,SSL_TXT_MD5,0, 0,0,0,SSL_MD5, 0,0,0,0,0},
{0,SSL_TXT_SHA1,0, 0,0,0,SSL_SHA1, 0,0,0,0,0},
{0,SSL_TXT_SHA,0, 0,0,0,SSL_SHA1, 0,0,0,0,0},
{0,SSL_TXT_GOST94,0, 0,0,0,SSL_GOST94, 0,0,0,0,0},
{0,SSL_TXT_GOST89MAC,0, 0,0,0,SSL_GOST89MAC, 0,0,0,0,0},
{0,SSL_TXT_SHA256,0, 0,0,0,SSL_SHA256, 0,0,0,0,0},
{0,SSL_TXT_SHA384,0, 0,0,0,SSL_SHA384, 0,0,0,0,0},
/* protocol version aliases */
{0,SSL_TXT_SSLV2,0, 0,0,0,0,SSL_SSLV2, 0,0,0,0},
{0,SSL_TXT_SSLV3,0, 0,0,0,0,SSL_SSLV3, 0,0,0,0},
{0,SSL_TXT_TLSV1,0, 0,0,0,0,SSL_TLSV1, 0,0,0,0},
/* export flag */
{0,SSL_TXT_EXP,0, 0,0,0,0,0,SSL_EXPORT,0,0,0},
{0,SSL_TXT_EXPORT,0, 0,0,0,0,0,SSL_EXPORT,0,0,0},
/* strength classes */
{0,SSL_TXT_EXP40,0, 0,0,0,0,0,SSL_EXP40, 0,0,0},
{0,SSL_TXT_EXP56,0, 0,0,0,0,0,SSL_EXP56, 0,0,0},
{0,SSL_TXT_LOW,0, 0,0,0,0,0,SSL_LOW, 0,0,0},
{0,SSL_TXT_MEDIUM,0, 0,0,0,0,0,SSL_MEDIUM,0,0,0},
{0,SSL_TXT_HIGH,0, 0,0,0,0,0,SSL_HIGH, 0,0,0},
/* FIPS 140-2 approved ciphersuite */
{0,SSL_TXT_FIPS,0, 0,0,~SSL_eNULL,0,0,SSL_FIPS, 0,0,0},
};
/* Search for public key algorithm with given name and
* return its pkey_id if it is available. Otherwise return 0
*/
#ifdef OPENSSL_NO_ENGINE
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id=0;
ameth = EVP_PKEY_asn1_find_str(NULL,pkey_name,-1);
if (ameth)
{
EVP_PKEY_asn1_get0_info(&pkey_id, NULL,NULL,NULL,NULL,ameth);
}
return pkey_id;
}
#else
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng = NULL;
int pkey_id=0;
ameth = EVP_PKEY_asn1_find_str(&tmpeng,pkey_name,-1);
if (ameth)
{
EVP_PKEY_asn1_get0_info(&pkey_id, NULL,NULL,NULL,NULL,ameth);
}
if (tmpeng) ENGINE_finish(tmpeng);
return pkey_id;
}
#endif
void ssl_load_ciphers(void)
{
ssl_cipher_methods[SSL_ENC_DES_IDX]=
EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX]=
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX]=
EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX]=
EVP_get_cipherbyname(SN_rc2_cbc);
#ifndef OPENSSL_NO_IDEA
ssl_cipher_methods[SSL_ENC_IDEA_IDX]=
EVP_get_cipherbyname(SN_idea_cbc);
#else
ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL;
#endif
ssl_cipher_methods[SSL_ENC_AES128_IDX]=
EVP_get_cipherbyname(SN_aes_128_cbc);
ssl_cipher_methods[SSL_ENC_AES256_IDX]=
EVP_get_cipherbyname(SN_aes_256_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX]=
EVP_get_cipherbyname(SN_camellia_128_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX]=
EVP_get_cipherbyname(SN_camellia_256_cbc);
ssl_cipher_methods[SSL_ENC_GOST89_IDX]=
EVP_get_cipherbyname(SN_gost89_cnt);
ssl_cipher_methods[SSL_ENC_SEED_IDX]=
EVP_get_cipherbyname(SN_seed_cbc);
ssl_cipher_methods[SSL_ENC_AES128GCM_IDX]=
EVP_get_cipherbyname(SN_aes_128_gcm);
ssl_cipher_methods[SSL_ENC_AES256GCM_IDX]=
EVP_get_cipherbyname(SN_aes_256_gcm);
ssl_digest_methods[SSL_MD_MD5_IDX]=
EVP_get_digestbyname(SN_md5);
ssl_mac_secret_size[SSL_MD_MD5_IDX]=
EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0);
ssl_digest_methods[SSL_MD_SHA1_IDX]=
EVP_get_digestbyname(SN_sha1);
ssl_mac_secret_size[SSL_MD_SHA1_IDX]=
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0);
ssl_digest_methods[SSL_MD_GOST94_IDX]=
EVP_get_digestbyname(SN_id_GostR3411_94);
if (ssl_digest_methods[SSL_MD_GOST94_IDX])
{
ssl_mac_secret_size[SSL_MD_GOST94_IDX]=
EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0);
}
