| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "meta/radv_meta.h" |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "nir/nir_serialize.h" |
| #include "nir/nir_xfb_info.h" |
| #include "nir/radv_nir.h" |
| #include "spirv/nir_spirv.h" |
| #include "util/disk_cache.h" |
| #include "util/mesa-sha1.h" |
| #include "util/os_time.h" |
| #include "util/u_atomic.h" |
| #include "radv_cs.h" |
| #include "radv_debug.h" |
| #include "radv_entrypoints.h" |
| #include "radv_formats.h" |
| #include "radv_physical_device.h" |
| #include "radv_pipeline_binary.h" |
| #include "radv_pipeline_cache.h" |
| #include "radv_rmv.h" |
| #include "radv_shader.h" |
| #include "radv_shader_args.h" |
| #include "vk_nir_convert_ycbcr.h" |
| #include "vk_pipeline.h" |
| #include "vk_render_pass.h" |
| #include "vk_util.h" |
| |
| #include "util/u_debug.h" |
| #include "ac_binary.h" |
| #include "ac_formats.h" |
| #include "ac_nir.h" |
| #include "ac_shader_util.h" |
| #include "aco_interface.h" |
| #include "sid.h" |
| |
| static bool |
| radv_is_static_vrs_enabled(const struct vk_graphics_pipeline_state *state) |
| { |
| if (!state->fsr) |
| return false; |
| |
| return state->fsr->fragment_size.width != 1 || state->fsr->fragment_size.height != 1 || |
| state->fsr->combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR || |
| state->fsr->combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; |
| } |
| |
| static bool |
| radv_is_vrs_enabled(const struct vk_graphics_pipeline_state *state) |
| { |
| return radv_is_static_vrs_enabled(state) || BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_FSR); |
| } |
| |
| static bool |
| radv_pipeline_has_ds_attachments(const struct vk_render_pass_state *rp) |
| { |
| return rp->depth_attachment_format != VK_FORMAT_UNDEFINED || rp->stencil_attachment_format != VK_FORMAT_UNDEFINED; |
| } |
| |
| static bool |
| radv_pipeline_has_color_attachments(const struct vk_render_pass_state *rp) |
| { |
| for (uint32_t i = 0; i < rp->color_attachment_count; ++i) { |
| if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Get rid of DST in the blend factors by commuting the operands: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| void |
| radv_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor, VkBlendFactor expected_dst, |
| VkBlendFactor replacement_src) |
| { |
| if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) { |
| *src_factor = VK_BLEND_FACTOR_ZERO; |
| *dst_factor = replacement_src; |
| |
| /* Commuting the operands requires reversing subtractions. */ |
| if (*func == VK_BLEND_OP_SUBTRACT) |
| *func = VK_BLEND_OP_REVERSE_SUBTRACT; |
| else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) |
| *func = VK_BLEND_OP_SUBTRACT; |
| } |
| } |
| |
| static unsigned |
| radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, bool blend_enable, |
| bool blend_need_alpha) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct util_format_description *desc = vk_format_description(vk_format); |
| bool use_rbplus = pdev->info.rbplus_allowed; |
| struct ac_spi_color_formats formats = {0}; |
| unsigned format, ntype, swap; |
| |
| format = ac_get_cb_format(pdev->info.gfx_level, desc->format); |
| ntype = ac_get_cb_number_type(desc->format); |
| swap = ac_translate_colorswap(pdev->info.gfx_level, desc->format, false); |
| |
| ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats); |
| |
| if (blend_enable && blend_need_alpha) |
| return formats.blend_alpha; |
| else if (blend_need_alpha) |
| return formats.alpha; |
| else if (blend_enable) |
| return formats.blend; |
| else |
| return formats.normal; |
| } |
| |
| static bool |
| format_is_int8(VkFormat format) |
| { |
| const struct util_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8; |
| } |
| |
| static bool |
| format_is_int10(VkFormat format) |
| { |
| const struct util_format_description *desc = vk_format_description(format); |
| |
| if (desc->nr_channels != 4) |
| return false; |
| for (unsigned i = 0; i < 4; i++) { |
| if (desc->channel[i].pure_integer && desc->channel[i].size == 10) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool |
| format_is_float32(VkFormat format) |
| { |
| const struct util_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32; |
| } |
| |
| /* |
| * Ordered so that for each i, |
| * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i. |
| */ |
| const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = { |
| VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM, |
| VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT, |
| VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_UINT, |
| VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32, |
| }; |
| |
| unsigned |
| radv_format_meta_fs_key(struct radv_device *device, VkFormat format) |
| { |
| unsigned col_format = radv_choose_spi_color_format(device, format, false, false); |
| assert(col_format != V_028714_SPI_SHADER_32_AR); |
| |
| bool is_int8 = format_is_int8(format); |
| bool is_int10 = format_is_int10(format); |
| |
| if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8) |
| return 8; |
| else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8) |
| return 9; |
| else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10) |
| return 10; |
| else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10) |
| return 11; |
| else { |
| if (col_format >= V_028714_SPI_SHADER_32_AR) |
| --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */ |
| |
| --col_format; /* Skip V_028714_SPI_SHADER_ZERO */ |
| return col_format; |
| } |
| } |
| |
| static bool |
| radv_pipeline_needs_ps_epilog(const struct vk_graphics_pipeline_state *state, |
| VkGraphicsPipelineLibraryFlagBitsEXT lib_flags) |
| { |
| /* Use a PS epilog when the fragment shader is compiled without the fragment output interface. */ |
| if ((state->shader_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && |
| (lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) && |
| !(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)) |
| return true; |
| |
| /* These dynamic states need to compile PS epilogs on-demand. */ |
| if (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_CB_BLEND_ENABLES) || |
| BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_CB_WRITE_MASKS) || |
| BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_CB_BLEND_EQUATIONS) || |
| BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) || |
| BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_ONE_ENABLE)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool |
| radv_pipeline_uses_vrs_attachment(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| VkPipelineCreateFlags2 create_flags = pipeline->base.create_flags; |
| if (state->rp) |
| create_flags |= state->pipeline_flags; |
| |
| return (create_flags & VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) != 0; |
| } |
| |
| static void |
| radv_pipeline_init_multisample_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| struct radv_multisample_state *ms = &pipeline->ms; |
| |
| /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading: |
| * |
| * "Sample shading is enabled for a graphics pipeline: |
| * |
| * - If the interface of the fragment shader entry point of the |
| * graphics pipeline includes an input variable decorated |
| * with SampleId or SamplePosition. In this case |
| * minSampleShadingFactor takes the value 1.0. |
| * - Else if the sampleShadingEnable member of the |
| * VkPipelineMultisampleStateCreateInfo structure specified |
| * when creating the graphics pipeline is set to VK_TRUE. In |
| * this case minSampleShadingFactor takes the value of |
| * VkPipelineMultisampleStateCreateInfo::minSampleShading. |
| * |
| * Otherwise, sample shading is considered disabled." |
| */ |
| if (state->ms && state->ms->sample_shading_enable) { |
| ms->sample_shading_enable = true; |
| ms->min_sample_shading = state->ms->min_sample_shading; |
| } |
| } |
| |
| static uint32_t |
| radv_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim) |
| { |
| switch (prim) { |
| case TESS_PRIMITIVE_TRIANGLES: |
| case TESS_PRIMITIVE_QUADS: |
| return V_028A6C_TRISTRIP; |
| case TESS_PRIMITIVE_ISOLINES: |
| return V_028A6C_LINESTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint64_t |
| radv_dynamic_state_mask(VkDynamicState state) |
| { |
| switch (state) { |
| case VK_DYNAMIC_STATE_VIEWPORT: |
| case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT: |
| return RADV_DYNAMIC_VIEWPORT; |
| case VK_DYNAMIC_STATE_SCISSOR: |
