blob: 303cb249ab0d62130f08725b8d331b52527eafec [file] [log] [blame]
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: dbikel@google.com (Dan Bikel)
//
// An \ref Fst implementation that allows non-destructive edit operations on an
// existing fst.
#ifndef FST_LIB_EDIT_FST_H_
#define FST_LIB_EDIT_FST_H_
#include <vector>
using std::vector;
#include <fst/cache.h>
namespace fst {
// The EditFst class enables non-destructive edit operations on a wrapped
// ExpandedFst. The implementation uses copy-on-write semantics at the node
// level: if a user has an underlying fst on which he or she wants to perform a
// relatively small number of edits (read: mutations), then this implementation
// will copy the edited node to an internal MutableFst and perform any edits in
// situ on that copied node. This class supports all the methods of MutableFst
// except for DeleteStates(const vector<StateId> &); thus, new nodes may also be
// added, and one may add transitions from existing nodes of the wrapped fst to
// new nodes.
//
// N.B.: The documentation for Fst::Copy(true) says that its behavior is
// undefined if invoked on an fst that has already been accessed. This class
// requires that the Fst implementation it wraps provides consistent, reliable
// behavior when its Copy(true) method is invoked, where consistent means
// the graph structure, graph properties and state numbering and do not change.
// VectorFst and CompactFst, for example, are both well-behaved in this regard.
// The EditFstData class is a container for all mutable data for EditFstImpl;
// also, this class provides most of the actual implementation of what EditFst
// does (that is, most of EditFstImpl's methods delegate to methods in this, the
// EditFstData class). Instances of this class are reference-counted and can be
// shared between otherwise independent EditFstImpl instances. This scheme
// allows EditFstImpl to implement the thread-safe, copy-on-write semantics
// required by Fst::Copy(true).
//
// template parameters:
// A the type of arc to use
// WrappedFstT the type of fst wrapped by the EditFst instance that
// this EditFstData instance is backing
// MutableFstT the type of mutable fst to use internally for edited states;
// crucially, MutableFstT::Copy(false) *must* yield an fst that is
// thread-safe for reading (VectorFst, for example, has this property)
template <typename A,
typename WrappedFstT = ExpandedFst<A>,
typename MutableFstT = VectorFst<A> >
class EditFstData {
public:
typedef A Arc;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
typedef typename unordered_map<StateId, StateId>::const_iterator
IdMapIterator;
typedef typename unordered_map<StateId, Weight>::const_iterator
FinalWeightIterator;
EditFstData() : num_new_states_(0) {
SetEmptyAndDeleteKeysForInternalMaps();
}
EditFstData(const EditFstData &other) :
edits_(other.edits_),
external_to_internal_ids_(other.external_to_internal_ids_),
edited_final_weights_(other.edited_final_weights_),
num_new_states_(other.num_new_states_) {
}
~EditFstData() {
}
static EditFstData<A, WrappedFstT, MutableFstT> *Read(istream &strm,
const FstReadOptions &opts);
bool Write(ostream &strm, const FstWriteOptions &opts) const {
// Serialize all private data members of this class.
FstWriteOptions edits_opts(opts);
edits_opts.write_header = true; // Force writing contained header.
edits_.Write(strm, edits_opts);
WriteType(strm, external_to_internal_ids_);
WriteType(strm, edited_final_weights_);
WriteType(strm, num_new_states_);
if (!strm) {
LOG(ERROR) << "EditFstData::Write: write failed: " << opts.source;
return false;
}
return true;
}
int RefCount() const { return ref_count_.count(); }
int IncrRefCount() { return ref_count_.Incr(); }
int DecrRefCount() { return ref_count_.Decr(); }
StateId NumNewStates() const {
return num_new_states_;
}
// accessor methods for the fst holding edited states
StateId EditedStart() const {
return edits_.Start();
}
Weight Final(StateId s, const WrappedFstT *wrapped) const {
FinalWeightIterator final_weight_it = GetFinalWeightIterator(s);
if (final_weight_it == NotInFinalWeightMap()) {
IdMapIterator it = GetEditedIdMapIterator(s);
return it == NotInEditedMap() ?