ssl_digest_methods[SSL_MD_GOST89MAC_IDX]=
EVP_get_digestbyname(SN_id_Gost28147_89_MAC);
ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX]=32;
}
ssl_digest_methods[SSL_MD_SHA256_IDX]=
EVP_get_digestbyname(SN_sha256);
ssl_mac_secret_size[SSL_MD_SHA256_IDX]=
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]);
ssl_digest_methods[SSL_MD_SHA384_IDX]=
EVP_get_digestbyname(SN_sha384);
ssl_mac_secret_size[SSL_MD_SHA384_IDX]=
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]);
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP * const *a,
const SSL_COMP * const *b)
{
return((*a)->id-(*b)->id);
}
static void load_builtin_compressions(void)
{
int got_write_lock = 0;
CRYPTO_r_lock(CRYPTO_LOCK_SSL);
if (ssl_comp_methods == NULL)
{
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
CRYPTO_w_lock(CRYPTO_LOCK_SSL);
got_write_lock = 1;
if (ssl_comp_methods == NULL)
{
SSL_COMP *comp = NULL;
MemCheck_off();
ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp);
if (ssl_comp_methods != NULL)
{
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
if (comp != NULL)
{
comp->method=COMP_zlib();
if (comp->method
&& comp->method->type == NID_undef)
OPENSSL_free(comp);
else
{
comp->id=SSL_COMP_ZLIB_IDX;
comp->name=comp->method->name;
sk_SSL_COMP_push(ssl_comp_methods,comp);
}
}
sk_SSL_COMP_sort(ssl_comp_methods);
}
MemCheck_on();
}
}
if (got_write_lock)
CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
else
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
}
#endif
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size,SSL_COMP **comp)
{
int i;
const SSL_CIPHER *c;
c=s->cipher;
if (c == NULL) return(0);
if (comp != NULL)
{
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
load_builtin_compressions();
#endif
*comp=NULL;
ctmp.id=s->compress_meth;
if (ssl_comp_methods != NULL)
{
i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp);
if (i >= 0)
*comp=sk_SSL_COMP_value(ssl_comp_methods,i);
else
*comp=NULL;
}
}
if ((enc == NULL) || (md == NULL)) return(0);
switch (c->algorithm_enc)
{
case SSL_DES:
i=SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i=SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i=SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i=SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i=SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i=SSL_ENC_NULL_IDX;
break;
case SSL_AES128:
i=SSL_ENC_AES128_IDX;
break;
case SSL_AES256:
i=SSL_ENC_AES256_IDX;
break;
case SSL_CAMELLIA128:
i=SSL_ENC_CAMELLIA128_IDX;
break;
case SSL_CAMELLIA256:
i=SSL_ENC_CAMELLIA256_IDX;
break;
case SSL_eGOST2814789CNT:
i=SSL_ENC_GOST89_IDX;
break;
case SSL_SEED:
i=SSL_ENC_SEED_IDX;
break;
case SSL_AES128GCM:
i=SSL_ENC_AES128GCM_IDX;
break;
case SSL_AES256GCM:
i=SSL_ENC_AES256GCM_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_ENC_NUM_IDX))
*enc=NULL;
else
{
if (i == SSL_ENC_NULL_IDX)
*enc=EVP_enc_null();
else
*enc=ssl_cipher_methods[i];
}
switch (c->algorithm_mac)
{
case SSL_MD5:
i=SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i=SSL_MD_SHA1_IDX;
break;
case SSL_SHA256:
i=SSL_MD_SHA256_IDX;
break;
case SSL_SHA384:
i=SSL_MD_SHA384_IDX;
break;
case SSL_GOST94:
i = SSL_MD_GOST94_IDX;
break;
case SSL_GOST89MAC:
i = SSL_MD_GOST89MAC_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_MD_NUM_IDX))