| case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT: |
| return RADV_DYNAMIC_SCISSOR; |
| case VK_DYNAMIC_STATE_LINE_WIDTH: |
| return RADV_DYNAMIC_LINE_WIDTH; |
| case VK_DYNAMIC_STATE_DEPTH_BIAS: |
| return RADV_DYNAMIC_DEPTH_BIAS; |
| case VK_DYNAMIC_STATE_BLEND_CONSTANTS: |
| return RADV_DYNAMIC_BLEND_CONSTANTS; |
| case VK_DYNAMIC_STATE_DEPTH_BOUNDS: |
| return RADV_DYNAMIC_DEPTH_BOUNDS; |
| case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: |
| return RADV_DYNAMIC_STENCIL_COMPARE_MASK; |
| case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: |
| return RADV_DYNAMIC_STENCIL_WRITE_MASK; |
| case VK_DYNAMIC_STATE_STENCIL_REFERENCE: |
| return RADV_DYNAMIC_STENCIL_REFERENCE; |
| case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: |
| return RADV_DYNAMIC_DISCARD_RECTANGLE; |
| case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: |
| return RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| case VK_DYNAMIC_STATE_LINE_STIPPLE: |
| return RADV_DYNAMIC_LINE_STIPPLE; |
| case VK_DYNAMIC_STATE_CULL_MODE: |
| return RADV_DYNAMIC_CULL_MODE; |
| case VK_DYNAMIC_STATE_FRONT_FACE: |
| return RADV_DYNAMIC_FRONT_FACE; |
| case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY: |
| return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY; |
| case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE: |
| return RADV_DYNAMIC_DEPTH_TEST_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE: |
| return RADV_DYNAMIC_DEPTH_WRITE_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP: |
| return RADV_DYNAMIC_DEPTH_COMPARE_OP; |
| case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE: |
| return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE; |
| case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE: |
| return RADV_DYNAMIC_STENCIL_TEST_ENABLE; |
| case VK_DYNAMIC_STATE_STENCIL_OP: |
| return RADV_DYNAMIC_STENCIL_OP; |
| case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE: |
| return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE; |
| case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR: |
| return RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT: |
| return RADV_DYNAMIC_PATCH_CONTROL_POINTS; |
| case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE: |
| return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE: |
| return RADV_DYNAMIC_DEPTH_BIAS_ENABLE; |
| case VK_DYNAMIC_STATE_LOGIC_OP_EXT: |
| return RADV_DYNAMIC_LOGIC_OP; |
| case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE: |
| return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; |
| case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT: |
| return RADV_DYNAMIC_COLOR_WRITE_ENABLE; |
| case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT: |
| return RADV_DYNAMIC_VERTEX_INPUT; |
| case VK_DYNAMIC_STATE_POLYGON_MODE_EXT: |
| return RADV_DYNAMIC_POLYGON_MODE; |
| case VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT: |
| return RADV_DYNAMIC_TESS_DOMAIN_ORIGIN; |
| case VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT: |
| return RADV_DYNAMIC_LOGIC_OP_ENABLE; |
| case VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT: |
| return RADV_DYNAMIC_LINE_STIPPLE_ENABLE; |
| case VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT: |
| return RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE; |
| case VK_DYNAMIC_STATE_SAMPLE_MASK_EXT: |
| return RADV_DYNAMIC_SAMPLE_MASK; |
| case VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLIP_ENABLE; |
| case VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT: |
| return RADV_DYNAMIC_CONSERVATIVE_RAST_MODE; |
| case VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE; |
| case VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT: |
| return RADV_DYNAMIC_PROVOKING_VERTEX_MODE; |
| case VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLAMP_ENABLE; |
| case VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT: |
| return RADV_DYNAMIC_COLOR_WRITE_MASK; |
| case VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT: |
| return RADV_DYNAMIC_COLOR_BLEND_ENABLE; |
| case VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT: |
| return RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| case VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT: |
| return RADV_DYNAMIC_LINE_RASTERIZATION_MODE; |
| case VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT: |
| return RADV_DYNAMIC_COLOR_BLEND_EQUATION; |
| case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT: |
| return RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE; |
| case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT: |
| return RADV_DYNAMIC_DISCARD_RECTANGLE_MODE; |
| case VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT: |
| return RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE; |
| case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT: |
| return RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE; |
| case VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT: |
| return RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_CLAMP_RANGE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLAMP_RANGE; |
| default: |
| unreachable("Unhandled dynamic state"); |
| } |
| } |
| |
| #define RADV_DYNAMIC_CB_STATES \ |
| (RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_COLOR_WRITE_ENABLE | \ |
| RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | \ |
| RADV_DYNAMIC_BLEND_CONSTANTS) |
| |
| static bool |
| radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline, const struct vk_color_blend_state *cb) |
| { |
| /* If we don't know then we have to assume that blend may be enabled. cb may also be NULL in this |
| * case. |
| */ |
| if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK)) |
| return true; |
| |
| /* If we have the blend enable state, then cb being NULL indicates no attachments are written. */ |
| if (cb) { |
| for (uint32_t i = 0; i < cb->attachment_count; i++) { |
| if (cb->attachments[i].write_mask && cb->attachments[i].blend_enable) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static uint64_t |
| radv_pipeline_needed_dynamic_state(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| bool has_color_att = radv_pipeline_has_color_attachments(state->rp); |
| bool raster_enabled = |
| !state->rs->rasterizer_discard_enable || (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE); |
| uint64_t states = RADV_DYNAMIC_ALL; |
| |
| if (pdev->info.gfx_level < GFX10_3) |
| states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| |
| /* Disable dynamic states that are useless to mesh shading. */ |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { |
| if (!raster_enabled) |
| return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; |
| |
| states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | |
| RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY); |
| } |
| |
| /* Disable dynamic states that are useless when rasterization is disabled. */ |
| if (!raster_enabled) { |
| states = RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | |
| RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | |
| RADV_DYNAMIC_VERTEX_INPUT; |
| |
| if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) |
| states |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN; |
| |
| return states; |
| } |
| |
| if (!state->rs->depth_bias.enable && !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE)) |
| states &= ~RADV_DYNAMIC_DEPTH_BIAS; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) && |
| (!state->ds || !state->ds->depth.bounds_test.enable)) |
| states &= ~RADV_DYNAMIC_DEPTH_BOUNDS; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) && |
| (!state->ds || !state->ds->stencil.test_enable)) |
| states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE | |
| RADV_DYNAMIC_STENCIL_OP); |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) && !state->dr->rectangle_count) |
| states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) && |
| (!state->ms || !state->ms->sample_locations_enable)) |
| states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| |
| if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, state->cb)) |
| states &= ~RADV_DYNAMIC_BLEND_CONSTANTS; |
| |
| if (!(pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)) |
| states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN); |
| |
| return states; |
| } |
| |
| struct radv_ia_multi_vgt_param_helpers |
| radv_compute_ia_multi_vgt_param(const struct radv_device *device, struct radv_shader *const *shaders) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0}; |
