blob: c6aaa1429120e3017439774b6ba68bbade05cc7c [file] [log] [blame]
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: Jeffrey Soresnen (sorenj@google.com)
#include <fst/extensions/ngram/bitmap-index.h>
#include <algorithm>
#include <iterator>
#include <fst/extensions/ngram/nthbit.h>
namespace fst {
// These two internal classes implemented inverted views of the
// primary and secondary indexes. That is, they provide iterators
// that have operator*'s that return the number zeros rather than
// the number of ones.
class primary_index_inverted : public vector<uint32>::const_iterator {
public:
primary_index_inverted() {}
primary_index_inverted(vector<uint32>::const_iterator loc,
vector<uint32>::const_iterator begin) :
vector<uint32>::const_iterator(loc), begin_(begin) {}
uint32 operator*() {
return BitmapIndex::kStorageBitSize * BitmapIndex::kSecondaryBlockSize *
(1 + std::distance<vector<uint32>::const_iterator>(begin_, *this)) -
vector<uint32>::const_iterator::operator*();
}
private:
vector<uint32>::const_iterator begin_;
};
class secondary_index_inverted : public vector<uint16>::const_iterator {
public:
secondary_index_inverted() : vector<uint16>::const_iterator() {}
secondary_index_inverted(vector<uint16>::const_iterator loc,
vector<uint16>::const_iterator block_begin) :
vector<uint16>::const_iterator(loc), block_begin_(block_begin) {}
uint16 operator*() {
return ((1 + std::distance<vector<uint16>::const_iterator>(
block_begin_, *this)) << BitmapIndex::kStorageLogBitSize) -
vector<uint16>::const_iterator::operator*();
}
private:
vector<uint16>::const_iterator block_begin_;
};
size_t BitmapIndex::Rank1(size_t end) const {
if (end == 0) return 0;
CHECK_LE(end, Bits());
const uint32 end_word = (end - 1) >> BitmapIndex::kStorageLogBitSize;
const uint32 sum = get_index_ones_count(end_word);
const uint64 zero = 0;
const uint64 ones = ~zero;
return sum + __builtin_popcountll(bits_[end_word] &
(ones >> (kStorageBitSize - (end & kStorageBlockMask))));
}
size_t BitmapIndex::Select1(size_t bit_index) const {
if (bit_index >= GetOnesCount()) return Bits();
// search primary index for the relevant block
uint32 rembits = bit_index + 1;
const uint32 block = find_primary_block(bit_index + 1);
uint32 offset = 0;
if (block > 0) {
rembits -= primary_index_[block - 1];
offset += block * kSecondaryBlockSize;
}
// search the secondary index
uint32 word = find_secondary_block(offset, rembits);
if (word > 0) {
rembits -= secondary_index_[offset + word - 1];
offset += word;
}
int nth = nth_bit(bits_[offset], rembits);
return (offset << BitmapIndex::kStorageLogBitSize) + nth;
}
size_t BitmapIndex::Select0(size_t bit_index) const {
if (bit_index >= Bits() - GetOnesCount()) return Bits();
// search inverted primary index for relevant block
uint32 remzeros = bit_index + 1;
uint32 offset = 0;
const uint32 block = find_inverted_primary_block(bit_index + 1);
if (block > 0) {
remzeros -= *primary_index_inverted(primary_index_.begin() + block - 1,
primary_index_.begin());
offset += block * kSecondaryBlockSize;
}
// search the inverted secondary index
uint32 word = find_inverted_secondary_block(offset, remzeros);
if (word > 0) {
vector<uint16>::const_iterator block_begin =
secondary_index_.begin() + offset;
remzeros -= *secondary_index_inverted(block_begin + word - 1, block_begin);
offset += word;
}
int nth = nth_bit(~bits_[offset], remzeros);
return (offset << BitmapIndex::kStorageLogBitSize) + nth;
}
size_t BitmapIndex::get_index_ones_count(size_t array_index) const {
uint32 sum = 0;
if (array_index > 0) {
sum += secondary_index_[array_index-1];
uint32 end_block = (array_index - 1) / kSecondaryBlockSize;
if (end_block > 0) sum += primary_index_[end_block-1];
}
return sum;
}
void BitmapIndex::BuildIndex(const uint64 *bits, size_t size) {
bits_ = bits;
size_ = size;
secondary_index_.clear();
secondary_index_.reserve(ArraySize());
primary_index_.clear();
primary_index_.reserve(primary_index_size());
const uint64 zero = 0;
const uint64 ones = ~zero;
uint32 popcount = 0;
for (uint32 block_begin = 0; block_begin < ArraySize();
block_begin += kSecondaryBlockSize) {
uint32 block_popcount = 0;
uint32 block_end = block_begin + kSecondaryBlockSize;
if (block_end > ArraySize()) block_end = ArraySize();
for (uint32 j = block_begin; j < block_end; ++j) {
uint64 mask = ones;
if (j == ArraySize() - 1) {
mask = ones >> (-size_ & BitmapIndex::kStorageBlockMask);
}
block_popcount += __builtin_popcountll(bits_[j] & mask);
secondary_index_.push_back(block_popcount);
}
popcount += block_popcount;
primary_index_.push_back(popcount);
}
}
size_t BitmapIndex::find_secondary_block(
size_t block_begin, size_t rem_bit_index) const {
size_t block_end = block_begin + kSecondaryBlockSize;
if (block_end > secondary_index_.size()) block_end = secondary_index_.size();
return std::distance(secondary_index_.begin() + block_begin,
std::lower_bound(secondary_index_.begin() + block_begin,
secondary_index_.begin() + block_end,
rem_bit_index));
}
size_t BitmapIndex::find_inverted_secondary_block(
size_t block_begin, size_t rem_bit_index) const {
size_t block_end = block_begin + kSecondaryBlockSize;
if (block_end > secondary_index_.size()) block_end = secondary_index_.size();
secondary_index_inverted start(secondary_index_.begin() + block_begin,
secondary_index_.begin() + block_begin);
secondary_index_inverted end(secondary_index_.begin() + block_end,
secondary_index_.begin() + block_begin);
return std::distance(start,
std::lower_bound(start, end, rem_bit_index));
}
inline size_t BitmapIndex::find_primary_block(size_t bit_index) const {
return std::distance(primary_index_.begin(),
std::lower_bound(primary_index_.begin(),
primary_index_.end(), bit_index));
}
size_t BitmapIndex::find_inverted_primary_block(size_t bit_index) const {
primary_index_inverted start(primary_index_.begin(), primary_index_.begin());
primary_index_inverted end(primary_index_.end(), primary_index_.begin());
return std::distance(start, std::lower_bound(start, end, bit_index));
}
} // end namespace fst