blob: 7b1621616f653022300cf706b8c4f87141c8fc97 [file] [log] [blame]
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cast/streaming/sender.h"
#include <stdint.h>
#include <algorithm>
#include <array>
#include <chrono>
#include <limits>
#include <map>
#include <set>
#include <utility>
#include <vector>
#include "absl/types/optional.h"
#include "absl/types/span.h"
#include "cast/streaming/compound_rtcp_builder.h"
#include "cast/streaming/constants.h"
#include "cast/streaming/encoded_frame.h"
#include "cast/streaming/frame_collector.h"
#include "cast/streaming/frame_crypto.h"
#include "cast/streaming/frame_id.h"
#include "cast/streaming/mock_environment.h"
#include "cast/streaming/packet_util.h"
#include "cast/streaming/rtcp_session.h"
#include "cast/streaming/rtp_defines.h"
#include "cast/streaming/rtp_packet_parser.h"
#include "cast/streaming/sender_packet_router.h"
#include "cast/streaming/sender_report_parser.h"
#include "cast/streaming/session_config.h"
#include "cast/streaming/ssrc.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "platform/test/fake_clock.h"
#include "platform/test/fake_task_runner.h"
#include "util/alarm.h"
#include "util/chrono_helpers.h"
#include "util/yet_another_bit_vector.h"
using testing::_;
using testing::AtLeast;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::Mock;
using testing::NiceMock;
using testing::Return;
using testing::Sequence;
namespace openscreen {
namespace cast {
namespace {
// Sender configuration.
constexpr Ssrc kSenderSsrc = 1;
constexpr Ssrc kReceiverSsrc = 2;
constexpr int kRtpTimebase = 48000;
constexpr milliseconds kTargetPlayoutDelay{400};
constexpr auto kAesKey =
std::array<uint8_t, 16>{{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}};
constexpr auto kCastIvMask =
std::array<uint8_t, 16>{{0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00}};
constexpr RtpPayloadType kRtpPayloadType = RtpPayloadType::kVideoVp8;
// The number of RTP ticks advanced per frame, for 100 FPS media.
constexpr int kRtpTicksPerFrame = kRtpTimebase / 100;
// The number of milliseconds advanced per frame, for 100 FPS media.
constexpr milliseconds kFrameDuration{1000 / 100};
static_assert(kFrameDuration < (kTargetPlayoutDelay / 10),
"Kickstart test assumes frame duration is far less than the "
"playout delay.");
// An Encoded frame that also holds onto its own copy of data.
struct EncodedFrameWithBuffer : public EncodedFrame {
// |EncodedFrame::data| always points inside buffer.begin()...buffer.end().
std::vector<uint8_t> buffer;
};
// SenderPacketRouter configuration for these tests.
constexpr int kNumPacketsPerBurst = 20;
constexpr milliseconds kBurstInterval{10};
// An arbitrary value, subtracted from "now," to specify the reference_time on
// frames that are about to be enqueued. This simulates that capture+encode
// happened in the past, before Sender::EnqueueFrame() is called.
constexpr milliseconds kCaptureDelay{11};
// In some tests, the computed time values could be off a little bit due to
// imprecision in certain wire-format timestamp types. The following macro
// behaves just like Gtest's EXPECT_NEAR(), but works with all the time types
// too.
#define EXPECT_NEARLY_EQUAL(duration_a, duration_b, epsilon) \
if ((duration_a) >= (duration_b)) { \
EXPECT_LE((duration_a), (duration_b) + (epsilon)); \
} else { \
EXPECT_GE((duration_a), (duration_b) - (epsilon)); \
}
// Simulates UDP/IPv6 traffic in one direction (from Sender→Receiver, or
// Receiver→Sender), with a settable amount of delay.
class SimulatedNetworkPipe {
public:
SimulatedNetworkPipe(TaskRunner* task_runner,
Environment::PacketConsumer* remote)
: task_runner_(task_runner), remote_(remote) {
// Create a fake IPv6 address using the "documentative purposes" prefix
// concatenated with the |this| pointer.
std::array<uint16_t, 8> hextets{};
hextets[0] = 0x2001;
hextets[1] = 0x0db8;
auto* const this_pointer = this;
static_assert(sizeof(this_pointer) <= (6 * sizeof(uint16_t)), "");
memcpy(&hextets[2], &this_pointer, sizeof(this_pointer));
local_endpoint_ = IPEndpoint{IPAddress(hextets), 2344};
}
const IPEndpoint& local_endpoint() const { return local_endpoint_; }
Clock::duration network_delay() const { return network_delay_; }
void set_network_delay(Clock::duration delay) { network_delay_ = delay; }
// The caller needs to spin the task runner before |packet| will reach the
// other side.
void StartPacketTransmission(std::vector<uint8_t> packet) {
task_runner_->PostTaskWithDelay(
[this, packet = std::move(packet)]() mutable {
remote_->OnReceivedPacket(local_endpoint_, FakeClock::now(),
std::move(packet));
},
network_delay_);
}
private:
TaskRunner* const task_runner_;
Environment::PacketConsumer* const remote_;
IPEndpoint local_endpoint_;
// The amount of time for the packet to transmit over this simulated network
// pipe. Defaults to zero to simplify the tests that don't care about delays.
Clock::duration network_delay_{};
};
// Processes packets from the Sender under test, allowing unit tests to set
// expectations for parsed RTP or RTCP packets, to confirm proper behavior of
// the Sender.
class MockReceiver : public Environment::PacketConsumer {
public:
explicit MockReceiver(SimulatedNetworkPipe* pipe_to_sender)
: pipe_to_sender_(pipe_to_sender),
rtcp_session_(kSenderSsrc, kReceiverSsrc, FakeClock::now()),
sender_report_parser_(&rtcp_session_),
rtcp_builder_(&rtcp_session_),
rtp_parser_(kSenderSsrc),
crypto_(kAesKey, kCastIvMask) {
rtcp_builder_.SetPlayoutDelay(kTargetPlayoutDelay);
}
~MockReceiver() override = default;
// Simulate the Receiver ACK'ing all frames up to and including the
// |new_checkpoint|.