wrapped->Final(s) : edits_.Final(it->second);
}
else {
return final_weight_it->second;
}
}
size_t NumArcs(StateId s, const WrappedFstT *wrapped) const {
IdMapIterator it = GetEditedIdMapIterator(s);
return it == NotInEditedMap() ?
wrapped->NumArcs(s) : edits_.NumArcs(it->second);
}
size_t NumInputEpsilons(StateId s, const WrappedFstT *wrapped) const {
IdMapIterator it = GetEditedIdMapIterator(s);
return it == NotInEditedMap() ?
wrapped->NumInputEpsilons(s) :
edits_.NumInputEpsilons(it->second);
}
size_t NumOutputEpsilons(StateId s, const WrappedFstT *wrapped) const {
IdMapIterator it = GetEditedIdMapIterator(s);
return it == NotInEditedMap() ?
wrapped->NumOutputEpsilons(s) :
edits_.NumOutputEpsilons(it->second);
}
void SetEditedProperties(uint64 props, uint64 mask) {
edits_.SetProperties(props, mask);
}
// non-const MutableFst operations
// Sets the start state for this fst.
void SetStart(StateId s) {
edits_.SetStart(s);
}
// Sets the final state for this fst.
Weight SetFinal(StateId s, Weight w, const WrappedFstT *wrapped) {
Weight old_weight = Final(s, wrapped);
IdMapIterator it = GetEditedIdMapIterator(s);
// if we haven't already edited state s, don't add it to edited_ (which can
// be expensive if s has many transitions); just use the
// edited_final_weights_ map
if (it == NotInEditedMap()) {
edited_final_weights_[s] = w;
}
else {
edits_.SetFinal(GetEditableInternalId(s, wrapped), w);
}
return old_weight;
}
// Adds a new state to this fst, initially with no arcs.
StateId AddState(StateId curr_num_states) {
StateId internal_state_id = edits_.AddState();
StateId external_state_id = curr_num_states;
external_to_internal_ids_[external_state_id] = internal_state_id;
num_new_states_++;
return external_state_id;
}
// Adds the specified arc to the specified state of this fst.
const A *AddArc(StateId s, const Arc &arc, const WrappedFstT *wrapped) {
StateId internal_id = GetEditableInternalId(s, wrapped);
size_t num_arcs = edits_.NumArcs(internal_id);
ArcIterator<MutableFstT> arc_it(edits_, internal_id);
const A *prev_arc = NULL;
if (num_arcs > 0) {
// grab the final arc associated with this state in edits_
arc_it.Seek(num_arcs - 1);
prev_arc = &(arc_it.Value());
}
edits_.AddArc(internal_id, arc);
return prev_arc;
}
void DeleteStates() {
edits_.DeleteStates();
num_new_states_ = 0;
external_to_internal_ids_.clear();
edited_final_weights_.clear();
}
// Removes all but the first n outgoing arcs of the specified state.
void DeleteArcs(StateId s, size_t n, const WrappedFstT *wrapped) {
edits_.DeleteArcs(GetEditableInternalId(s, wrapped), n);
}
// Removes all outgoing arcs from the specified state.
void DeleteArcs(StateId s, const WrappedFstT *wrapped) {
edits_.DeleteArcs(GetEditableInternalId(s, wrapped));
}
// end methods for non-const MutableFst operations
// Provides information for the generic arc iterator.