| |
| ia_multi_vgt_param.ia_switch_on_eoi = false; |
| if (shaders[MESA_SHADER_FRAGMENT] && shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| if (shaders[MESA_SHADER_GEOMETRY] && shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| if (shaders[MESA_SHADER_TESS_CTRL]) { |
| const struct radv_shader *tes = radv_get_shader(shaders, MESA_SHADER_TESS_EVAL); |
| |
| /* SWITCH_ON_EOI must be set if PrimID is used. */ |
| if (shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || tes->info.uses_prim_id || |
| (tes->info.merged_shader_compiled_separately && shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| } |
| |
| ia_multi_vgt_param.partial_vs_wave = false; |
| if (shaders[MESA_SHADER_TESS_CTRL]) { |
| /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ |
| if ((pdev->info.family == CHIP_TAHITI || pdev->info.family == CHIP_PITCAIRN || |
| pdev->info.family == CHIP_BONAIRE) && |
| shaders[MESA_SHADER_GEOMETRY]) |
| ia_multi_vgt_param.partial_vs_wave = true; |
| /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ |
| if (pdev->info.has_distributed_tess) { |
| if (shaders[MESA_SHADER_GEOMETRY]) { |
| if (pdev->info.gfx_level <= GFX8) |
| ia_multi_vgt_param.partial_es_wave = true; |
| } else { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| } |
| } |
| |
| if (shaders[MESA_SHADER_GEOMETRY]) { |
| /* On these chips there is the possibility of a hang if the |
| * pipeline uses a GS and partial_vs_wave is not set. |
| * |
| * This mostly does not hit 4-SE chips, as those typically set |
| * ia_switch_on_eoi and then partial_vs_wave is set for pipelines |
| * with GS due to another workaround. |
| * |
| * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242 |
| */ |
| if (pdev->info.family == CHIP_TONGA || pdev->info.family == CHIP_FIJI || pdev->info.family == CHIP_POLARIS10 || |
| pdev->info.family == CHIP_POLARIS11 || pdev->info.family == CHIP_POLARIS12 || |
| pdev->info.family == CHIP_VEGAM) { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| } |
| |
| ia_multi_vgt_param.base = |
| /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ |
| S_028AA8_MAX_PRIMGRP_IN_WAVE(pdev->info.gfx_level == GFX8 ? 2 : 0) | |
| S_030960_EN_INST_OPT_BASIC(pdev->info.gfx_level >= GFX9) | S_030960_EN_INST_OPT_ADV(pdev->info.gfx_level >= GFX9); |
| |
| return ia_multi_vgt_param; |
| } |
| |
| static uint32_t |
| radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding) |
| { |
| for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) { |
| const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i]; |
| |
| if (input_binding->binding == attrib_binding) |
| return input_binding->stride; |
| } |
| |
| return 0; |
| } |
| |
| #define ALL_GRAPHICS_LIB_FLAGS \ |
| (VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | \ |
| VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | \ |
| VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT | \ |
| VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT) |
| |
| static VkGraphicsPipelineLibraryFlagBitsEXT |
| shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage) |
| { |
| assert(util_bitcount(stage) == 1); |
| switch (stage) { |
| case VK_SHADER_STAGE_VERTEX_BIT: |
| case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: |
| case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: |
| case VK_SHADER_STAGE_GEOMETRY_BIT: |
| case VK_SHADER_STAGE_TASK_BIT_EXT: |
| case VK_SHADER_STAGE_MESH_BIT_EXT: |
| return VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT; |
| case VK_SHADER_STAGE_FRAGMENT_BIT: |
| return VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT; |
| default: |
| unreachable("Invalid shader stage"); |
| } |
| } |
| |
| static void |
| radv_graphics_pipeline_import_layout(struct radv_pipeline_layout *dst, const struct radv_pipeline_layout *src) |
| { |
| for (uint32_t s = 0; s < src->num_sets; s++) { |
| if (!src->set[s].layout) |
| continue; |
| |
| radv_pipeline_layout_add_set(dst, s, src->set[s].layout); |
| } |
| |
| dst->independent_sets |= src->independent_sets; |
| dst->push_constant_size = MAX2(dst->push_constant_size, src->push_constant_size); |
| } |
| |
| static void |
| radv_pipeline_import_graphics_info(struct radv_device *device, struct radv_graphics_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| /* Mark all states declared dynamic at pipeline creation. */ |
| if (pCreateInfo->pDynamicState) { |
| uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; |
| for (uint32_t s = 0; s < count; s++) { |
| pipeline->dynamic_states |= radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]); |
| } |
| } |
| |
| /* Mark all active stages at pipeline creation. */ |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i]; |
| |
| pipeline->active_stages |= sinfo->stage; |
| } |
| |
| if (pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_EXT) { |
| pipeline->last_vgt_api_stage = MESA_SHADER_MESH; |
| } else { |
| pipeline->last_vgt_api_stage = util_last_bit(pipeline->active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1; |
| } |
| } |
| |
| static bool |
| radv_should_import_lib_binaries(const VkPipelineCreateFlags2 create_flags) |
| { |
| return !(create_flags & (VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT | |
| VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT)); |
| } |
| |
| static void |
| radv_graphics_pipeline_import_lib(const struct radv_device *device, struct radv_graphics_pipeline *pipeline, |
| struct radv_graphics_lib_pipeline *lib) |
| { |
| bool import_binaries = false; |
| |
| /* There should be no common blocks between a lib we import and the current |
| * pipeline we're building. |
| */ |
| assert((pipeline->active_stages & lib->base.active_stages) == 0); |
| |
| pipeline->dynamic_states |= lib->base.dynamic_states; |
| pipeline->active_stages |= lib->base.active_stages; |
| |
| /* Import binaries when LTO is disabled and when the library doesn't retain any shaders. */ |
| if (lib->base.has_pipeline_binaries || radv_should_import_lib_binaries(pipeline->base.create_flags)) { |
| import_binaries = true; |
| } |
| |
| if (import_binaries) { |
| /* Import the compiled shaders. */ |
| for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) { |
| if (!lib->base.base.shaders[s]) |
| continue; |
| |
| pipeline->base.shaders[s] = radv_shader_ref(lib->base.base.shaders[s]); |
| } |
| |
| /* Import the GS copy shader if present. */ |
| if (lib->base.base.gs_copy_shader) { |
| assert(!pipeline->base.gs_copy_shader); |
| pipeline->base.gs_copy_shader = radv_shader_ref(lib->base.base.gs_copy_shader); |
| } |
| } |
| } |
| |
| static void |
| radv_pipeline_init_input_assembly_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline) |
| { |
| pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, pipeline->base.shaders); |
| } |
| |
| static bool |
| radv_pipeline_uses_ds_feedback_loop(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| VkPipelineCreateFlags2 create_flags = pipeline->base.create_flags; |
| if (state->rp) |
| create_flags |= state->pipeline_flags; |
| |
| return (create_flags & VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT) != 0; |
| } |
| |
| void |
| radv_get_viewport_xform(const VkViewport *viewport, float scale[3], float translate[3]) |
| { |
| float x = viewport->x; |
| float y = viewport->y; |
| float half_width = 0.5f * viewport->width; |
| float half_height = 0.5f * viewport->height; |
| double n = viewport->minDepth; |
| double f = viewport->maxDepth; |
| |
| scale[0] = half_width; |
| translate[0] = half_width + x; |
| scale[1] = half_height; |
| translate[1] = half_height + y; |
| |
| scale[2] = (f - n); |
| translate[2] = n; |
| } |
| |
| static void |
| radv_pipeline_init_dynamic_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| uint64_t needed_states = radv_pipeline_needed_dynamic_state(device, pipeline, state); |
| struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; |
| uint64_t states = needed_states; |
| |
| /* Initialize non-zero values for default dynamic state. */ |
| dynamic->vk.rs.line.width = 1.0f; |
| dynamic->vk.fsr.fragment_size.width = 1u; |
| dynamic->vk.fsr.fragment_size.height = 1u; |
| dynamic->vk.ds.depth.bounds_test.max = 1.0f; |
| dynamic->vk.ds.stencil.front.compare_mask = ~0; |
| dynamic->vk.ds.stencil.front.write_mask = ~0; |
| dynamic->vk.ds.stencil.back.compare_mask = ~0; |
| dynamic->vk.ds.stencil.back.write_mask = ~0; |
| dynamic->vk.ms.rasterization_samples = VK_SAMPLE_COUNT_1_BIT; |