void SetCheckpointFrame(FrameId new_checkpoint) {
OSP_CHECK_GE(new_checkpoint, rtcp_builder_.checkpoint_frame());
rtcp_builder_.SetCheckpointFrame(new_checkpoint);
}
// Automatically advances the checkpoint based on what is found in
// |complete_frames_|, returning true if the checkpoint moved forward.
bool AutoAdvanceCheckpoint() {
const FrameId old_checkpoint = rtcp_builder_.checkpoint_frame();
FrameId new_checkpoint = old_checkpoint;
for (auto it = complete_frames_.upper_bound(old_checkpoint);
it != complete_frames_.end(); ++it) {
if (it->first != new_checkpoint + 1) {
break;
}
++new_checkpoint;
}
if (new_checkpoint > old_checkpoint) {
rtcp_builder_.SetCheckpointFrame(new_checkpoint);
return true;
}
return false;
}
void SetPictureLossIndicator(bool picture_is_lost) {
rtcp_builder_.SetPictureLossIndicator(picture_is_lost);
}
void SetReceiverReport(StatusReportId reply_for,
RtcpReportBlock::Delay processing_delay) {
RtcpReportBlock receiver_report;
receiver_report.ssrc = kSenderSsrc;
receiver_report.last_status_report_id = reply_for;
receiver_report.delay_since_last_report = processing_delay;
rtcp_builder_.IncludeReceiverReportInNextPacket(receiver_report);
}
void SetNacksAndAcks(std::vector<PacketNack> packet_nacks,
std::vector<FrameId> frame_acks) {
rtcp_builder_.IncludeFeedbackInNextPacket(std::move(packet_nacks),
std::move(frame_acks));
}
// Builds and sends a RTCP packet containing one or more of: checkpoint, PLI,
// Receiver Report, NACKs, ACKs.
void TransmitRtcpFeedbackPacket() {
uint8_t buffer[kMaxRtpPacketSizeForIpv6UdpOnEthernet];
const absl::Span<uint8_t> packet =
rtcp_builder_.BuildPacket(FakeClock::now(), buffer);
pipe_to_sender_->StartPacketTransmission(
std::vector<uint8_t>(packet.begin(), packet.end()));
}
// Used by tests to simulate the Receiver not seeing specific packets come in
// from the network (e.g., because the network dropped the packets).
void SetIgnoreList(std::vector<PacketNack> ignore_list) {
ignore_list_ = ignore_list;
}
// Environment::PacketConsumer implementation.
//
// Called to process a packet from the Sender, simulating basic RTP frame
// collection and Sender Report parsing/handling.
void OnReceivedPacket(const IPEndpoint& source,
Clock::time_point arrival_time,
std::vector<uint8_t> packet) override {
const auto type_and_ssrc = InspectPacketForRouting(packet);
EXPECT_NE(ApparentPacketType::UNKNOWN, type_and_ssrc.first);
EXPECT_EQ(kSenderSsrc, type_and_ssrc.second);
if (type_and_ssrc.first == ApparentPacketType::RTP) {
const absl::optional<RtpPacketParser::ParseResult> part_of_frame =
rtp_parser_.Parse(packet);
ASSERT_TRUE(part_of_frame);
// Return early if simulating packet drops over the network.
if (std::find_if(ignore_list_.begin(), ignore_list_.end(),
[&](const PacketNack& baddie) {
return (
baddie.frame_id == part_of_frame->frame_id &&
(baddie.packet_id == kAllPacketsLost ||
baddie.packet_id == part_of_frame->packet_id));
}) != ignore_list_.end()) {
return;
}
OnRtpPacket(*part_of_frame);
CollectRtpPacket(*part_of_frame, std::move(packet));
} else if (type_and_ssrc.first == ApparentPacketType::RTCP) {
absl::optional<SenderReportParser::SenderReportWithId> report =
sender_report_parser_.Parse(packet);
ASSERT_TRUE(report);
OnSenderReport(*report);
}
}
std::map<FrameId, EncodedFrameWithBuffer> TakeCompleteFrames() {
std::map<FrameId, EncodedFrameWithBuffer> result;
result.swap(complete_frames_);
return result;
}
// Tests set expectations on these mocks to monitor events of interest, and/or
// invoke additional behaviors.
MOCK_METHOD1(OnRtpPacket,
void(const RtpPacketParser::ParseResult& parsed_packet));
MOCK_METHOD1(OnFrameComplete, void(FrameId frame_id));
MOCK_METHOD1(OnSenderReport,
void(const SenderReportParser::SenderReportWithId& report));
private:
// Collects the individual RTP packets until a whole frame can be formed, then
// calls OnFrameComplete(). Ignores extra RTP packets that are no longer
// needed.
void CollectRtpPacket(const RtpPacketParser::ParseResult& part_of_frame,
std::vector<uint8_t> packet) {
const FrameId frame_id = part_of_frame.frame_id;
if (complete_frames_.find(frame_id) != complete_frames_.end()) {
return;
}
FrameCollector& collector = incomplete_frames_[frame_id];
collector.set_frame_id(frame_id);
EXPECT_TRUE(collector.CollectRtpPacket(part_of_frame, &packet));
if (!collector.is_complete()) {
return;
}
const EncryptedFrame& encrypted = collector.PeekAtAssembledFrame();
EncodedFrameWithBuffer* const decrypted = &complete_frames_[frame_id];
// Note: Not setting decrypted->reference_time here since the logic around
// calculating the playout time is rather complex, and is definitely outside
// the scope of the testing being done in this module. Instead, end-to-end
// testing should exist elsewhere to confirm frame play-out times with real
// Receivers.