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data,
const WrappedFstT *wrapped) const {
IdMapIterator id_map_it = GetEditedIdMapIterator(s);
if (id_map_it == NotInEditedMap()) {
VLOG(3) << "EditFstData::InitArcIterator: iterating on state "
<< s << " of original fst";
wrapped->InitArcIterator(s, data);
} else {
VLOG(2) << "EditFstData::InitArcIterator: iterating on edited state "
<< s << " (internal state id: " << id_map_it->second << ")";
edits_.InitArcIterator(id_map_it->second, data);
}
}
// Provides information for the generic mutable arc iterator.
void InitMutableArcIterator(StateId s, MutableArcIteratorData<A> *data,
const WrappedFstT *wrapped) {
data->base =
new MutableArcIterator<MutableFstT>(&edits_,
GetEditableInternalId(s, wrapped));
}
// Prints out the map from external to internal state id's (for debugging
// purposes).
void PrintMap() {
for (IdMapIterator map_it = external_to_internal_ids_.begin();
map_it != NotInEditedMap(); ++map_it) {
LOG(INFO) << "(external,internal)=("
<< map_it->first << "," << map_it->second << ")";
}
}
private:
void SetEmptyAndDeleteKeysForInternalMaps() {
}
// Returns the iterator of the map from external to internal state id's
// of edits_ for the specified external state id.
IdMapIterator GetEditedIdMapIterator(StateId s) const {
return external_to_internal_ids_.find(s);
}
IdMapIterator NotInEditedMap() const {
return external_to_internal_ids_.end();
}
FinalWeightIterator GetFinalWeightIterator(StateId s) const {
return edited_final_weights_.find(s);
}
FinalWeightIterator NotInFinalWeightMap() const {
return edited_final_weights_.end();
}
// Returns the internal state id of the specified external id if the state has
// already been made editable, or else copies the state from wrapped_
// to edits_ and returns the state id of the newly editable state in edits_.
//
// \return makes the specified state editable if it isn't already and returns
// its state id in edits_
StateId GetEditableInternalId(StateId s, const WrappedFstT *wrapped) {
IdMapIterator id_map_it = GetEditedIdMapIterator(s);
if (id_map_it == NotInEditedMap()) {
StateId new_internal_id = edits_.AddState();
VLOG(2) << "EditFstData::GetEditableInternalId: editing state " << s
<< " of original fst; new internal state id:" << new_internal_id;
external_to_internal_ids_[s] = new_internal_id;
for (ArcIterator< Fst<A> > arc_iterator(*wrapped, s);
!arc_iterator.Done();
arc_iterator.Next()) {
edits_.AddArc(new_internal_id, arc_iterator.Value());
}
// copy the final weight
FinalWeightIterator final_weight_it = GetFinalWeightIterator(s);
if (final_weight_it == NotInFinalWeightMap()) {
edits_.SetFinal(new_internal_id, wrapped->Final(s));
} else {
edits_.SetFinal(new_internal_id, final_weight_it->second);
edited_final_weights_.erase(s);
}
return new_internal_id;
} else {
return id_map_it->second;
}
}
// A mutable fst (by default, a VectorFst) to contain new states, and/or
// copies of states from a wrapped ExpandedFst that have been modified in
// some way.
MutableFstT edits_;
// A mapping from external state id's to the internal id's of states that
// appear in edits_.
unordered_map<StateId, StateId> external_to_internal_ids_;
// A mapping from external state id's to final state weights assigned to
// those states. The states in this map are *only* those whose final weight
// has been modified; if any other part of the state has been modified,
// the entire state is copied to edits_, and all modifications reside there.
unordered_map<StateId, Weight> edited_final_weights_;
// The number of new states added to this mutable fst impl, which is <= the
// number of states in edits_ (since edits_ contains both edited *and* new
// states).
StateId num_new_states_;
RefCounter ref_count_;
};
// EditFstData method implementations: just the Read method.
template <typename A, typename WrappedFstT, typename MutableFstT>
EditFstData<A, WrappedFstT, MutableFstT> *
EditFstData<A, WrappedFstT, MutableFstT>::Read(istream &strm,
const FstReadOptions &opts) {
EditFstData<A, WrappedFstT, MutableFstT> *data =
new EditFstData<A, WrappedFstT, MutableFstT>();
// next read in MutabelFstT machine that stores edits
FstReadOptions edits_opts(opts);
edits_opts.header = 0; // Contained header was written out, so read it in.
