AMDGPU: Introduce a pass to replace VGPR MFMAs with AGPR (#145024)

In gfx90a-gfx950, it's possible to emit MFMAs which use AGPRs or VGPRs
for vdst and src2. We do not want to do use the AGPR form, unless
required by register pressure as it requires cross bank register
copies from most other instructions. Currently we select the AGPR
or VGPR version depending on a crude heuristic for whether it's possible
AGPRs will be required. We really need the register allocation to
be complete to make a good decision, which is what this pass is for.
    
This adds the pass, but does not yet remove the selection patterns
for AGPRs. This is a WIP, and NFC-ish. It should be a no-op on any
currently selected code. It also does not yet trigger on the real
examples of interest, which require handling batches of MFMAs at
once.
10 files changed
tree: b8d0dca4a19a96ddb10bf74d53dde2dd33d4ef31
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-format-ignore
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.