decrypted->buffer.resize(FrameCrypto::GetPlaintextSize(encrypted));
decrypted->data = absl::Span<uint8_t>(decrypted->buffer);
crypto_.Decrypt(encrypted, decrypted);
incomplete_frames_.erase(frame_id);
OnFrameComplete(frame_id);
}
SimulatedNetworkPipe* const pipe_to_sender_;
RtcpSession rtcp_session_;
SenderReportParser sender_report_parser_;
CompoundRtcpBuilder rtcp_builder_;
RtpPacketParser rtp_parser_;
FrameCrypto crypto_;
std::vector<PacketNack> ignore_list_;
std::map<FrameId, FrameCollector> incomplete_frames_;
std::map<FrameId, EncodedFrameWithBuffer> complete_frames_;
};
class MockObserver : public Sender::Observer {
public:
MOCK_METHOD1(OnFrameCanceled, void(FrameId frame_id));
MOCK_METHOD0(OnPictureLost, void());
};
class SenderTest : public testing::Test {
public:
SenderTest()
: fake_clock_(Clock::now()),
task_runner_(&fake_clock_),
sender_environment_(&FakeClock::now, &task_runner_),
sender_packet_router_(&sender_environment_,
kNumPacketsPerBurst,
kBurstInterval),
sender_(&sender_environment_,
&sender_packet_router_,
{/* .sender_ssrc = */ kSenderSsrc,
/* .receiver_ssrc = */ kReceiverSsrc,
/* .rtp_timebase = */ kRtpTimebase,
/* .channels = */ 2,
/* .target_playout_delay = */ kTargetPlayoutDelay,
/* .aes_secret_key = */ kAesKey,
/* .aes_iv_mask = */ kCastIvMask},
kRtpPayloadType),
receiver_to_sender_pipe_(&task_runner_, &sender_packet_router_),
receiver_(&receiver_to_sender_pipe_),
sender_to_receiver_pipe_(&task_runner_, &receiver_) {
sender_environment_.set_socket_error_handler(
[](Error error) { ASSERT_TRUE(error.ok()) << error; });
sender_environment_.set_remote_endpoint(
receiver_to_sender_pipe_.local_endpoint());
ON_CALL(sender_environment_, SendPacket(_))
.WillByDefault(Invoke([this](absl::Span<const uint8_t> packet) {
sender_to_receiver_pipe_.StartPacketTransmission(
std::vector<uint8_t>(packet.begin(), packet.end()));
}));
}
~SenderTest() override = default;
Sender* sender() { return &sender_; }
MockReceiver* receiver() { return &receiver_; }
void SetReceiverToSenderNetworkDelay(Clock::duration delay) {
receiver_to_sender_pipe_.set_network_delay(delay);
}
void SetSenderToReceiverNetworkDelay(Clock::duration delay) {
sender_to_receiver_pipe_.set_network_delay(delay);
}
void SimulateExecution(Clock::duration how_long = Clock::duration::zero()) {
fake_clock_.Advance(how_long);
}
static void PopulateFramePayloadBuffer(int seed,
int num_bytes,
std::vector<uint8_t>* payload) {
payload->clear();
payload->reserve(num_bytes);
for (int i = 0; i < num_bytes; ++i) {
payload->push_back(static_cast<uint8_t>(seed + i));
}
}
static void PopulateFrameWithDefaults(FrameId frame_id,
Clock::time_point reference_time,
int seed,
int num_payload_bytes,
EncodedFrameWithBuffer* frame) {
frame->dependency = (frame_id == FrameId::first())
? EncodedFrame::KEY_FRAME
: EncodedFrame::DEPENDS_ON_ANOTHER;
frame->frame_id = frame_id;
frame->referenced_frame_id = frame->frame_id;
if (frame_id != FrameId::first()) {
--frame->referenced_frame_id;
}
frame->rtp_timestamp =
RtpTimeTicks() + (RtpTimeDelta::FromTicks(kRtpTicksPerFrame) *
(frame_id - FrameId::first()));
frame->reference_time = reference_time;
PopulateFramePayloadBuffer(seed, num_payload_bytes, &frame->buffer);
frame->data = absl::Span<uint8_t>(frame->buffer);
}
// Confirms that all |sent_frames| exist in |received_frames|, with identical
// data and metadata.
static void ExpectFramesReceivedCorrectly(
absl::Span<EncodedFrameWithBuffer> sent_frames,
const std::map<FrameId, EncodedFrameWithBuffer> received_frames) {
ASSERT_EQ(sent_frames.size(), received_frames.size());
for (const EncodedFrameWithBuffer& sent_frame : sent_frames) {
SCOPED_TRACE(testing::Message()
<< "Checking sent frame " << sent_frame.frame_id);
const auto received_it = received_frames.find(sent_frame.frame_id);
if (received_it == received_frames.end()) {
ADD_FAILURE() << "Did not receive frame.";
continue;
}
const EncodedFrame& received_frame = received_it->second;
EXPECT_EQ(sent_frame.dependency, received_frame.dependency);
EXPECT_EQ(sent_frame.referenced_frame_id,
received_frame.referenced_frame_id);
EXPECT_EQ(sent_frame.rtp_timestamp, received_frame.rtp_timestamp);
EXPECT_TRUE(sent_frame.data == received_frame.data);
}
}
private:
FakeClock fake_clock_;
FakeTaskRunner task_runner_;
NiceMock<MockEnvironment> sender_environment_;
SenderPacketRouter sender_packet_router_;
Sender sender_;
SimulatedNetworkPipe receiver_to_sender_pipe_;
NiceMock<MockReceiver> receiver_;
SimulatedNetworkPipe sender_to_receiver_pipe_;
};
// Tests that the Sender can send EncodedFrames over an ideal network (i.e., low
// latency, no loss), and does so without having to transmit the same packet
// twice.
TEST_F(SenderTest, SendsFramesEfficiently) {
constexpr milliseconds kOneWayNetworkDelay{1};
SetSenderToReceiverNetworkDelay(kOneWayNetworkDelay);
SetReceiverToSenderNetworkDelay(kOneWayNetworkDelay);
// Expect that each packet is only sent once.
std::set<std::pair<FrameId, FramePacketId>> received_packets;
EXPECT_CALL(*receiver(), OnRtpPacket(_))
.WillRepeatedly(
Invoke([&](const RtpPacketParser::ParseResult& parsed_packet) {
std::pair<FrameId, FramePacketId> id(parsed_packet.frame_id,
parsed_packet.packet_id);
const auto insert_result = received_packets.insert(id);
EXPECT_TRUE(insert_result.second)
<< "Received duplicate packet: " << id.first << ':'
<< static_cast<int>(id.second);
}));
// Simulate normal frame ACK'ing behavior.