// Because our internal representation of edited states is a solid object
// of type MutableFstT (defaults to VectorFst<A>) and not a pointer,
// and because the static Read method allocates a new object on the heap,
// we need to call Read, check if there was a failure, use
// MutableFstT::operator= to assign the object (not the pointer) to the
// edits_ data member (which will increase the ref count by 1 on the impl)
// and, finally, delete the heap-allocated object.
MutableFstT *edits = MutableFstT::Read(strm, edits_opts);
if (!edits) {
return 0;
}
data->edits_ = *edits;
delete edits;
// finally, read in rest of private data members
ReadType(strm, &data->external_to_internal_ids_);
ReadType(strm, &data->edited_final_weights_);
ReadType(strm, &data->num_new_states_);
if (!strm) {
LOG(ERROR) << "EditFst::Read: read failed: " << opts.source;
return 0;
}
return data;
}
// This class enables non-destructive edit operations on a wrapped ExpandedFst.
// The implementation uses copy-on-write semantics at the node level: if a user
// has an underlying fst on which he or she wants to perform a relatively small
// number of edits (read: mutations), then this implementation will copy the
// edited node to an internal MutableFst and perform any edits in situ on that
// copied node. This class supports all the methods of MutableFst except for
// DeleteStates(const vector<StateId> &); thus, new nodes may also be added, and
// one may add transitions from existing nodes of the wrapped fst to new nodes.
//
// template parameters:
// A the type of arc to use
// WrappedFstT the type of fst wrapped by the EditFst instance that
// this EditFstImpl instance is backing
// MutableFstT the type of mutable fst to use internally for edited states;
// crucially, MutableFstT::Copy(false) *must* yield an fst that is
// thread-safe for reading (VectorFst, for example, has this property)
template <typename A,
typename WrappedFstT = ExpandedFst<A>,
typename MutableFstT = VectorFst<A> >
class EditFstImpl : public FstImpl<A> {
public:
using FstImpl<A>::SetProperties;
using FstImpl<A>::SetInputSymbols;
using FstImpl<A>::SetOutputSymbols;
using FstImpl<A>::WriteHeader;
typedef A Arc;
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
// Constructs an editable fst implementation with no states. Effectively,
// this initially-empty fst will in every way mimic the behavior of
// a VectorFst--more precisely, a VectorFstImpl instance--but with slightly
// slower performance (by a constant factor), due to the fact that
// this class maintains a mapping between external state id's and
// their internal equivalents.
EditFstImpl() {
FstImpl<A>::SetType("edit");
wrapped_ = new MutableFstT();
InheritPropertiesFromWrapped();
data_ = new EditFstData<A, WrappedFstT, MutableFstT>();
}
// Wraps the specified ExpandedFst. This constructor requires that the
// specified Fst is an ExpandedFst instance. This requirement is only enforced
// at runtime. (See below for the reason.)
//
// This library uses the pointer-to-implementation or "PIMPL" design pattern.
// In particular, to make it convenient to bind an implementation class to its
// interface, there are a pair of template "binder" classes, one for immutable
// and one for mutable fst's (ImplToFst and ImplToMutableFst, respectively).
// As it happens, the API for the ImplToMutableFst<I,F> class requires that
// the implementation class--the template parameter "I"--have a constructor
// taking a const Fst<A> reference. Accordingly, the constructor here must
// perform a static_cast to the WrappedFstT type required by EditFst and
// therefore EditFstImpl.
explicit EditFstImpl(const Fst<A> &wrapped)
: wrapped_(static_cast<WrappedFstT *>(wrapped.Copy())) {
FstImpl<A>::SetType("edit");
data_ = new EditFstData<A, WrappedFstT, MutableFstT>();
// have edits_ inherit all properties from wrapped_
data_->SetEditedProperties(wrapped_->Properties(kFstProperties, false),
kFstProperties);
InheritPropertiesFromWrapped();
}
// A copy constructor for this implementation class, used to implement
// the Copy() method of the Fst interface.