{
*md=NULL;
if (mac_pkey_type!=NULL) *mac_pkey_type = NID_undef;
if (mac_secret_size!=NULL) *mac_secret_size = 0;
if (c->algorithm_mac == SSL_AEAD)
mac_pkey_type = NULL;
}
else
{
*md=ssl_digest_methods[i];
if (mac_pkey_type!=NULL) *mac_pkey_type = ssl_mac_pkey_id[i];
if (mac_secret_size!=NULL) *mac_secret_size = ssl_mac_secret_size[i];
}
if ((*enc != NULL) &&
(*md != NULL || (EVP_CIPHER_flags(*enc)&EVP_CIPH_FLAG_AEAD_CIPHER)) &&
(!mac_pkey_type||*mac_pkey_type != NID_undef))
{
const EVP_CIPHER *evp;
if (s->ssl_version>>8 != TLS1_VERSION_MAJOR ||
s->ssl_version < TLS1_VERSION)
return 1;
if (c->algorithm_enc == SSL_RC4 &&
c->algorithm_mac == SSL_MD5 &&
(evp=EVP_get_cipherbyname("RC4-HMAC-MD5")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES128 &&
c->algorithm_mac == SSL_SHA1 &&
(evp=EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES256 &&
c->algorithm_mac == SSL_SHA1 &&
(evp=EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
return(1);
}
else
return(0);
}
int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md)
{
if (idx <0||idx>=SSL_MD_NUM_IDX)
{
return 0;
}
*mask = ssl_handshake_digest_flag[idx];
if (*mask)
*md = ssl_digest_methods[idx];
else
*md = NULL;
return 1;
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail) return;
if (curr == *head)
*head=curr->next;
if (curr->prev != NULL)
curr->prev->next=curr->next;
if (curr->next != NULL)
curr->next->prev=curr->prev;
(*tail)->next=curr;
curr->prev= *tail;
curr->next=NULL;
*tail=curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *head) return;
if (curr == *tail)
*tail=curr->prev;
if (curr->next != NULL)
curr->next->prev=curr->prev;
if (curr->prev != NULL)
curr->prev->next=curr->next;
(*head)->prev=curr;
curr->next= *head;
curr->prev=NULL;
*head=curr;
}
static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth, unsigned long *enc, unsigned long *mac, unsigned long *ssl)
{
*mkey = 0;
*auth = 0;
*enc = 0;
*mac = 0;
*ssl = 0;
#ifdef OPENSSL_NO_RSA
*mkey |= SSL_kRSA;
*auth |= SSL_aRSA;
#endif
#ifdef OPENSSL_NO_DSA
*auth |= SSL_aDSS;
#endif
*mkey |= SSL_kDHr|SSL_kDHd; /* no such ciphersuites supported! */
*auth |= SSL_aDH;
#ifdef OPENSSL_NO_DH
*mkey |= SSL_kDHr|SSL_kDHd|SSL_kEDH;
*auth |= SSL_aDH;
#endif
#ifdef OPENSSL_NO_KRB5
*mkey |= SSL_kKRB5;
*auth |= SSL_aKRB5;
#endif
#ifdef OPENSSL_NO_ECDSA
*auth |= SSL_aECDSA;
#endif
#ifdef OPENSSL_NO_ECDH
*mkey |= SSL_kECDHe|SSL_kECDHr;
*auth |= SSL_aECDH;
#endif
#ifdef OPENSSL_NO_PSK
*mkey |= SSL_kPSK;
*auth |= SSL_aPSK;
#endif
#ifdef OPENSSL_NO_SRP
*mkey |= SSL_kSRP;
#endif
/* Check for presence of GOST 34.10 algorithms, and if they
* do not present, disable appropriate auth and key exchange */
if (!get_optional_pkey_id("gost94")) {
*auth |= SSL_aGOST94;
}
if (!get_optional_pkey_id("gost2001")) {
*auth |= SSL_aGOST01;
}
/* Disable GOST key exchange if no GOST signature algs are available * */
if ((*auth & (SSL_aGOST94|SSL_aGOST01)) == (SSL_aGOST94|SSL_aGOST01)) {
*mkey |= SSL_kGOST;
}
#ifdef SSL_FORBID_ENULL
*enc |= SSL_eNULL;
#endif
*enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0;
*enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0;
*enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0;
*enc |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0;
*enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128:0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256:0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] == NULL) ? SSL_AES128GCM:0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] == NULL) ? SSL_AES256GCM:0;
*enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA128:0;
*enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA256:0;
*enc |= (ssl_cipher_methods[SSL_ENC_GOST89_IDX] == NULL) ? SSL_eGOST2814789CNT:0;
*enc |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED:0;
*mac |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0;
*mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0;
*mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256:0;
*mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384:0;
*mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94:0;
*mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL || ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]==NID_undef)? SSL_GOST89MAC:0;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers,
unsigned long disabled_mkey, unsigned long disabled_auth,
unsigned long disabled_enc, unsigned long disabled_mac,
unsigned long disabled_ssl,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
int i, co_list_num;
const SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++)
{
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if ((c != NULL) && c->valid &&
#ifdef OPENSSL_FIPS
(!FIPS_mode() || (c->algo_strength & SSL_FIPS)) &&
#endif
!(c->algorithm_mkey & disabled_mkey) &&
!(c->algorithm_auth & disabled_auth) &&
!(c->algorithm_enc & disabled_enc) &&
!(c->algorithm_mac & disabled_mac) &&
!(c->algorithm_ssl & disabled_ssl))
{
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
#ifdef KSSL_DEBUG
printf("\t%d: %s %lx %lx %lx\n",i,c->name,c->id,c->algorithm_mkey,c->algorithm_auth);
#endif /* KSSL_DEBUG */
/*
if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
if (co_list_num > 0)
{
co_list[0].prev = NULL;
if (co_list_num > 1)
{
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++)
{
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
int num_of_group_aliases,
unsigned long disabled_mkey, unsigned long disabled_auth,
unsigned long disabled_enc, unsigned long disabled_mac,
unsigned long disabled_ssl,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
const SSL_CIPHER **ca_curr;
int i;
unsigned long mask_mkey = ~disabled_mkey;
unsigned long mask_auth = ~disabled_auth;
unsigned long mask_enc = ~disabled_enc;
unsigned long mask_mac = ~disabled_mac;
unsigned long mask_ssl = ~disabled_ssl;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL)
{
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either one or more algorithms, some of which
* in any affected category must be supported (set in enabled_mask),
* or represent a cipher strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++)
{
unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey;
unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth;
unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc;
unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac;
unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl;
if (algorithm_mkey)
if ((algorithm_mkey & mask_mkey) == 0)
continue;
if (algorithm_auth)
if ((algorithm_auth & mask_auth) == 0)