ON_CALL(*receiver(), OnFrameComplete(_)).WillByDefault(InvokeWithoutArgs([&] {
if (receiver()->AutoAdvanceCheckpoint()) {
receiver()->TransmitRtcpFeedbackPacket();
}
}));
NiceMock<MockObserver> observer;
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first())).Times(1);
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first() + 1)).Times(1);
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first() + 2)).Times(1);
sender()->SetObserver(&observer);
EncodedFrameWithBuffer frames[3];
constexpr int kFrameDataSizes[] = {8196, 12, 1900};
for (int i = 0; i < 3; ++i) {
if (i == 0) {
EXPECT_TRUE(sender()->NeedsKeyFrame());
} else {
EXPECT_FALSE(sender()->NeedsKeyFrame());
}
PopulateFrameWithDefaults(FrameId::first() + i,
FakeClock::now() - kCaptureDelay, 0xbf - i,
kFrameDataSizes[i], &frames[i]);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frames[i]));
SimulateExecution(kFrameDuration);
}
SimulateExecution(kTargetPlayoutDelay);
ExpectFramesReceivedCorrectly(frames, receiver()->TakeCompleteFrames());
}
// Tests that the Sender correctly computes the current in-flight media
// duration, a backlog signal for clients.
TEST_F(SenderTest, ComputesInFlightMediaDuration) {
// With no frames enqueued, the in-flight media duration should be zero.
EXPECT_EQ(Clock::duration::zero(),
sender()->GetInFlightMediaDuration(RtpTimeTicks()));
EXPECT_EQ(Clock::duration::zero(),
sender()->GetInFlightMediaDuration(
RtpTimeTicks() + RtpTimeDelta::FromTicks(kRtpTicksPerFrame)));
// Enqueue a frame.
EncodedFrameWithBuffer frame;
PopulateFrameWithDefaults(FrameId::first(), FakeClock::now(), 0,
13 /* bytes */, &frame);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frame));
// Now, the in-flight media duration should depend on the RTP timestamp of the
// next frame.
EXPECT_EQ(kFrameDuration, sender()->GetInFlightMediaDuration(
frame.rtp_timestamp +
RtpTimeDelta::FromTicks(kRtpTicksPerFrame)));
EXPECT_EQ(10 * kFrameDuration,
sender()->GetInFlightMediaDuration(
frame.rtp_timestamp +
RtpTimeDelta::FromTicks(10 * kRtpTicksPerFrame)));
}
// Tests that the Sender computes the maximum in-flight media duration based on
// its analysis of current network conditions. By implication, this demonstrates
// that the Sender is also measuring the network round-trip time.
TEST_F(SenderTest, RespondsToNetworkLatencyChanges) {
// The expected maximum error in time calculations is one tick of the RTCP
// report block's delay type.
constexpr auto kEpsilon = to_nanoseconds(RtcpReportBlock::Delay(1));
// Before the Sender has the necessary information to compute the network
// round-trip time, GetMaxInFlightMediaDuration() will return half the target
// playout delay.
EXPECT_NEARLY_EQUAL(kTargetPlayoutDelay / 2,
sender()->GetMaxInFlightMediaDuration(), kEpsilon);
// No network is perfect. Simulate different one-way network delays.
constexpr milliseconds kOutboundDelay{2};
constexpr milliseconds kInboundDelay{4};
constexpr milliseconds kRoundTripDelay = kOutboundDelay + kInboundDelay;
SetSenderToReceiverNetworkDelay(kOutboundDelay);
SetReceiverToSenderNetworkDelay(kInboundDelay);
// Enqueue a frame in the Sender to start emitting periodic RTCP reports.
{
EncodedFrameWithBuffer frame;
PopulateFrameWithDefaults(FrameId::first(), FakeClock::now(), 0,
1 /* byte */, &frame);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frame));
}
// Run one network round-trip from Sender→Receiver→Sender.
StatusReportId sender_report_id{};
EXPECT_CALL(*receiver(), OnSenderReport(_))
.WillOnce(Invoke(
[&](const SenderReportParser::SenderReportWithId& sender_report) {
sender_report_id = sender_report.report_id;
}));
// Simulate the passage of time for the Sender Report to reach the Receiver.
SimulateExecution(kOutboundDelay);
// The Receiver should have received the Sender Report at this point.
Mock::VerifyAndClearExpectations(receiver());
ASSERT_NE(StatusReportId{}, sender_report_id);
// Simulate the passage of time in the Receiver doing "other tasks" before
// replying back to the Sender. This delay is included in the Receiver Report
// so that the Sender can isolate the delays caused by the network.
constexpr milliseconds kReceiverProcessingDelay{2};
SimulateExecution(kReceiverProcessingDelay);
// Create the Receiver Report "reply," and simulate it being sent across the
// network, back to the Sender.
receiver()->SetReceiverReport(
sender_report_id, std::chrono::duration_cast<RtcpReportBlock::Delay>(
kReceiverProcessingDelay));
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(kInboundDelay);
// At this point, the Sender should have computed the network round-trip time,
// and so GetMaxInFlightMediaDuration() will return half the target playout
// delay PLUS half the network round-trip time.
EXPECT_NEARLY_EQUAL(kTargetPlayoutDelay / 2 + kRoundTripDelay / 2,
sender()->GetMaxInFlightMediaDuration(), kEpsilon);
// Increase the outbound delay, which will increase the total round-trip time.
constexpr milliseconds kIncreasedOutboundDelay{6};
constexpr milliseconds kIncreasedRoundTripDelay =
kIncreasedOutboundDelay + kInboundDelay;
SetSenderToReceiverNetworkDelay(kIncreasedOutboundDelay);
// With increased network delay, run several more network round-trips. Expect
// the Sender to gradually converge towards the new network round-trip time.
constexpr int kNumReportIntervals = 50;
EXPECT_CALL(*receiver(), OnSenderReport(_))
.Times(kNumReportIntervals)
.WillRepeatedly(Invoke(
[&](const SenderReportParser::SenderReportWithId& sender_report) {
receiver()->SetReceiverReport(sender_report.report_id,
RtcpReportBlock::Delay::zero());
receiver()->TransmitRtcpFeedbackPacket();
}));
Clock::duration last_max = sender()->GetMaxInFlightMediaDuration();
for (int i = 0; i < kNumReportIntervals; ++i) {
SimulateExecution(kRtcpReportInterval);
const Clock::duration updated_value =
sender()->GetMaxInFlightMediaDuration();
EXPECT_LE(last_max, updated_value);
last_max = updated_value;
}
EXPECT_NEARLY_EQUAL(kTargetPlayoutDelay / 2 + kIncreasedRoundTripDelay / 2,
sender()->GetMaxInFlightMediaDuration(), kEpsilon);
}
// Tests that the Sender rejects frames if too large a span of FrameIds would be
// in-flight at once.