| |
| pipeline->needed_dynamic_state = needed_states; |
| |
| states &= ~pipeline->dynamic_states; |
| |
| /* Input assembly. */ |
| if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) { |
| dynamic->vk.ia.primitive_topology = radv_translate_prim(state->ia->primitive_topology); |
| } |
| |
| if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) { |
| dynamic->vk.ia.primitive_restart_enable = state->ia->primitive_restart_enable; |
| } |
| |
| /* Tessellation. */ |
| if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) { |
| dynamic->vk.ts.patch_control_points = state->ts->patch_control_points; |
| } |
| |
| if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) { |
| dynamic->vk.ts.domain_origin = state->ts->domain_origin; |
| } |
| |
| /* Viewport. */ |
| if (needed_states & RADV_DYNAMIC_VIEWPORT) { |
| dynamic->vk.vp.viewport_count = state->vp->viewport_count; |
| if (states & RADV_DYNAMIC_VIEWPORT) { |
| typed_memcpy(dynamic->vk.vp.viewports, state->vp->viewports, state->vp->viewport_count); |
| for (unsigned i = 0; i < dynamic->vk.vp.viewport_count; i++) |
| radv_get_viewport_xform(&dynamic->vk.vp.viewports[i], dynamic->hw_vp.xform[i].scale, |
| dynamic->hw_vp.xform[i].translate); |
| } |
| } |
| |
| if (needed_states & RADV_DYNAMIC_SCISSOR) { |
| dynamic->vk.vp.scissor_count = state->vp->scissor_count; |
| if (states & RADV_DYNAMIC_SCISSOR) { |
| typed_memcpy(dynamic->vk.vp.scissors, state->vp->scissors, state->vp->scissor_count); |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE) { |
| dynamic->vk.vp.depth_clip_negative_one_to_one = state->vp->depth_clip_negative_one_to_one; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLAMP_RANGE) { |
| dynamic->vk.vp.depth_clamp_mode = state->vp->depth_clamp_mode; |
| dynamic->vk.vp.depth_clamp_range = state->vp->depth_clamp_range; |
| } |
| |
| /* Discard rectangles. */ |
| if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| dynamic->vk.dr.rectangle_count = state->dr->rectangle_count; |
| if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| typed_memcpy(dynamic->vk.dr.rectangles, state->dr->rectangles, state->dr->rectangle_count); |
| } |
| } |
| |
| /* Rasterization. */ |
| if (states & RADV_DYNAMIC_LINE_WIDTH) { |
| dynamic->vk.rs.line.width = state->rs->line.width; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BIAS) { |
| dynamic->vk.rs.depth_bias.constant_factor = state->rs->depth_bias.constant_factor; |
| dynamic->vk.rs.depth_bias.clamp = state->rs->depth_bias.clamp; |
| dynamic->vk.rs.depth_bias.slope_factor = state->rs->depth_bias.slope_factor; |
| dynamic->vk.rs.depth_bias.representation = state->rs->depth_bias.representation; |
| } |
| |
| if (states & RADV_DYNAMIC_CULL_MODE) { |
| dynamic->vk.rs.cull_mode = state->rs->cull_mode; |
| } |
| |
| if (states & RADV_DYNAMIC_FRONT_FACE) { |
| dynamic->vk.rs.front_face = state->rs->front_face; |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_STIPPLE) { |
| dynamic->vk.rs.line.stipple.factor = state->rs->line.stipple.factor; |
| dynamic->vk.rs.line.stipple.pattern = state->rs->line.stipple.pattern; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) { |
| dynamic->vk.rs.depth_bias.enable = state->rs->depth_bias.enable; |
| } |
| |
| if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) { |
| dynamic->vk.rs.rasterizer_discard_enable = state->rs->rasterizer_discard_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_POLYGON_MODE) { |
| dynamic->vk.rs.polygon_mode = radv_translate_fill(state->rs->polygon_mode); |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) { |
| dynamic->vk.rs.line.stipple.enable = state->rs->line.stipple.enable; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLIP_ENABLE) { |
| dynamic->vk.rs.depth_clip_enable = state->rs->depth_clip_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) { |
| dynamic->vk.rs.conservative_mode = state->rs->conservative_mode; |
| } |
| |
| if (states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) { |
| dynamic->vk.rs.provoking_vertex = state->rs->provoking_vertex; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLAMP_ENABLE) { |
| dynamic->vk.rs.depth_clamp_enable = state->rs->depth_clamp_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE) { |
| dynamic->vk.rs.line.mode = state->rs->line.mode; |
| } |
| |
| /* Fragment shading rate. */ |
| if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) { |
| dynamic->vk.fsr = *state->fsr; |
| } |
| |
| /* Multisample. */ |
| if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) { |
| dynamic->vk.ms.alpha_to_coverage_enable = state->ms->alpha_to_coverage_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE) { |
| dynamic->vk.ms.alpha_to_one_enable = state->ms->alpha_to_one_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_SAMPLE_MASK) { |
| dynamic->vk.ms.sample_mask = state->ms->sample_mask & 0xffff; |
| } |
| |
| if (states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) { |
| dynamic->vk.ms.rasterization_samples = state->ms->rasterization_samples; |
| } |
| |
| if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) { |
| dynamic->vk.ms.sample_locations_enable = state->ms->sample_locations_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS) { |
| unsigned count = state->ms->sample_locations->per_pixel * state->ms->sample_locations->grid_size.width * |
| state->ms->sample_locations->grid_size.height; |
| |
| dynamic->sample_location.per_pixel = state->ms->sample_locations->per_pixel; |
| dynamic->sample_location.grid_size = state->ms->sample_locations->grid_size; |
| dynamic->sample_location.count = count; |
| typed_memcpy(&dynamic->sample_location.locations[0], state->ms->sample_locations->locations, count); |
| } |
| |
| /* Depth stencil. */ |
| /* If there is no depthstencil attachment, then don't read |
| * pDepthStencilState. The Vulkan spec states that pDepthStencilState may |
| * be NULL in this case. Even if pDepthStencilState is non-NULL, there is |
| * no need to override the depthstencil defaults in |
| * radv_pipeline::dynamic_state when there is no depthstencil attachment. |
| * |
| * Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pDepthStencilState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is created |
| * against does not use a depth/stencil attachment. |
| */ |
| if (needed_states && radv_pipeline_has_ds_attachments(state->rp)) { |
| if (states & RADV_DYNAMIC_DEPTH_BOUNDS) { |
| dynamic->vk.ds.depth.bounds_test.min = state->ds->depth.bounds_test.min; |
| dynamic->vk.ds.depth.bounds_test.max = state->ds->depth.bounds_test.max; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) { |
| dynamic->vk.ds.stencil.front.compare_mask = state->ds->stencil.front.compare_mask; |
| dynamic->vk.ds.stencil.back.compare_mask = state->ds->stencil.back.compare_mask; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) { |
| dynamic->vk.ds.stencil.front.write_mask = state->ds->stencil.front.write_mask; |
| dynamic->vk.ds.stencil.back.write_mask = state->ds->stencil.back.write_mask; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_REFERENCE) { |
| dynamic->vk.ds.stencil.front.reference = state->ds->stencil.front.reference; |
| dynamic->vk.ds.stencil.back.reference = state->ds->stencil.back.reference; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) { |
| dynamic->vk.ds.depth.test_enable = state->ds->depth.test_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) { |
| dynamic->vk.ds.depth.write_enable = state->ds->depth.write_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) { |
| dynamic->vk.ds.depth.compare_op = state->ds->depth.compare_op; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) { |
| dynamic->vk.ds.depth.bounds_test.enable = state->ds->depth.bounds_test.enable; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) { |
| dynamic->vk.ds.stencil.test_enable = state->ds->stencil.test_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_OP) { |
| dynamic->vk.ds.stencil.front.op.compare = state->ds->stencil.front.op.compare; |
| dynamic->vk.ds.stencil.front.op.fail = state->ds->stencil.front.op.fail; |
| dynamic->vk.ds.stencil.front.op.pass = state->ds->stencil.front.op.pass; |
| dynamic->vk.ds.stencil.front.op.depth_fail = state->ds->stencil.front.op.depth_fail; |
| |
| dynamic->vk.ds.stencil.back.op.compare = state->ds->stencil.back.op.compare; |
| dynamic->vk.ds.stencil.back.op.fail = state->ds->stencil.back.op.fail; |
| dynamic->vk.ds.stencil.back.op.pass = state->ds->stencil.back.op.pass; |