continue;
if (algorithm_enc)
if ((algorithm_enc & mask_enc) == 0)
continue;
if (algorithm_mac)
if ((algorithm_mac & mask_mac) == 0)
continue;
if (algorithm_ssl)
if ((algorithm_ssl & mask_ssl) == 0)
continue;
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long cipher_id,
unsigned long alg_mkey, unsigned long alg_auth,
unsigned long alg_enc, unsigned long alg_mac,
unsigned long alg_ssl,
unsigned long algo_strength,
int rule, int strength_bits,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *curr2, *last;
const SSL_CIPHER *cp;
int reverse = 0;
#ifdef CIPHER_DEBUG
printf("Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d)\n",
rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, strength_bits);
#endif
if (rule == CIPHER_DEL)
reverse = 1; /* needed to maintain sorting between currently deleted ciphers */
head = *head_p;
tail = *tail_p;
if (reverse)
{
curr = tail;
last = head;
}
else
{
curr = head;
last = tail;
}
curr2 = curr;
for (;;)
{
if ((curr == NULL) || (curr == last)) break;
curr = curr2;
curr2 = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the value of strength_bits
* or the algorithms used.
*/
if (strength_bits >= 0)
{
if (strength_bits != cp->strength_bits)
continue;
}
else
{
#ifdef CIPHER_DEBUG
printf("\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08lx Algo_strength = %08lx\n", cp->name, cp->algorithm_mkey, cp->algorithm_auth, cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl, cp->algo_strength);
#endif
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
continue;
if (alg_auth && !(alg_auth & cp->algorithm_auth))
continue;
if (alg_enc && !(alg_enc & cp->algorithm_enc))
continue;
if (alg_mac && !(alg_mac & cp->algorithm_mac))
continue;
if (alg_ssl && !(alg_ssl & cp->algorithm_ssl))
continue;
if ((algo_strength & SSL_EXP_MASK) && !(algo_strength & SSL_EXP_MASK & cp->algo_strength))
continue;
if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
continue;
}
#ifdef CIPHER_DEBUG
printf("Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD)
{
/* reverse == 0 */
if (!curr->active)
{
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD)
{
/* reverse == 0 */
if (curr->active)
{
ll_append_tail(&head, curr, &tail);
}
}
else if (rule == CIPHER_DEL)
{
/* reverse == 1 */
if (curr->active)
{
/* most recently deleted ciphersuites get best positions
* for any future CIPHER_ADD (note that the CIPHER_DEL loop
* works in reverse to maintain the order) */
ll_append_head(&head, curr, &tail);
curr->active = 0;
}
}
else if (rule == CIPHER_KILL)
{
/* reverse == 0 */
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL)
{
if (curr->active &&
(curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses)
{
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE);
return(0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL)
{
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p);
OPENSSL_free(number_uses);
return(1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p,
const SSL_CIPHER **ca_list)
{
unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
unsigned long cipher_id = 0;
char ch;
retval = 1;
l = rule_str;
for (;;)
{
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-')
{ rule = CIPHER_DEL; l++; }
else if (ch == '+')
{ rule = CIPHER_ORD; l++; }
else if (ch == '!')