TEST_F(SenderTest, RejectsEnqueuingBeforeProtocolDesignLimit) {
// For this test, use 1000 FPS. This makes the frames all one millisecond
// apart to avoid triggering the media-duration rejection logic.
constexpr int kFramesPerSecond = 1000;
constexpr milliseconds kFrameDuration{1};
const auto OverrideRtpTimestamp = [](int frame_count, EncodedFrame* frame) {
const int ticks = frame_count * kRtpTimebase / kFramesPerSecond;
frame->rtp_timestamp = RtpTimeTicks() + RtpTimeDelta::FromTicks(ticks);
};
// Send the absolute design-limit maximum number of frames.
int frame_count = 0;
for (; frame_count < kMaxUnackedFrames; ++frame_count) {
EncodedFrameWithBuffer frame;
PopulateFrameWithDefaults(sender()->GetNextFrameId(), FakeClock::now(), 0,
13 /* bytes */, &frame);
OverrideRtpTimestamp(frame_count, &frame);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frame));
SimulateExecution(kFrameDuration);
}
// Now, attempting to enqueue just one more frame should fail.
EncodedFrameWithBuffer one_frame_too_much;
PopulateFrameWithDefaults(sender()->GetNextFrameId(), FakeClock::now(), 0,
13 /* bytes */, &one_frame_too_much);
OverrideRtpTimestamp(frame_count++, &one_frame_too_much);
EXPECT_EQ(Sender::REACHED_ID_SPAN_LIMIT,
sender()->EnqueueFrame(one_frame_too_much));
SimulateExecution(kFrameDuration);
// Now, simulate the Receiver ACKing the first frame, and enqueuing should
// then succeed again.
receiver()->SetCheckpointFrame(FrameId::first());
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
EXPECT_EQ(Sender::OK, sender()->EnqueueFrame(one_frame_too_much));
SimulateExecution(kFrameDuration);
// Finally, attempting to enqueue another frame should fail again.
EncodedFrameWithBuffer another_frame_too_much;
PopulateFrameWithDefaults(sender()->GetNextFrameId(), FakeClock::now(), 0,
13 /* bytes */, &another_frame_too_much);
OverrideRtpTimestamp(frame_count++, &another_frame_too_much);
EXPECT_EQ(Sender::REACHED_ID_SPAN_LIMIT,
sender()->EnqueueFrame(another_frame_too_much));
SimulateExecution(kFrameDuration);
}
// Tests that the Sender rejects frames if too-long a media duration is
// in-flight. This is the Sender's primary flow control mechanism.
TEST_F(SenderTest, RejectsEnqueuingIfTooLongMediaDurationIsInFlight) {
// For this test, use 20 FPS. This makes all frames 50 ms apart, which should
// make it easy to trigger the media-duration rejection logic.
constexpr int kFramesPerSecond = 20;
constexpr milliseconds kFrameDuration{50};
const auto OverrideRtpTimestamp = [](int frame_count, EncodedFrame* frame) {
const int ticks = frame_count * kRtpTimebase / kFramesPerSecond;
frame->rtp_timestamp = RtpTimeTicks() + RtpTimeDelta::FromTicks(ticks);
};
// Enqueue frames until one is rejected because the in-flight duration would
// be too high.
EncodedFrameWithBuffer frame;
int frame_count = 0;
for (; frame_count < kMaxUnackedFrames; ++frame_count) {
PopulateFrameWithDefaults(sender()->GetNextFrameId(), FakeClock::now(), 0,
13 /* bytes */, &frame);
OverrideRtpTimestamp(frame_count, &frame);
const auto result = sender()->EnqueueFrame(frame);
SimulateExecution(kFrameDuration);
if (result == Sender::MAX_DURATION_IN_FLIGHT) {
break;
}
ASSERT_EQ(Sender::OK, result);
}
// Now, simulate the Receiver ACKing the first frame, and enqueuing should
// then succeed again.
receiver()->SetCheckpointFrame(FrameId::first());
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
EXPECT_EQ(Sender::OK, sender()->EnqueueFrame(frame));
SimulateExecution(kFrameDuration);
// However, attempting to enqueue another frame should fail again.
EncodedFrameWithBuffer one_frame_too_much;
PopulateFrameWithDefaults(sender()->GetNextFrameId(), FakeClock::now(), 0,
13 /* bytes */, &one_frame_too_much);
OverrideRtpTimestamp(++frame_count, &one_frame_too_much);
EXPECT_EQ(Sender::MAX_DURATION_IN_FLIGHT,
sender()->EnqueueFrame(one_frame_too_much));
SimulateExecution(kFrameDuration);
}
// Tests that the Sender propagates the Receiver's picture loss indicator to the
// Observer::OnPictureLost(), and via calls to NeedsKeyFrame(); but only when
// producing a key frame is absolutely necessary.
TEST_F(SenderTest, ManagesReceiverPictureLossWorkflow) {
NiceMock<MockObserver> observer;
sender()->SetObserver(&observer);
// Send three frames...
EncodedFrameWithBuffer frames[6];
for (int i = 0; i < 3; ++i) {
if (i == 0) {
EXPECT_TRUE(sender()->NeedsKeyFrame());
} else {
EXPECT_FALSE(sender()->NeedsKeyFrame());
}
PopulateFrameWithDefaults(FrameId::first() + i,
FakeClock::now() - kCaptureDelay, 0,
24 /* bytes */, &frames[i]);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frames[i]));
SimulateExecution(kFrameDuration);
}
SimulateExecution(kTargetPlayoutDelay);
// Simulate the Receiver ACK'ing the first three frames.