| dynamic->vk.ds.stencil.back.op.depth_fail = state->ds->stencil.back.op.depth_fail; |
| } |
| } |
| |
| /* Color blend. */ |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pColorBlendState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is |
| * created against does not use any color attachments. |
| */ |
| if (states & RADV_DYNAMIC_BLEND_CONSTANTS) { |
| typed_memcpy(dynamic->vk.cb.blend_constants, state->cb->blend_constants, 4); |
| } |
| |
| if (radv_pipeline_has_color_attachments(state->rp)) { |
| if (states & RADV_DYNAMIC_LOGIC_OP) { |
| if ((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable) { |
| dynamic->vk.cb.logic_op = radv_translate_blend_logic_op(state->cb->logic_op); |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) { |
| dynamic->vk.cb.color_write_enables = state->cb->color_write_enables; |
| } |
| |
| if (states & RADV_DYNAMIC_LOGIC_OP_ENABLE) { |
| dynamic->vk.cb.logic_op_enable = state->cb->logic_op_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_COLOR_WRITE_MASK) { |
| for (unsigned i = 0; i < state->cb->attachment_count; i++) { |
| dynamic->vk.cb.attachments[i].write_mask = state->cb->attachments[i].write_mask; |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) { |
| for (unsigned i = 0; i < state->cb->attachment_count; i++) { |
| dynamic->vk.cb.attachments[i].blend_enable = state->cb->attachments[i].blend_enable; |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_COLOR_BLEND_EQUATION) { |
| for (unsigned i = 0; i < state->cb->attachment_count; i++) { |
| const struct vk_color_blend_attachment_state *att = &state->cb->attachments[i]; |
| |
| dynamic->vk.cb.attachments[i].src_color_blend_factor = att->src_color_blend_factor; |
| dynamic->vk.cb.attachments[i].dst_color_blend_factor = att->dst_color_blend_factor; |
| dynamic->vk.cb.attachments[i].color_blend_op = att->color_blend_op; |
| dynamic->vk.cb.attachments[i].src_alpha_blend_factor = att->src_alpha_blend_factor; |
| dynamic->vk.cb.attachments[i].dst_alpha_blend_factor = att->dst_alpha_blend_factor; |
| dynamic->vk.cb.attachments[i].alpha_blend_op = att->alpha_blend_op; |
| } |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) { |
| dynamic->vk.dr.enable = state->dr->rectangle_count > 0; |
| } |
| |
| if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_MODE) { |
| dynamic->vk.dr.mode = state->dr->mode; |
| } |
| |
| if (states & RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE) { |
| bool uses_ds_feedback_loop = radv_pipeline_uses_ds_feedback_loop(pipeline, state); |
| |
| dynamic->feedback_loop_aspects = |
| uses_ds_feedback_loop ? (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) : VK_IMAGE_ASPECT_NONE; |
| } |
| |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| dynamic->vk.cal.color_map[i] = state->cal ? state->cal->color_map[i] : i; |
| dynamic->vk.ial.color_map[i] = state->ial ? state->ial->color_map[i] : i; |
| } |
| |
| dynamic->vk.ial.depth_att = state->ial ? state->ial->depth_att : MESA_VK_ATTACHMENT_UNUSED; |
| dynamic->vk.ial.stencil_att = state->ial ? state->ial->stencil_att : MESA_VK_ATTACHMENT_UNUSED; |
| |
| pipeline->dynamic_state.mask = states; |
| } |
| |
| struct radv_shader * |
| radv_get_shader(struct radv_shader *const *shaders, gl_shader_stage stage) |
| { |
| if (stage == MESA_SHADER_VERTEX) { |
| if (shaders[MESA_SHADER_VERTEX]) |
| return shaders[MESA_SHADER_VERTEX]; |
| if (shaders[MESA_SHADER_TESS_CTRL]) |
| return shaders[MESA_SHADER_TESS_CTRL]; |
| if (shaders[MESA_SHADER_GEOMETRY]) |
| return shaders[MESA_SHADER_GEOMETRY]; |
| } else if (stage == MESA_SHADER_TESS_EVAL) { |
| if (!shaders[MESA_SHADER_TESS_CTRL]) |
| return NULL; |
| if (shaders[MESA_SHADER_TESS_EVAL]) |
| return shaders[MESA_SHADER_TESS_EVAL]; |
| if (shaders[MESA_SHADER_GEOMETRY]) |
| return shaders[MESA_SHADER_GEOMETRY]; |
| } |
| return shaders[stage]; |
| } |
| |
| static bool |
| radv_should_export_multiview(const struct radv_shader_stage *stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| /* Export the layer in the last VGT stage if multiview is used. |
| * Also checks for NONE stage, which happens when we have depth-only rendering. |
| * When the next stage is unknown (with GPL or ESO), the layer is exported unconditionally. |
| */ |
| return gfx_state->has_multiview_view_index && radv_is_last_vgt_stage(stage) && |
| !(stage->nir->info.outputs_written & VARYING_BIT_LAYER); |
| } |
| |
| static void |
| radv_remove_point_size(const struct radv_graphics_state_key *gfx_state, nir_shader *producer, nir_shader *consumer) |
| { |
| if ((consumer->info.inputs_read & VARYING_BIT_PSIZ) || !(producer->info.outputs_written & VARYING_BIT_PSIZ)) |
| return; |
| |
| /* Do not remove PSIZ if the shader uses XFB because it might be stored. */ |
| if (producer->xfb_info) |
| return; |
| |
| /* Do not remove PSIZ if the rasterization primitive uses points. */ |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT && |
| ((producer->info.stage == MESA_SHADER_TESS_EVAL && producer->info.tess.point_mode) || |
| (producer->info.stage == MESA_SHADER_GEOMETRY && producer->info.gs.output_primitive == MESA_PRIM_POINTS) || |
| (producer->info.stage == MESA_SHADER_MESH && producer->info.mesh.primitive_type == MESA_PRIM_POINTS))) |
| return; |
| |
| nir_variable *var = nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ); |
| assert(var); |
| |
| /* Change PSIZ to a global variable which allows it to be DCE'd. */ |
| var->data.location = 0; |
| var->data.mode = nir_var_shader_temp; |
| |
| producer->info.outputs_written &= ~VARYING_BIT_PSIZ; |
| NIR_PASS(_, producer, nir_fixup_deref_modes); |
| NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| NIR_PASS(_, producer, nir_opt_dce); |
| } |
| |
| static void |
| radv_remove_color_exports(const struct radv_graphics_state_key *gfx_state, nir_shader *nir) |
| { |
| uint8_t color_remap[MAX_RTS]; |
| bool fixup_derefs = false; |
| |
| /* Do not remove color exports when a PS epilog is used because the format isn't known and the color write mask can |
| * be dynamic. */ |
| if (gfx_state->ps.has_epilog) |
| return; |
| |
| /* Shader output locations to color attachment mappings. */ |
| memset(color_remap, MESA_VK_ATTACHMENT_UNUSED, sizeof(color_remap)); |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| if (gfx_state->ps.epilog.color_map[i] != MESA_VK_ATTACHMENT_UNUSED) |
| color_remap[gfx_state->ps.epilog.color_map[i]] = i; |
| } |
| |
| nir_foreach_shader_out_variable (var, nir) { |
| int idx = var->data.location; |
| idx -= FRAG_RESULT_DATA0; |
| |
| if (idx < 0) |
| continue; |
| |
| const uint8_t cb_idx = color_remap[idx]; |
| unsigned col_format = (gfx_state->ps.epilog.spi_shader_col_format >> (4 * cb_idx)) & 0xf; |
| |
| if (col_format == V_028714_SPI_SHADER_ZERO) { |
| /* Remove the color export if it's unused or in presence of holes. */ |
| nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location); |
| var->data.location = 0; |
| var->data.mode = nir_var_shader_temp; |
| fixup_derefs = true; |
| } |
| } |
| |
| if (fixup_derefs) { |
| NIR_PASS(_, nir, nir_fixup_deref_modes); |
| NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| NIR_PASS(_, nir, nir_opt_dce); |
| } |
| } |
| |
| static void |
| merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info) |
| { |
| /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: |
| * |
| * "PointMode. Controls generation of points rather than triangles |
| * or lines. This functionality defaults to disabled, and is |
| * enabled if either shader stage includes the execution mode. |
| * |
| * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, |
| * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, |
| * and OutputVertices, it says: |
| * |
| * "One mode must be set in at least one of the tessellation |
| * shader stages." |
| * |
| * So, the fields can be set in either the TCS or TES, but they must |
| * agree if set in both. Our backend looks at TES, so bitwise-or in |
| * the values from the TCS. |
| */ |
| assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || |
| tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); |
| tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; |
| |
| assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || |
| tcs_info->tess.spacing == tes_info->tess.spacing); |
| tes_info->tess.spacing |= tcs_info->tess.spacing; |
| |
| assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED || |
| tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED || |
| tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode); |
| tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode; |
| tes_info->tess.ccw |= tcs_info->tess.ccw; |
| tes_info->tess.point_mode |= tcs_info->tess.point_mode; |
| |
| /* Copy the merged info back to the TCS */ |
| tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out; |
| tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode; |
| } |
| |
| static void |
| radv_link_shaders(const struct radv_device *device, struct radv_shader_stage *producer_stage, |
| struct radv_shader_stage *consumer_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| nir_shader *producer = producer_stage->nir; |
| nir_shader *consumer = consumer_stage->nir; |
| |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT) { |
| /* Lower the viewport index to zero when the last vertex stage doesn't export it. */ |
| if ((consumer->info.inputs_read & VARYING_BIT_VIEWPORT) && |
| !(producer->info.outputs_written & VARYING_BIT_VIEWPORT)) { |
| NIR_PASS(_, consumer, radv_nir_lower_viewport_to_zero); |
| } |
| } |
| |
| if (producer_stage->key.optimisations_disabled || consumer_stage->key.optimisations_disabled) |
| return; |
| |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT && producer->info.has_transform_feedback_varyings) { |
| nir_link_xfb_varyings(producer, consumer); |
| } |
| |
| unsigned array_deref_of_vec_options = |
| nir_lower_direct_array_deref_of_vec_load | nir_lower_indirect_array_deref_of_vec_load | |
| nir_lower_direct_array_deref_of_vec_store | nir_lower_indirect_array_deref_of_vec_store; |
| |
| NIR_PASS(_, producer, nir_lower_array_deref_of_vec, nir_var_shader_out, NULL, array_deref_of_vec_options); |
| NIR_PASS(_, consumer, nir_lower_array_deref_of_vec, nir_var_shader_in, NULL, array_deref_of_vec_options); |
| |
| nir_lower_io_arrays_to_elements(producer, consumer); |
| nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements"); |
| nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements"); |
| |
| radv_nir_lower_io_to_scalar_early(producer, nir_var_shader_out); |
| radv_nir_lower_io_to_scalar_early(consumer, nir_var_shader_in); |
| |
| /* Remove PSIZ from shaders when it's not needed. |
| * This is typically produced by translation layers like Zink or D9VK. |
| */ |
| if (gfx_state->enable_remove_point_size) |
| radv_remove_point_size(gfx_state, producer, consumer); |
| |
| if (nir_link_opt_varyings(producer, consumer)) { |
| nir_validate_shader(producer, "after nir_link_opt_varyings"); |
| nir_validate_shader(consumer, "after nir_link_opt_varyings"); |
| |
| NIR_PASS(_, consumer, nir_opt_constant_folding); |
| NIR_PASS(_, consumer, nir_opt_algebraic); |
| NIR_PASS(_, consumer, nir_opt_dce); |
| } |
| |
| NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL); |
| NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL); |
| |
| nir_remove_unused_varyings(producer, consumer); |
| |
| nir_compact_varyings(producer, consumer, true); |
| |
| nir_validate_shader(producer, "after nir_compact_varyings"); |
| nir_validate_shader(consumer, "after nir_compact_varyings"); |
| |
| if (producer->info.stage == MESA_SHADER_MESH) { |
| /* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */ |
| nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer)); |
| } |
| |
| const bool has_geom_or_tess = |
| consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL; |
| const bool merged_gs = consumer->info.stage == MESA_SHADER_GEOMETRY && gfx_level >= GFX9; |
| |
| if (producer->info.stage == MESA_SHADER_TESS_CTRL || producer->info.stage == MESA_SHADER_MESH || |
| (producer->info.stage == MESA_SHADER_VERTEX && has_geom_or_tess) || |
| (producer->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) { |
| NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out); |
| |
| if (producer->info.stage == MESA_SHADER_TESS_CTRL) |
| NIR_PASS(_, producer, nir_vectorize_tess_levels); |
| |
| NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out); |
| } |
| |
| if (consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL || |
| consumer->info.stage == MESA_SHADER_TESS_EVAL) { |
| NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in); |
| } |
| } |
| |
| static const gl_shader_stage graphics_shader_order[] = { |
| MESA_SHADER_VERTEX, MESA_SHADER_TESS_CTRL, MESA_SHADER_TESS_EVAL, MESA_SHADER_GEOMETRY, |
| |
| MESA_SHADER_TASK, MESA_SHADER_MESH, |
| |
| MESA_SHADER_FRAGMENT, |
| }; |
| |
| static void |
| radv_link_vs(const struct radv_device *device, struct radv_shader_stage *vs_stage, struct radv_shader_stage *next_stage, |
| const struct radv_graphics_state_key *gfx_state) |
| { |
| assert(vs_stage->nir->info.stage == MESA_SHADER_VERTEX); |
| |
| if (radv_should_export_multiview(vs_stage, gfx_state)) { |
| NIR_PASS(_, vs_stage->nir, radv_nir_export_multiview); |
| } |
| |
| if (next_stage) { |
| assert(next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL || |
| next_stage->nir->info.stage == MESA_SHADER_GEOMETRY || |
| next_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_link_shaders(device, vs_stage, next_stage, gfx_state); |
| } |
| } |
| |
| static void |
| radv_link_tcs(const struct radv_device *device, struct radv_shader_stage *tcs_stage, |
| struct radv_shader_stage *tes_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| if (!tes_stage) |
| return; |
| |
| assert(tcs_stage->nir->info.stage == MESA_SHADER_TESS_CTRL); |
| assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL); |
| |
| radv_link_shaders(device, tcs_stage, tes_stage, gfx_state); |
| |
| /* Copy TCS info into the TES info */ |
| merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info); |
| } |
| |
| static void |
| radv_link_tes(const struct radv_device *device, struct radv_shader_stage *tes_stage, |
| struct radv_shader_stage *next_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL); |
| |
| if (radv_should_export_multiview(tes_stage, gfx_state)) { |
| NIR_PASS(_, tes_stage->nir, radv_nir_export_multiview); |
| } |
| |
| if (next_stage) { |
| assert(next_stage->nir->info.stage == MESA_SHADER_GEOMETRY || |
| next_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_link_shaders(device, tes_stage, next_stage, gfx_state); |
| } |
| } |
| |
| static void |
| radv_link_gs(const struct radv_device *device, struct radv_shader_stage *gs_stage, struct radv_shader_stage *fs_stage, |
| const struct radv_graphics_state_key *gfx_state) |
| { |
| assert(gs_stage->nir->info.stage == MESA_SHADER_GEOMETRY); |
| |
| if (radv_should_export_multiview(gs_stage, gfx_state)) { |
| NIR_PASS(_, gs_stage->nir, radv_nir_export_multiview); |
| } |
| |
| if (fs_stage) { |
| assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_link_shaders(device, gs_stage, fs_stage, gfx_state); |
| } |
| } |
| |
| static void |
| radv_link_task(const struct radv_device *device, struct radv_shader_stage *task_stage, |
| struct radv_shader_stage *mesh_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| assert(task_stage->nir->info.stage == MESA_SHADER_TASK); |
| |
| if (mesh_stage) { |
| assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH); |
| |
| /* Linking task and mesh shaders shouldn't do anything for now but keep it for consistency. */ |
| radv_link_shaders(device, task_stage, mesh_stage, gfx_state); |
| } |
| } |
| |
| static void |
| radv_link_mesh(const struct radv_device *device, struct radv_shader_stage *mesh_stage, |
| struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH); |
| |
| if (fs_stage) { |
| assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| nir_foreach_shader_in_variable (var, fs_stage->nir) { |
| /* These variables are per-primitive when used with a mesh shader. */ |
| if (var->data.location == VARYING_SLOT_PRIMITIVE_ID || var->data.location == VARYING_SLOT_VIEWPORT || |
| var->data.location == VARYING_SLOT_LAYER) { |
| var->data.per_primitive = true; |
| } |
| } |
| |
| radv_link_shaders(device, mesh_stage, fs_stage, gfx_state); |
| } |
| |
| /* Lower mesh shader draw ID to zero prevent app bugs from triggering undefined behaviour. */ |
| if (mesh_stage->info.ms.has_task && BITSET_TEST(mesh_stage->nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID)) |
| radv_nir_lower_draw_id_to_zero(mesh_stage->nir); |
| } |
| |
| static void |
| radv_link_fs(struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| /* Lower the view index to map on the layer. */ |
| NIR_PASS(_, fs_stage->nir, radv_nir_lower_view_index); |
| |
| radv_remove_color_exports(gfx_state, fs_stage->nir); |
| } |
| |
| static bool |
| radv_pipeline_needs_noop_fs(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_state_key *gfx_state) |