EditFstImpl(const EditFstImpl &impl)
: wrapped_(static_cast<WrappedFstT *>(impl.wrapped_->Copy(true))),
data_(impl.data_) {
data_->IncrRefCount();
SetProperties(impl.Properties());
}
~EditFstImpl() {
delete wrapped_;
if (!data_->DecrRefCount()) {
delete data_;
}
}
// const Fst/ExpandedFst operations, declared in the Fst and ExpandedFst
// interfaces
StateId Start() const {
StateId edited_start = data_->EditedStart();
return edited_start == kNoStateId ? wrapped_->Start() : edited_start;
}
Weight Final(StateId s) const {
return data_->Final(s, wrapped_);
}
size_t NumArcs(StateId s) const {
return data_->NumArcs(s, wrapped_);
}
size_t NumInputEpsilons(StateId s) const {
return data_->NumInputEpsilons(s, wrapped_);
}
size_t NumOutputEpsilons(StateId s) const {
return data_->NumOutputEpsilons(s, wrapped_);
}
StateId NumStates() const {
return wrapped_->NumStates() + data_->NumNewStates();
}
static EditFstImpl<A, WrappedFstT, MutableFstT> *
Read(istream &strm,
const FstReadOptions &opts);
bool Write(ostream &strm, const FstWriteOptions &opts) const {
FstHeader hdr;
hdr.SetStart(Start());
hdr.SetNumStates(NumStates());
FstWriteOptions header_opts(opts);
header_opts.write_isymbols = false; // Let contained FST hold any symbols.
header_opts.write_osymbols = false;
WriteHeader(strm, header_opts, kFileVersion, &hdr);
// First, serialize wrapped fst to stream.
FstWriteOptions wrapped_opts(opts);
wrapped_opts.write_header = true; // Force writing contained header.
wrapped_->Write(strm, wrapped_opts);
data_->Write(strm, opts);
strm.flush();
if (!strm) {
LOG(ERROR) << "EditFst::Write: write failed: " << opts.source;
return false;
}
return true;
}
// end const Fst operations
// non-const MutableFst operations
// Sets the start state for this fst.
void SetStart(StateId s) {
MutateCheck();
data_->SetStart(s);
SetProperties(SetStartProperties(FstImpl<A>::Properties()));
}
// Sets the final state for this fst.
void SetFinal(StateId s, Weight w) {
MutateCheck();
Weight old_weight = data_->SetFinal(s, w, wrapped_);
SetProperties(SetFinalProperties(FstImpl<A>::Properties(), old_weight, w));
}
// Adds a new state to this fst, initially with no arcs.
StateId AddState() {
MutateCheck();
SetProperties(AddStateProperties(FstImpl<A>::Properties()));
return data_->AddState(NumStates());
}
// Adds the specified arc to the specified state of this fst.
void AddArc(StateId s, const Arc &arc) {
MutateCheck();
const A *prev_arc = data_->AddArc(s, arc, wrapped_);
SetProperties(AddArcProperties(FstImpl<A>::Properties(), s, arc, prev_arc));
}
void DeleteStates(const vector<StateId>& dstates) {
FSTERROR() << ": EditFstImpl::DeleteStates(const std::vector<StateId>&): "
<< " not implemented";
SetProperties(kError, kError);
}
// Deletes all states in this fst.
void DeleteStates();
// Removes all but the first n outgoing arcs of the specified state.
void DeleteArcs(StateId s, size_t n) {
MutateCheck();
data_->DeleteArcs(s, n, wrapped_);
SetProperties(DeleteArcsProperties(FstImpl<A>::Properties()));
}
// Removes all outgoing arcs from the specified state.
void DeleteArcs(StateId s) {
MutateCheck();
data_->DeleteArcs(s, wrapped_);
SetProperties(DeleteArcsProperties(FstImpl<A>::Properties()));
}
void ReserveStates(StateId s) {
}
void ReserveArcs(StateId s, size_t n) {
}
// end non-const MutableFst operations
// Provides information for the generic state iterator.
void InitStateIterator(StateIteratorData<Arc> *data) const {
data->base = 0;
data->nstates = NumStates();
}
// Provides information for the generic arc iterator.