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first())).Times(1);
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first() + 1)).Times(1);
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first() + 2)).Times(1);
EXPECT_CALL(observer, OnPictureLost()).Times(0);
receiver()->SetCheckpointFrame(frames[2].frame_id);
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
Mock::VerifyAndClearExpectations(&observer);
// Simulate something going wrong in the Receiver, and have it report picture
// loss to the Sender. The Sender should then propagate this to its Observer
// and return true when NeedsKeyFrame() is called.
EXPECT_CALL(observer, OnFrameCanceled(_)).Times(0);
EXPECT_CALL(observer, OnPictureLost()).Times(1);
EXPECT_FALSE(sender()->NeedsKeyFrame());
receiver()->SetPictureLossIndicator(true);
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
Mock::VerifyAndClearExpectations(&observer);
EXPECT_TRUE(sender()->NeedsKeyFrame());
// Send a non-key frame, and expect NeedsKeyFrame() still returns true. The
// Observer is not re-notified. This accounts for the case where a client's
// media encoder had frames in its processing pipeline before NeedsKeyFrame()
// began returning true.
EXPECT_CALL(observer, OnFrameCanceled(_)).Times(0);
EXPECT_CALL(observer, OnPictureLost()).Times(0);
EncodedFrameWithBuffer& nonkey_frame = frames[3];
PopulateFrameWithDefaults(FrameId::first() + 3,
FakeClock::now() - kCaptureDelay, 0, 24 /* bytes */,
&nonkey_frame);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(nonkey_frame));
SimulateExecution(kFrameDuration);
Mock::VerifyAndClearExpectations(&observer);
EXPECT_TRUE(sender()->NeedsKeyFrame());
// Now send a key frame, and expect NeedsKeyFrame() returns false. Note that
// the Receiver hasn't cleared the PLI condition, but the Sender knows more
// key frames won't be needed.
EXPECT_CALL(observer, OnFrameCanceled(_)).Times(0);
EXPECT_CALL(observer, OnPictureLost()).Times(0);
EncodedFrameWithBuffer& recovery_frame = frames[4];
PopulateFrameWithDefaults(FrameId::first() + 4,
FakeClock::now() - kCaptureDelay, 0, 24 /* bytes */,
&recovery_frame);
recovery_frame.dependency = EncodedFrame::KEY_FRAME;
recovery_frame.referenced_frame_id = recovery_frame.frame_id;
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(recovery_frame));
SimulateExecution(kFrameDuration);
Mock::VerifyAndClearExpectations(&observer);
EXPECT_FALSE(sender()->NeedsKeyFrame());
// Let's say the Receiver hasn't received the key frame yet, and it reports
// its picture loss again to the Sender. Observer::OnPictureLost() should not
// be called, and NeedsKeyFrame() should NOT return true, because the Sender
// knows the Receiver hasn't acknowledged the key frame (just sent) yet.
EXPECT_CALL(observer, OnFrameCanceled(nonkey_frame.frame_id)).Times(1);
EXPECT_CALL(observer, OnPictureLost()).Times(0);
receiver()->SetCheckpointFrame(nonkey_frame.frame_id);
receiver()->SetPictureLossIndicator(true);
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
Mock::VerifyAndClearExpectations(&observer);
EXPECT_FALSE(sender()->NeedsKeyFrame());
// Now, simulate the Receiver getting the key frame, but NOT recovering. This
// should cause Observer::OnPictureLost() to be called, and cause
// NeedsKeyFrame() to return true again.
EXPECT_CALL(observer, OnFrameCanceled(recovery_frame.frame_id)).Times(1);
EXPECT_CALL(observer, OnPictureLost()).Times(1);
receiver()->SetCheckpointFrame(recovery_frame.frame_id);
receiver()->SetPictureLossIndicator(true);
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
Mock::VerifyAndClearExpectations(&observer);
EXPECT_TRUE(sender()->NeedsKeyFrame());
// Send another key frame, and expect NeedsKeyFrame() returns false.
EXPECT_CALL(observer, OnFrameCanceled(_)).Times(0);
EXPECT_CALL(observer, OnPictureLost()).Times(0);
EncodedFrameWithBuffer& another_recovery_frame = frames[5];
PopulateFrameWithDefaults(FrameId::first() + 5,
FakeClock::now() - kCaptureDelay, 0, 24 /* bytes */,
&another_recovery_frame);
another_recovery_frame.dependency = EncodedFrame::KEY_FRAME;
another_recovery_frame.referenced_frame_id = another_recovery_frame.frame_id;
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(another_recovery_frame));
SimulateExecution(kFrameDuration);
Mock::VerifyAndClearExpectations(&observer);
EXPECT_FALSE(sender()->NeedsKeyFrame());
// Now, simulate the Receiver recovering. It will report this to the Sender,
// and NeedsKeyFrame() will still return false.
EXPECT_CALL(observer, OnFrameCanceled(another_recovery_frame.frame_id))
.Times(1);
EXPECT_CALL(observer, OnPictureLost()).Times(0);
receiver()->SetCheckpointFrame(another_recovery_frame.frame_id);
receiver()->SetPictureLossIndicator(false);
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
Mock::VerifyAndClearExpectations(&observer);
EXPECT_FALSE(sender()->NeedsKeyFrame());
ExpectFramesReceivedCorrectly(frames, receiver()->TakeCompleteFrames());
}
// Tests that the Receiver should get a Sender Report just before the first RTP
// packet, and at regular intervals thereafter. The Sender Report contains the
// lip-sync information necessary for play-out timing.
TEST_F(SenderTest, ProvidesSenderReports) {
std::vector<SenderReportParser::SenderReportWithId> sender_reports;
Sequence packet_sequence;
EXPECT_CALL(*receiver(), OnSenderReport(_))
.InSequence(packet_sequence)
.WillOnce(
Invoke([&](const SenderReportParser::SenderReportWithId& report) {
sender_reports.push_back(report);
}))
.RetiresOnSaturation();
EXPECT_CALL(*receiver(), OnRtpPacket(_)).Times(1).InSequence(packet_sequence);
EXPECT_CALL(*receiver(), OnSenderReport(_))
.Times(3)
.InSequence(packet_sequence)
.WillRepeatedly(
Invoke([&](const SenderReportParser::SenderReportWithId& report) {
sender_reports.push_back(report);
}));
EncodedFrameWithBuffer frame;
constexpr int kFrameDataSize = 250;
PopulateFrameWithDefaults(FrameId::first(), FakeClock::now(), 0,
kFrameDataSize, &frame);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frame));
SimulateExecution(); // Should send one Sender Report + one RTP packet.