{ rule = CIPHER_KILL; l++; }
else if (ch == '@')
{ rule = CIPHER_SPECIAL; l++; }
else
{ rule = CIPHER_ADD; }
if (ITEM_SEP(ch))
{
l++;
continue;
}
alg_mkey = 0;
alg_auth = 0;
alg_enc = 0;
alg_mac = 0;
alg_ssl = 0;
algo_strength = 0;
for (;;)
{
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while ( ((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-'))
#else
while ( isalnum(ch) || (ch == '-'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0)
{
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL)
{
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+')
{
multi=1;
l++;
}
else
multi=0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
while (ca_list[j])
{
if (!strncmp(buf, ca_list[j]->name, buflen) &&
(ca_list[j]->name[buflen] == '\0'))
{
found = 1;
break;
}
else
j++;
}
if (!found)
break; /* ignore this entry */
if (ca_list[j]->algorithm_mkey)
{
if (alg_mkey)
{
alg_mkey &= ca_list[j]->algorithm_mkey;
if (!alg_mkey) { found = 0; break; }
}
else
alg_mkey = ca_list[j]->algorithm_mkey;
}
if (ca_list[j]->algorithm_auth)
{
if (alg_auth)
{
alg_auth &= ca_list[j]->algorithm_auth;
if (!alg_auth) { found = 0; break; }
}
else
alg_auth = ca_list[j]->algorithm_auth;
}
if (ca_list[j]->algorithm_enc)
{
if (alg_enc)
{
alg_enc &= ca_list[j]->algorithm_enc;
if (!alg_enc) { found = 0; break; }
}
else
alg_enc = ca_list[j]->algorithm_enc;
}
if (ca_list[j]->algorithm_mac)
{
if (alg_mac)
{
alg_mac &= ca_list[j]->algorithm_mac;
if (!alg_mac) { found = 0; break; }
}
else
alg_mac = ca_list[j]->algorithm_mac;
}
if (ca_list[j]->algo_strength & SSL_EXP_MASK)
{
if (algo_strength & SSL_EXP_MASK)
{
algo_strength &= (ca_list[j]->algo_strength & SSL_EXP_MASK) | ~SSL_EXP_MASK;
if (!(algo_strength & SSL_EXP_MASK)) { found = 0; break; }
}
else
algo_strength |= ca_list[j]->algo_strength & SSL_EXP_MASK;
}
if (ca_list[j]->algo_strength & SSL_STRONG_MASK)
{
if (algo_strength & SSL_STRONG_MASK)
{
algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK;
if (!(algo_strength & SSL_STRONG_MASK)) { found = 0; break; }
}
else
algo_strength |= ca_list[j]->algo_strength & SSL_STRONG_MASK;
}
if (ca_list[j]->valid)
{
/* explicit ciphersuite found; its protocol version
* does not become part of the search pattern!*/
cipher_id = ca_list[j]->id;
}
else
{
/* not an explicit ciphersuite; only in this case, the
* protocol version is considered part of the search pattern */
if (ca_list[j]->algorithm_ssl)
{
if (alg_ssl)
{
alg_ssl &= ca_list[j]->algorithm_ssl;
if (!alg_ssl) { found = 0; break; }
}
else
alg_ssl = ca_list[j]->algorithm_ssl;
}
}
if (!multi) break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL)
{ /* special command */
ok = 0;
if ((buflen == 8) &&
!strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
else if (found)
{
ssl_cipher_apply_rule(cipher_id,
alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength,
rule, -1, head_p, tail_p);
}
else
{
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0') break; /* done */
}
return(retval);
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl;
STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
const SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl);
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
#ifdef KSSL_DEBUG
printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers);
#endif /* KSSL_DEBUG */
co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (co_list == NULL)
{
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl,
co_list, &head, &tail);
/* Now arrange all ciphers by preference: */
/* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */
ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/* AES is our preferred symmetric cipher */
ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Low priority for MD5 */
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail);
/* Move anonymous ciphers to the end. Usually, these will remain disabled.