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const {
data_->InitArcIterator(s, data, wrapped_);
}
// Provides information for the generic mutable arc iterator.
void InitMutableArcIterator(StateId s, MutableArcIteratorData<A> *data) {
MutateCheck();
data_->InitMutableArcIterator(s, data, wrapped_);
}
private:
typedef typename unordered_map<StateId, StateId>::const_iterator
IdMapIterator;
typedef typename unordered_map<StateId, Weight>::const_iterator
FinalWeightIterator;
// Properties always true of this Fst class
static const uint64 kStaticProperties = kExpanded | kMutable;
// Current file format version
static const int kFileVersion = 2;
// Minimum file format version supported
static const int kMinFileVersion = 2;
// Causes this fst to inherit all the properties from its wrapped fst, except
// for the two properties that always apply to EditFst instances: kExpanded
// and kMutable.
void InheritPropertiesFromWrapped() {
SetProperties(wrapped_->Properties(kCopyProperties, false) |
kStaticProperties);
SetInputSymbols(wrapped_->InputSymbols());
SetOutputSymbols(wrapped_->OutputSymbols());
}
// This method ensures that any operations that alter the mutable data
// portion of this EditFstImpl cause the data_ member to be copied when its
// reference count is greater than 1. Note that this method is distinct from
// MutableFst::Mutate, which gets invoked whenever one of the basic mutation
// methods defined in MutableFst is invoked, such as SetInputSymbols.
// The MutateCheck here in EditFstImpl is invoked whenever one of the
// mutating methods specifically related to the types of edits provided
// by EditFst is performed, such as changing an arc of an existing state
// of the wrapped fst via a MutableArcIterator, or adding a new state via
// AddState().
void MutateCheck() {
if (data_->RefCount() > 1) {
EditFstData<A, WrappedFstT, MutableFstT> *data_copy =
new EditFstData<A, WrappedFstT, MutableFstT>(*data_);
if (data_ && !data_->DecrRefCount()) {
delete data_;
}
data_ = data_copy;
}
}
// The fst that this fst wraps. The purpose of this class is to enable
// non-destructive edits on this wrapped fst.
const WrappedFstT *wrapped_;
// The mutable data for this EditFst instance, with delegates for all the
// methods that can mutate data.
EditFstData<A, WrappedFstT, MutableFstT> *data_;
};
template <typename A, typename WrappedFstT, typename MutableFstT>
const uint64 EditFstImpl<A, WrappedFstT, MutableFstT>::kStaticProperties;
// EditFstImpl IMPLEMENTATION STARTS HERE
template<typename A, typename WrappedFstT, typename MutableFstT>
inline void EditFstImpl<A, WrappedFstT, MutableFstT>::DeleteStates() {
data_->DeleteStates();
delete wrapped_;
// we are deleting all states, so just forget about pointer to wrapped_
// and do what default constructor does: set wrapped_ to a new VectorFst
wrapped_ = new MutableFstT();
uint64 newProps = DeleteAllStatesProperties(FstImpl<A>::Properties(),
kStaticProperties);
FstImpl<A>::SetProperties(newProps);
}
template <typename A, typename WrappedFstT, typename MutableFstT>
EditFstImpl<A, WrappedFstT, MutableFstT> *
EditFstImpl<A, WrappedFstT, MutableFstT>::Read(istream &strm,
const FstReadOptions &opts) {
EditFstImpl<A, WrappedFstT, MutableFstT> *impl = new EditFstImpl();
FstHeader hdr;
if (!impl->ReadHeader(strm, opts, kMinFileVersion, &hdr)) {
return 0;
}
impl->SetStart(hdr.Start());
// first, read in wrapped fst
FstReadOptions wrapped_opts(opts);
wrapped_opts.header = 0; // Contained header was written out, so read it in.