EXPECT_EQ(size_t{1}, sender_reports.size());
// Have the Receiver ACK the frame to prevent retransmitting the RTP packet.
receiver()->SetCheckpointFrame(FrameId::first());
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
// Advance through three more reporting intervals. One Sender Report should be
// sent each interval, making a total of 4 reports sent.
constexpr auto kThreeReportIntervals = 3 * kRtcpReportInterval;
SimulateExecution(kThreeReportIntervals); // Three more Sender Reports.
ASSERT_EQ(size_t{4}, sender_reports.size());
// The first report should contain the same timestamps as the frame because
// the Clock did not advance. Also, its packet count and octet count fields
// should be zero since the report was sent before the RTP packet.
EXPECT_EQ(frame.reference_time, sender_reports.front().reference_time);
EXPECT_EQ(frame.rtp_timestamp, sender_reports.front().rtp_timestamp);
EXPECT_EQ(uint32_t{0}, sender_reports.front().send_packet_count);
EXPECT_EQ(uint32_t{0}, sender_reports.front().send_octet_count);
// The last report should contain the timestamps extrapolated into the future
// because the Clock did move forward. Also, the packet count and octet fields
// should now be non-zero because the report was sent after the RTP packet.
EXPECT_EQ(frame.reference_time + kThreeReportIntervals,
sender_reports.back().reference_time);
EXPECT_EQ(frame.rtp_timestamp +
RtpTimeDelta::FromDuration(kThreeReportIntervals, kRtpTimebase),
sender_reports.back().rtp_timestamp);
EXPECT_EQ(uint32_t{1}, sender_reports.back().send_packet_count);
EXPECT_EQ(uint32_t{kFrameDataSize}, sender_reports.back().send_octet_count);
}
// Tests that the Sender provides Kickstart packets whenever the Receiver may
// not know about new frames.
TEST_F(SenderTest, ProvidesKickstartPacketsIfReceiverDoesNotACK) {
// Have the Receiver move the checkpoint forward only for the first frame, and
// none of the later frames. This will force the Sender to eventually send a
// Kickstart packet.
ON_CALL(*receiver(), OnFrameComplete(_))
.WillByDefault(Invoke([&](FrameId frame_id) {
if (frame_id == FrameId::first()) {
receiver()->SetCheckpointFrame(FrameId::first());
receiver()->TransmitRtcpFeedbackPacket();
}
}));
// Send three frames, paced to the media.
EncodedFrameWithBuffer frames[3];
for (int i = 0; i < 3; ++i) {
PopulateFrameWithDefaults(FrameId::first() + i,
FakeClock::now() - kCaptureDelay, i,
48 /* bytes */, &frames[i]);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frames[i]));
SimulateExecution(kFrameDuration);
}
// Now, do nothing for a while. Because the Receiver isn't moving the
// checkpoint forward, the Sender will have sent all the RTP packets at least
// once, and then will start sending just Kickstart packets.
SimulateExecution(kTargetPlayoutDelay);
// Keep doing nothing for a while, and confirm the Sender is just sending the
// same Kickstart packet over and over. The Kickstart packet is supposed to be
// the last packet of the latest frame.
std::set<std::pair<FrameId, FramePacketId>> unique_received_packet_ids;
EXPECT_CALL(*receiver(), OnRtpPacket(_))
.WillRepeatedly(
Invoke([&](const RtpPacketParser::ParseResult& parsed_packet) {
unique_received_packet_ids.emplace(parsed_packet.frame_id,
parsed_packet.packet_id);
}));
SimulateExecution(kTargetPlayoutDelay);
Mock::VerifyAndClearExpectations(receiver());
EXPECT_EQ(size_t{1}, unique_received_packet_ids.size());
EXPECT_EQ(frames[2].frame_id, unique_received_packet_ids.begin()->first);
// Now, simulate the Receiver ACKing all the frames.
receiver()->SetCheckpointFrame(frames[2].frame_id);
receiver()->TransmitRtcpFeedbackPacket();
SimulateExecution(); // RTCP transmitted to Sender.
// With all the frames sent, the Sender should not be transmitting anything.
EXPECT_CALL(*receiver(), OnRtpPacket(_)).Times(0);
SimulateExecution(10 * kTargetPlayoutDelay);
ExpectFramesReceivedCorrectly(frames, receiver()->TakeCompleteFrames());
}
// Tests that the Sender only retransmits packets specifically NACK'ed by the
// Receiver.
TEST_F(SenderTest, ResendsIndividuallyNackedPackets) {
// Populate the frame data in each frame with enough bytes to force at least
// three RTP packets per frame.
constexpr int kFrameDataSize = 3 * kMaxRtpPacketSizeForIpv6UdpOnEthernet;
// Use a 1ms network delay in each direction to make the sequence of events
// clearer in this test.
constexpr milliseconds kOneWayNetworkDelay{1};
SetSenderToReceiverNetworkDelay(kOneWayNetworkDelay);
SetReceiverToSenderNetworkDelay(kOneWayNetworkDelay);
// Simulate that three specific packets will be dropped by the network, one
// from each frame (about to be sent).
const std::vector<PacketNack> dropped_packets{
{FrameId::first(), FramePacketId{2}},
{FrameId::first() + 1, FramePacketId{1}},
{FrameId::first() + 2, FramePacketId{0}},
};
receiver()->SetIgnoreList(dropped_packets);
// Send three frames, paced to the media. The Receiver won't completely
// receive any of these frames due to dropped packets.
EXPECT_CALL(*receiver(), OnFrameComplete(_)).Times(0);
EncodedFrameWithBuffer frames[3];
for (int i = 0; i < 3; ++i) {
PopulateFrameWithDefaults(FrameId::first() + i,
FakeClock::now() - kCaptureDelay, i,
kFrameDataSize, &frames[i]);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frames[i]));
SimulateExecution(kFrameDuration);
}
SimulateExecution(kTargetPlayoutDelay);
Mock::VerifyAndClearExpectations(receiver());
EXPECT_EQ(3, sender()->GetInFlightFrameCount());
// The Receiver NACKs the three dropped packets...
receiver()->SetNacksAndAcks(dropped_packets, {});
receiver()->TransmitRtcpFeedbackPacket();
// In the meantime, the network recovers (i.e., no more dropped packets)...
receiver()->SetIgnoreList({});
// The NACKs reach the Sender, and it acts on them by retransmitting.