* (For applications that allow them, they aren't too bad, but we prefer
* authenticated ciphers.) */
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
/* Move ciphers without forward secrecy to the end */
ssl_cipher_apply_rule(0, 0, SSL_aECDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
/* ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); */
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kPSK, 0,0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kKRB5, 0,0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
/* RC4 is sort-of broken -- move the the end */
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
/* Now sort by symmetric encryption strength. The above ordering remains
* in force within each class */
if (!ssl_cipher_strength_sort(&head, &tail))
{
OPENSSL_free(co_list);
return NULL;
}
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
if (ca_list == NULL)
{
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, disabled_ssl, head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str,"DEFAULT",7) == 0)
{
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
&head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list);
OPENSSL_free((void *)ca_list); /* Not needed anymore */
if (!ok)
{ /* Rule processing failure */
OPENSSL_free(co_list);
return(NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL)
{
OPENSSL_free(co_list);
return(NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next)
{
#ifdef OPENSSL_FIPS
if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS))
#else
if (curr->active)
#endif
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
printf("<%s>\n",curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL)
{
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return(cipherstack);
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
int is_export,pkl,kl;
const char *ver,*exp_str;
const char *kx,*au,*enc,*mac;
unsigned long alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl,alg2;
#ifdef KSSL_DEBUG
static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx/%lx/%lx/%lx/%lx\n";
#else
static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
#endif /* KSSL_DEBUG */
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
alg_ssl = cipher->algorithm_ssl;
alg2=cipher->algorithm2;
is_export=SSL_C_IS_EXPORT(cipher);
pkl=SSL_C_EXPORT_PKEYLENGTH(cipher);
kl=SSL_C_EXPORT_KEYLENGTH(cipher);
exp_str=is_export?" export":"";
if (alg_ssl & SSL_SSLV2)
ver="SSLv2";
else if (alg_ssl & SSL_SSLV3)
ver="SSLv3";
else if (alg_ssl & SSL_TLSV1_2)
ver="TLSv1.2";
else
ver="unknown";
switch (alg_mkey)
{
case SSL_kRSA:
kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA";
break;
case SSL_kDHr:
kx="DH/RSA";
break;
case SSL_kDHd:
kx="DH/DSS";
break;
case SSL_kKRB5:
kx="KRB5";
break;
case SSL_kEDH:
kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH";
break;
case SSL_kECDHr:
kx="ECDH/RSA";
break;
case SSL_kECDHe:
kx="ECDH/ECDSA";
break;
case SSL_kEECDH:
kx="ECDH";
break;
case SSL_kPSK:
kx="PSK";
break;
case SSL_kSRP:
kx="SRP";
break;
default:
kx="unknown";
}
switch (alg_auth)
{
case SSL_aRSA:
au="RSA";
break;
case SSL_aDSS:
au="DSS";
break;
case SSL_aDH:
au="DH";
break;
case SSL_aKRB5:
au="KRB5";
break;
case SSL_aECDH:
au="ECDH";
break;
case SSL_aNULL:
au="None";
break;
case SSL_aECDSA:
au="ECDSA";
break;
case SSL_aPSK:
au="PSK";
break;
default:
au="unknown";
break;
}
switch (alg_enc)
{
case SSL_DES:
enc=(is_export && kl == 5)?"DES(40)":"DES(56)";
break;
case SSL_3DES:
enc="3DES(168)";
break;
case SSL_RC4:
enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)")
:((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)");
break;
case SSL_RC2:
enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)";
break;
case SSL_IDEA:
enc="IDEA(128)";
break;
case SSL_eNULL:
enc="None";
break;
case SSL_AES128:
enc="AES(128)";