| { |
| if (pipeline->base.type == RADV_PIPELINE_GRAPHICS && |
| !(radv_pipeline_to_graphics(&pipeline->base)->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT)) |
| return true; |
| |
| if (pipeline->base.type == RADV_PIPELINE_GRAPHICS_LIB && |
| (gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) && |
| !(radv_pipeline_to_graphics_lib(&pipeline->base)->base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT)) |
| return true; |
| |
| return false; |
| } |
| |
| static void |
| radv_remove_varyings(nir_shader *nir) |
| { |
| /* We can't demote mesh outputs to nir_var_shader_temp yet, because |
| * they don't support array derefs of vectors. |
| */ |
| if (nir->info.stage == MESA_SHADER_MESH) |
| return; |
| |
| bool fixup_derefs = false; |
| |
| nir_foreach_shader_out_variable (var, nir) { |
| if (var->data.always_active_io) |
| continue; |
| |
| if (var->data.location < VARYING_SLOT_VAR0) |
| continue; |
| |
| nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location); |
| var->data.location = 0; |
| var->data.mode = nir_var_shader_temp; |
| fixup_derefs = true; |
| } |
| |
| if (fixup_derefs) { |
| NIR_PASS(_, nir, nir_fixup_deref_modes); |
| NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| NIR_PASS(_, nir, nir_opt_dce); |
| } |
| } |
| |
| static void |
| radv_graphics_shaders_link(const struct radv_device *device, const struct radv_graphics_state_key *gfx_state, |
| struct radv_shader_stage *stages) |
| { |
| /* Walk backwards to link */ |
| struct radv_shader_stage *next_stage = NULL; |
| for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) { |
| gl_shader_stage s = graphics_shader_order[i]; |
| if (!stages[s].nir) |
| continue; |
| |
| switch (s) { |
| case MESA_SHADER_VERTEX: |
| radv_link_vs(device, &stages[s], next_stage, gfx_state); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| radv_link_tcs(device, &stages[s], next_stage, gfx_state); |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| radv_link_tes(device, &stages[s], next_stage, gfx_state); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| radv_link_gs(device, &stages[s], next_stage, gfx_state); |
| break; |
| case MESA_SHADER_TASK: |
| radv_link_task(device, &stages[s], next_stage, gfx_state); |
| break; |
| case MESA_SHADER_MESH: |
| radv_link_mesh(device, &stages[s], next_stage, gfx_state); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| radv_link_fs(&stages[s], gfx_state); |
| break; |
| default: |
| unreachable("Invalid graphics shader stage"); |
| } |
| |
| next_stage = &stages[s]; |
| } |
| } |
| |
| /** |
| * Fist pass of varying optimization. |
| * This function is called for each shader pair from first to last. |
| * |
| * 1. Run some NIR passes in preparation. |
| * 2. Optimize varyings. |
| * 3. If either shader changed, run algebraic optimizations. |
| */ |
| static void |
| radv_graphics_shaders_link_varyings_first(struct radv_shader_stage *producer_stage, |
| struct radv_shader_stage *consumer_stage) |
| { |
| nir_shader *producer = producer_stage->nir; |
| nir_shader *consumer = consumer_stage->nir; |
| |
| /* It is expected by nir_opt_varyings that no undefined stores are present in the shader. */ |
| NIR_PASS(_, producer, nir_opt_undef); |
| |
| /* Update load/store alignments because inter-stage code motion may move instructions used to deduce this info. */ |
| NIR_PASS(_, consumer, nir_opt_load_store_update_alignments); |
| |
| /* Scalarize all I/O, because nir_opt_varyings and nir_opt_vectorize_io expect all I/O to be scalarized. */ |
| NIR_PASS(_, producer, nir_lower_io_to_scalar, nir_var_shader_out, NULL, NULL); |
| NIR_PASS(_, consumer, nir_lower_io_to_scalar, nir_var_shader_in, NULL, NULL); |
| |
| /* Eliminate useless vec->mov copies resulting from scalarization. */ |
| NIR_PASS(_, producer, nir_copy_prop); |
| |
| const nir_opt_varyings_progress p = nir_opt_varyings(producer, consumer, true, 0, 0); |
| |
| /* Run algebraic optimizations on shaders that changed. */ |
| if (p & nir_progress_producer) { |
| radv_optimize_nir_algebraic(producer, false, false); |
| } |
| if (p & nir_progress_consumer) { |
| radv_optimize_nir_algebraic(consumer, false, false); |
| } |
| } |
| |
| /** |
| * Second pass of varying optimization. |
| * This function is called for each shader pair from last to fist, |
| * after the first pass had already been called for each pair. |
| * Done because the previous pass might have enabled additional |
| * opportunities for optimization. |
| * |
| * 1. Optimize varyings again. |
| * 2. If either shader changed, run algebraic optimizations. |
| * 3. Run some NIR passes to clean up the shaders. |
| */ |
| static void |
| radv_graphics_shaders_link_varyings_second(struct radv_shader_stage *producer_stage, |
| struct radv_shader_stage *consumer_stage) |
| { |
| nir_shader *producer = producer_stage->nir; |
| nir_shader *consumer = consumer_stage->nir; |
| |
| const nir_opt_varyings_progress p = nir_opt_varyings(producer, consumer, true, 0, 0); |
| |
| /* Run algebraic optimizations on shaders that changed. */ |
| if (p & nir_progress_producer) { |
| radv_optimize_nir_algebraic(producer, true, false); |
| } |
| if (p & nir_progress_consumer) { |
| radv_optimize_nir_algebraic(consumer, true, false); |
| } |
| |
| /* Re-vectorize I/O for stages that output to memory (LDS or VRAM). |
| * Don't vectorize FS inputs, doing so just regresses shader stats without any benefit. |
| * There is also no benefit from re-vectorizing the outputs of the last pre-rasterization |
| * stage here, because ac_nir_lower_ngg/legacy already takes care of that. |
| */ |
| if (consumer->info.stage != MESA_SHADER_FRAGMENT) { |
| NIR_PASS(_, producer, nir_opt_vectorize_io, nir_var_shader_out); |
| NIR_PASS(_, consumer, nir_opt_vectorize_io, nir_var_shader_in); |
| } |
| |
| /* Gather shader info; at least the I/O info likely changed |
| * and changes to only the I/O info are not reflected in nir_opt_varyings_progress. |
| */ |
| nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer)); |
| nir_shader_gather_info(consumer, nir_shader_get_entrypoint(consumer)); |
| |
| /* Recompute intrinsic bases of PS inputs in order to remove gaps. */ |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT) |
| radv_recompute_fs_input_bases(consumer); |
| |
| /* Recreate XFB info from intrinsics (nir_opt_varyings may have changed it). */ |
| if (producer->xfb_info) { |
| nir_gather_xfb_info_from_intrinsics(producer); |
| } |
| } |
| |
| static void |
| radv_graphics_shaders_fill_linked_vs_io_info(struct radv_shader_stage *vs_stage, |
| struct radv_shader_stage *consumer_stage) |
| { |
| const unsigned num_reserved_slots = util_bitcount64(consumer_stage->nir->info.inputs_read); |
| vs_stage->info.vs.num_linked_outputs = num_reserved_slots; |
| vs_stage->info.outputs_linked = true; |
| |
| switch (consumer_stage->stage) { |
| case MESA_SHADER_TESS_CTRL: { |
| consumer_stage->info.tcs.num_linked_inputs = num_reserved_slots; |
| consumer_stage->info.inputs_linked = true; |
| break; |
| } |
| case MESA_SHADER_GEOMETRY: { |
| consumer_stage->info.gs.num_linked_inputs = num_reserved_slots; |
| consumer_stage->info.inputs_linked = true; |
| break; |
| } |
| default: |
| unreachable("invalid next stage for VS"); |
| } |
| } |
| |
| static void |
| radv_graphics_shaders_fill_linked_tcs_tes_io_info(struct radv_shader_stage *tcs_stage, |
| struct radv_shader_stage *tes_stage) |
| { |
| assume(tes_stage->stage == MESA_SHADER_TESS_EVAL); |
| |
| /* Count the number of per-vertex output slots we need to reserve for the TCS and TES. */ |
| const uint64_t per_vertex_mask = |
| tes_stage->nir->info.inputs_read & ~(VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER); |
| const unsigned num_reserved_slots = util_bitcount64(per_vertex_mask); |
| |
| /* Count the number of per-patch output slots we need to reserve for the TCS and TES. |
| * This is necessary because we need it to determine the patch size in VRAM. |
| */ |
| const uint64_t tess_lvl_mask = |
| tes_stage->nir->info.inputs_read & (VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER); |
| const unsigned num_reserved_patch_slots = |
| util_bitcount64(tess_lvl_mask) + util_bitcount64(tes_stage->nir->info.patch_inputs_read); |
| |
| tcs_stage->info.tcs.num_linked_outputs = num_reserved_slots; |
| tcs_stage->info.tcs.num_linked_patch_outputs = num_reserved_patch_slots; |
| tcs_stage->info.outputs_linked = true; |
| |
| tes_stage->info.tes.num_linked_inputs = num_reserved_slots; |