SimulateExecution(kOneWayNetworkDelay);
// As each retransmitted packet arrives at the Receiver, advance the
// checkpoint forward to notify the Sender of frames that are now completely
// received. Also, confirm that only the three specifically-NACK'ed packets
// were retransmitted.
EXPECT_CALL(*receiver(), OnFrameComplete(_))
.Times(3)
.WillRepeatedly(InvokeWithoutArgs([&] {
if (receiver()->AutoAdvanceCheckpoint()) {
receiver()->TransmitRtcpFeedbackPacket();
}
}));
EXPECT_CALL(*receiver(), OnRtpPacket(_))
.Times(3)
.WillRepeatedly(Invoke([&](const RtpPacketParser::ParseResult& packet) {
EXPECT_FALSE(std::find(dropped_packets.begin(), dropped_packets.end(),
PacketNack{packet.frame_id, packet.packet_id}) ==
dropped_packets.end());
}));
SimulateExecution(kOneWayNetworkDelay);
Mock::VerifyAndClearExpectations(receiver());
// The Receiver checkpoint feedback(s) travel back to the Sender, and there
// should no longer be any frames in-flight.
SimulateExecution(kOneWayNetworkDelay);
EXPECT_EQ(0, sender()->GetInFlightFrameCount());
// The Sender should not be transmitting anything from now on since all frames
// are known to have been completely received.
EXPECT_CALL(*receiver(), OnRtpPacket(_)).Times(0);
SimulateExecution(10 * kTargetPlayoutDelay);
ExpectFramesReceivedCorrectly(frames, receiver()->TakeCompleteFrames());
}
// Tests that the Sender retransmits an entire frame if the Receiver requests it
// (i.e., a full frame NACK), but does not retransmit any packets for frames
// (before or after) that have been acknowledged.
TEST_F(SenderTest, ResendsMissingFrames) {
// Populate the frame data in each frame with enough bytes to force at least
// three RTP packets per frame.
constexpr int kFrameDataSize = 3 * kMaxRtpPacketSizeForIpv6UdpOnEthernet;
// Use a 1ms network delay in each direction to make the sequence of events
// clearer in this test.
constexpr milliseconds kOneWayNetworkDelay{1};
SetSenderToReceiverNetworkDelay(kOneWayNetworkDelay);
SetReceiverToSenderNetworkDelay(kOneWayNetworkDelay);
// Simulate that all of the packets for the second frame will be dropped by
// the network, but only the packets for that frame.
const std::vector<PacketNack> dropped_packets{
{FrameId::first() + 1, kAllPacketsLost},
};
receiver()->SetIgnoreList(dropped_packets);
NiceMock<MockObserver> observer;
sender()->SetObserver(&observer);
// The expectations below track the story and execute simulated Receiver
// responses. The Sender will have three frames enqueued by its client, and
// then...
//
// The first frame is received and the Receiver ACKs it by moving the
// checkpoint forward.
Sequence completion_sequence;
EXPECT_CALL(*receiver(), OnFrameComplete(FrameId::first()))
.InSequence(completion_sequence)
.WillOnce(InvokeWithoutArgs([&] {
receiver()->SetCheckpointFrame(FrameId::first());
receiver()->TransmitRtcpFeedbackPacket();
}));
// Since all of the packets for the second frame are being dropped, the third
// frame will finish next. The Receiver responds by NACKing the second frame
// and ACKing the third frame. The checkpoint does not move forward because
// the second frame has not been received yet.
//
// NETWORK CHANGE: After the third frame is received, stop dropping packets.
EXPECT_CALL(*receiver(), OnFrameComplete(FrameId::first() + 2))
.InSequence(completion_sequence)
.WillOnce(InvokeWithoutArgs([&] {
receiver()->SetNacksAndAcks(dropped_packets,
std::vector<FrameId>{FrameId::first() + 2});
receiver()->TransmitRtcpFeedbackPacket();
receiver()->SetIgnoreList({});
}));
// Finally, the Sender should respond to the whole-frame NACK by re-sending
// all of the packets for the second frame, and so the Receiver should
// completely receive the frame.
EXPECT_CALL(*receiver(), OnFrameComplete(FrameId::first() + 1))
.InSequence(completion_sequence)
.WillOnce(InvokeWithoutArgs([&] {
receiver()->SetCheckpointFrame(FrameId::first() + 2);
receiver()->TransmitRtcpFeedbackPacket();
}));
// From the Sender's perspective, the Receiver will ACK the first frame, then
// the third frame, then the second frame.
Sequence cancel_sequence;
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first()))
.Times(1)
.InSequence(cancel_sequence);
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first() + 2))
.Times(1)
.InSequence(cancel_sequence);
EXPECT_CALL(observer, OnFrameCanceled(FrameId::first() + 1))
.Times(1)
.InSequence(cancel_sequence);
// With all the expectations/sequences in-place, let 'er rip!
EncodedFrameWithBuffer frames[3];
for (int i = 0; i < 3; ++i) {
PopulateFrameWithDefaults(FrameId::first() + i,
FakeClock::now() - kCaptureDelay, i,
kFrameDataSize, &frames[i]);
ASSERT_EQ(Sender::OK, sender()->EnqueueFrame(frames[i]));
SimulateExecution(kFrameDuration);
}
SimulateExecution(kTargetPlayoutDelay);
Mock::VerifyAndClearExpectations(receiver());
EXPECT_EQ(0, sender()->GetInFlightFrameCount());
// The Sender should not be transmitting anything from now on since all frames
// are known to have been completely received.
EXPECT_CALL(*receiver(), OnRtpPacket(_)).Times(0);
SimulateExecution(10 * kTargetPlayoutDelay);
ExpectFramesReceivedCorrectly(frames, receiver()->TakeCompleteFrames());
}
} // namespace
} // namespace cast
} // namespace openscreen