break;
case SSL_AES256:
enc="AES(256)";
break;
case SSL_AES128GCM:
enc="AESGCM(128)";
break;
case SSL_AES256GCM:
enc="AESGCM(256)";
break;
case SSL_CAMELLIA128:
enc="Camellia(128)";
break;
case SSL_CAMELLIA256:
enc="Camellia(256)";
break;
case SSL_SEED:
enc="SEED(128)";
break;
default:
enc="unknown";
break;
}
switch (alg_mac)
{
case SSL_MD5:
mac="MD5";
break;
case SSL_SHA1:
mac="SHA1";
break;
case SSL_SHA256:
mac="SHA256";
break;
case SSL_SHA384:
mac="SHA384";
break;
case SSL_AEAD:
mac="AEAD";
break;
default:
mac="unknown";
break;
}
if (buf == NULL)
{
len=128;
buf=OPENSSL_malloc(len);
if (buf == NULL) return("OPENSSL_malloc Error");
}
else if (len < 128)
return("Buffer too small");
#ifdef KSSL_DEBUG
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl);
#else
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str);
#endif /* KSSL_DEBUG */
return(buf);
}
char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
int i;
if (c == NULL) return("(NONE)");
i=(int)(c->id>>24L);
if (i == 3)
return("TLSv1/SSLv3");
else if (i == 2)
return("SSLv2");
else
return("unknown");
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return(c->name);
return("(NONE)");
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret=0;
if (c != NULL)
{
if (alg_bits != NULL) *alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return(ret);
}
unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c)
{
return c->id;
}
/* return string version of key exchange algorithm */
const char* SSL_CIPHER_authentication_method(const SSL_CIPHER* cipher)
{
switch (cipher->algorithm_mkey)
{
case SSL_kRSA:
return SSL_TXT_RSA;
case SSL_kDHr:
return SSL_TXT_DH "_" SSL_TXT_RSA;
case SSL_kDHd:
return SSL_TXT_DH "_" SSL_TXT_DSS;
case SSL_kEDH:
switch (cipher->algorithm_auth)
{
case SSL_aDSS:
return "DHE_" SSL_TXT_DSS;
case SSL_aRSA:
return "DHE_" SSL_TXT_RSA;
case SSL_aNULL:
return SSL_TXT_DH "_anon";
default:
return "UNKNOWN";
}
case SSL_kKRB5:
return SSL_TXT_KRB5;
case SSL_kECDHr:
return SSL_TXT_ECDH "_" SSL_TXT_RSA;
case SSL_kECDHe:
return SSL_TXT_ECDH "_" SSL_TXT_ECDSA;
case SSL_kEECDH:
switch (cipher->algorithm_auth)
{
case SSL_aECDSA:
return "ECDHE_" SSL_TXT_ECDSA;
case SSL_aRSA:
return "ECDHE_" SSL_TXT_RSA;
case SSL_aNULL:
return SSL_TXT_ECDH "_anon";
default:
return "UNKNOWN";
}
default:
return "UNKNOWN";
}
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i,nn;
if ((n == 0) || (sk == NULL)) return(NULL);
nn=sk_SSL_COMP_num(sk);
for (i=0; i<nn; i++)
{
ctmp=sk_SSL_COMP_value(sk,i);
if (ctmp->id == n)
return(ctmp);
}
return(NULL);
}
#ifdef OPENSSL_NO_COMP
void *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
int SSL_COMP_add_compression_method(int id, void *cm)
{
return 1;
}
const char *SSL_COMP_get_name(const void *comp)
{
return NULL;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return(ssl_comp_methods);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || cm->type == NID_undef)
return 1;
/* According to draft-ietf-tls-compression-04.txt, the
compression number ranges should be the following:
0 to 63: methods defined by the IETF
64 to 192: external party methods assigned by IANA
193 to 255: reserved for private use */
if (id < 193 || id > 255)
{
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 0;
}
MemCheck_off();
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id=id;
comp->method=cm;
load_builtin_compressions();
if (ssl_comp_methods
&& sk_SSL_COMP_find(ssl_comp_methods,comp) >= 0)
{
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COMPRESSION_ID);
return(1);
}
else if ((ssl_comp_methods == NULL)
|| !sk_SSL_COMP_push(ssl_comp_methods,comp))
{
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE);
return(1);
}
else
{
MemCheck_on();
return(0);
}
}
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
if (comp)
return comp->name;
return NULL;
}
#endif