Fst<A> *wrapped_fst = Fst<A>::Read(strm, wrapped_opts);
if (!wrapped_fst) {
return 0;
}
impl->wrapped_ = static_cast<WrappedFstT *>(wrapped_fst);
impl->data_ = EditFstData<A, WrappedFstT, MutableFstT>::Read(strm, opts);
if (!impl->data_) {
delete wrapped_fst;
return 0;
}
return impl;
}
// END EditFstImpl IMPLEMENTATION
// Concrete, editable FST. This class attaches interface to implementation.
template <typename A,
typename WrappedFstT = ExpandedFst<A>,
typename MutableFstT = VectorFst<A> >
class EditFst :
public ImplToMutableFst< EditFstImpl<A, WrappedFstT, MutableFstT> > {
public:
friend class MutableArcIterator< EditFst<A, WrappedFstT, MutableFstT> >;
typedef A Arc;
typedef typename A::StateId StateId;
typedef EditFstImpl<A, WrappedFstT, MutableFstT> Impl;
EditFst() : ImplToMutableFst<Impl>(new Impl()) {}
explicit EditFst(const Fst<A> &fst) :
ImplToMutableFst<Impl>(new Impl(fst)) {}
explicit EditFst(const WrappedFstT &fst) :
ImplToMutableFst<Impl>(new Impl(fst)) {}
// See Fst<>::Copy() for doc.
EditFst(const EditFst<A, WrappedFstT, MutableFstT> &fst, bool safe = false) :
ImplToMutableFst<Impl>(fst, safe) {}
virtual ~EditFst() {}
// Get a copy of this EditFst. See Fst<>::Copy() for further doc.
virtual EditFst<A, WrappedFstT, MutableFstT> *Copy(bool safe = false) const {
return new EditFst<A, WrappedFstT, MutableFstT>(*this, safe);
}
EditFst<A, WrappedFstT, MutableFstT> &
operator=(const EditFst<A, WrappedFstT, MutableFstT> &fst) {
SetImpl(fst.GetImpl(), false);
return *this;
}
virtual EditFst<A, WrappedFstT, MutableFstT> &operator=(const Fst<A> &fst) {
if (this != &fst) {
SetImpl(new Impl(fst));
}
return *this;
}
// Read an EditFst from an input stream; return NULL on error.
static EditFst<A, WrappedFstT, MutableFstT> *
Read(istream &strm,
const FstReadOptions &opts) {
Impl* impl = Impl::Read(strm, opts);
return impl ? new EditFst<A>(impl) : 0;
}
// Read an EditFst from a file; return NULL on error.
// Empty filename reads from standard input.
static EditFst<A, WrappedFstT, MutableFstT> *Read(const string &filename) {
Impl* impl = ImplToExpandedFst<Impl, MutableFst<A> >::Read(filename);
return impl ? new EditFst<A, WrappedFstT, MutableFstT>(impl) : 0;
}
virtual bool Write(ostream &strm, const FstWriteOptions &opts) const {
return GetImpl()->Write(strm, opts);
}
virtual bool Write(const string &filename) const {
return Fst<A>::WriteFile(filename);
}
virtual void InitStateIterator(StateIteratorData<Arc> *data) const {
GetImpl()->InitStateIterator(data);
}
virtual void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const {
GetImpl()->InitArcIterator(s, data);
}
virtual
void InitMutableArcIterator(StateId s, MutableArcIteratorData<A> *data) {
GetImpl()->InitMutableArcIterator(s, data);
}
private:
explicit EditFst(Impl *impl) : ImplToMutableFst<Impl>(impl) {}
// Makes visible to friends.
Impl *GetImpl() const { return ImplToFst< Impl, MutableFst<A> >::GetImpl(); }
void SetImpl(Impl *impl, bool own_impl = true) {
ImplToFst< Impl, MutableFst<A> >::SetImpl(impl, own_impl);
}
};
} // namespace fst
#endif // FST_LIB_EDIT_FST_H_