[LifetimeSafety] Make the dataflow analysis generic (#148222)

Refactored the lifetime safety analysis to use a generic dataflow framework with a policy-based design.

### Changes

- Introduced a generic `DataflowAnalysis` template class that can be specialized for different analyses
- Renamed `LifetimeLattice` to `LoanPropagationLattice` to better reflect its purpose
- Created a `LoanPropagationAnalysis` class that inherits from the generic framework
- Moved transfer functions from the standalone `Transferer` class into the analysis class
- Restructured the code to separate the dataflow engine from the specific analysis logic
- Updated debug output and test expectations to use the new class names

### Motivation

In order to add more analyses, e.g. [loan expiry](https://github.com/llvm/llvm-project/pull/148712) and origin liveness, the previous implementation would have separate, nearly identical dataflow runners for each analysis. This change creates a single, reusable component, which will make it much simpler to add subsequent analyses without repeating boilerplate code.


This is quite close to the existing dataflow framework!
2 files changed
tree: 4217313a6311984b08f501a430f2411c6c282049
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-format-ignore
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.