| tes_stage->info.tes.num_linked_patch_inputs = num_reserved_patch_slots; |
| tes_stage->info.inputs_linked = true; |
| } |
| |
| static void |
| radv_graphics_shaders_fill_linked_tes_gs_io_info(struct radv_shader_stage *tes_stage, |
| struct radv_shader_stage *gs_stage) |
| { |
| assume(gs_stage->stage == MESA_SHADER_GEOMETRY); |
| |
| const unsigned num_reserved_slots = util_bitcount64(gs_stage->nir->info.inputs_read); |
| tes_stage->info.tes.num_linked_outputs = num_reserved_slots; |
| tes_stage->info.outputs_linked = true; |
| gs_stage->info.gs.num_linked_inputs = num_reserved_slots; |
| gs_stage->info.inputs_linked = true; |
| } |
| |
| static void |
| radv_graphics_shaders_fill_linked_io_info(struct radv_shader_stage *producer_stage, |
| struct radv_shader_stage *consumer_stage) |
| { |
| /* We don't need to fill this info for the last pre-rasterization stage. */ |
| if (consumer_stage->stage == MESA_SHADER_FRAGMENT) |
| return; |
| |
| switch (producer_stage->stage) { |
| case MESA_SHADER_VERTEX: |
| radv_graphics_shaders_fill_linked_vs_io_info(producer_stage, consumer_stage); |
| break; |
| |
| case MESA_SHADER_TESS_CTRL: |
| radv_graphics_shaders_fill_linked_tcs_tes_io_info(producer_stage, consumer_stage); |
| break; |
| |
| case MESA_SHADER_TESS_EVAL: |
| radv_graphics_shaders_fill_linked_tes_gs_io_info(producer_stage, consumer_stage); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * Varying optimizations performed on lowered shader I/O. |
| * |
| * We do this after lowering shader I/O because this is more effective |
| * than running the same optimizations on I/O derefs. |
| */ |
| static void |
| radv_graphics_shaders_link_varyings(struct radv_shader_stage *stages) |
| { |
| /* Optimize varyings from first to last stage. */ |
| gl_shader_stage prev = MESA_SHADER_NONE; |
| for (int i = 0; i < ARRAY_SIZE(graphics_shader_order); ++i) { |
| gl_shader_stage s = graphics_shader_order[i]; |
| if (!stages[s].nir) |
| continue; |
| |
| if (prev != MESA_SHADER_NONE) { |
| if (!stages[prev].key.optimisations_disabled && !stages[s].key.optimisations_disabled) |
| radv_graphics_shaders_link_varyings_first(&stages[prev], &stages[s]); |
| } |
| |
| prev = s; |
| } |
| |
| /* Optimize varyings from last to first stage. */ |
| gl_shader_stage next = MESA_SHADER_NONE; |
| for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; --i) { |
| gl_shader_stage s = graphics_shader_order[i]; |
| if (!stages[s].nir) |
| continue; |
| |
| if (next != MESA_SHADER_NONE) { |
| if (!stages[s].key.optimisations_disabled && !stages[next].key.optimisations_disabled) |
| radv_graphics_shaders_link_varyings_second(&stages[s], &stages[next]); |
| |
| radv_graphics_shaders_fill_linked_io_info(&stages[s], &stages[next]); |
| } |
| |
| next = s; |
| } |
| } |
| |
| struct radv_ps_epilog_key |
| radv_generate_ps_epilog_key(const struct radv_device *device, const struct radv_ps_epilog_state *state) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0, z_format = 0; |
| struct radv_ps_epilog_key key; |
| |
| memset(&key, 0, sizeof(key)); |
| memset(key.color_map, MESA_VK_ATTACHMENT_UNUSED, sizeof(key.color_map)); |
| |
| for (unsigned i = 0; i < state->color_attachment_count; ++i) { |
| unsigned cf; |
| unsigned cb_idx = state->color_attachment_mappings[i]; |
| VkFormat fmt = state->color_attachment_formats[i]; |
| |
| if (fmt == VK_FORMAT_UNDEFINED || !(state->color_write_mask & (0xfu << (i * 4))) || |
| cb_idx == MESA_VK_ATTACHMENT_UNUSED) { |
| cf = V_028714_SPI_SHADER_ZERO; |
| } else { |
| bool blend_enable = state->color_blend_enable & (0xfu << (i * 4)); |
| |
| cf = radv_choose_spi_color_format(device, fmt, blend_enable, state->need_src_alpha & (1 << i)); |
| |
| if (format_is_int8(fmt)) |
| is_int8 |= 1 << i; |
| if (format_is_int10(fmt)) |
| is_int10 |= 1 << i; |
| if (format_is_float32(fmt)) |
| is_float32 |= 1 << i; |
| } |
| |
| col_format |= cf << (4 * i); |
| |
| key.color_map[i] = state->color_attachment_mappings[i]; |
| } |
| |
| if (!(col_format & 0xf) && state->need_src_alpha & (1 << 0)) { |
| /* When a subpass doesn't have any color attachments, write the alpha channel of MRT0 when |
| * alpha coverage is enabled because the depth attachment needs it. |
| */ |
| col_format |= V_028714_SPI_SHADER_32_AR; |
| key.color_map[0] = 0; |
| } |
| |
| /* The output for dual source blending should have the same format as the first output. */ |
| if (state->mrt0_is_dual_src) { |
| assert(!(col_format >> 4)); |
| col_format |= (col_format & 0xf) << 4; |
| key.color_map[1] = 1; |
| } |
| |
| z_format = ac_get_spi_shader_z_format(state->export_depth, state->export_stencil, state->export_sample_mask, |
| state->alpha_to_coverage_via_mrtz); |
| |
| key.spi_shader_col_format = col_format; |
| key.color_is_int8 = pdev->info.gfx_level < GFX8 ? is_int8 : 0; |
| key.color_is_int10 = pdev->info.gfx_level < GFX8 ? is_int10 : 0; |
| key.enable_mrt_output_nan_fixup = instance->drirc.enable_mrt_output_nan_fixup ? is_float32 : 0; |
| key.colors_written = state->colors_written; |
| key.mrt0_is_dual_src = state->mrt0_is_dual_src; |
| key.export_depth = state->export_depth; |
| key.export_stencil = state->export_stencil; |
| key.export_sample_mask = state->export_sample_mask; |
| key.alpha_to_coverage_via_mrtz = state->alpha_to_coverage_via_mrtz; |
| key.spi_shader_z_format = z_format; |
| key.alpha_to_one = state->alpha_to_one; |
| |
| return key; |
| } |
| |
| static struct radv_ps_epilog_key |
| radv_pipeline_generate_ps_epilog_key(const struct radv_device *device, const struct vk_graphics_pipeline_state *state) |
| { |
| struct radv_ps_epilog_state ps_epilog = {0}; |
| |
| if (state->ms && state->ms->alpha_to_coverage_enable) |
| ps_epilog.need_src_alpha |= 0x1; |
| |
| if (state->cb) { |
| for (uint32_t i = 0; i < state->cb->attachment_count; i++) { |
| VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op; |
| VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor; |
| VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor; |
| |
| /* Ignore other blend targets if dual-source blending is enabled to prevent wrong |
| * behaviour. |
| */ |
| if (i > 0 && ps_epilog.mrt0_is_dual_src) |
| continue; |
| |
| ps_epilog.color_write_mask |= (unsigned)state->cb->attachments[i].write_mask << (4 * i); |
| if (!((ps_epilog.color_write_mask >> (i * 4)) & 0xf)) |
| continue; |
| |
| if (state->cb->attachments[i].blend_enable) |
| ps_epilog.color_blend_enable |= 0xfu << (i * 4); |
| |
| if (!((ps_epilog.color_blend_enable >> (i * 4)) & 0xf)) |
| continue; |
| |
| if (i == 0 && radv_can_enable_dual_src(&state->cb->attachments[i])) { |
| ps_epilog.mrt0_is_dual_src = true; |
| } |
| |
| radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB); |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
| ps_epilog.need_src_alpha |= 1 << i; |
| } |
| } |
| |
| if (state->rp) { |
| ps_epilog.color_attachment_count = state->rp->color_attachment_count; |
| |
| for (uint32_t i = 0; i < ps_epilog.color_attachment_count; i++) { |
| ps_epilog.color_attachment_formats[i] = state->rp->color_attachment_formats[i]; |
| } |
| } |
| |
| if (state->ms) |
| ps_epilog.alpha_to_one = state->ms->alpha_to_one_enable; |
| |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| ps_epilog.color_attachment_mappings[i] = state->cal ? state->cal->color_map[i] : i; |
| } |
| |
| return radv_generate_ps_epilog_key(device, &ps_epilog); |
| } |
| |
| static struct radv_graphics_state_key |
| radv_generate_graphics_state_key(const struct radv_device *device, const struct vk_graphics_pipeline_state *state, |
| VkGraphicsPipelineLibraryFlagBitsEXT lib_flags) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_graphics_state_key key; |
| |
| memset(&key, 0, sizeof(key)); |
| |
| key.lib_flags = lib_flags; |
| key.has_multiview_view_index = state->rp ? !!state->rp->view_mask : 0; |
| |
| if (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI)) { |
| key.vs.has_prolog = true; |
| } |
| |
| /* Compile the pre-rasterization stages only when the vertex input interface is missing. */ |
| if ((state->shader_stages && VK_SHADER_STAGE_VERTEX_BIT) && !state->vi) { |
| key.vs.has_prolog = true; |
| } |
| |
| /* Vertex input state */ |
| if (state->vi) { |
| u_foreach_bit (i, state->vi->attributes_valid) { |
| uint32_t binding = state->vi->attributes[i].binding; |
| uint32_t offset = state->vi->attributes[i].offset; |
| enum pipe_format format = radv_format_to_pipe_format(state->vi->attributes[i].format); |
| |
| key.vi.vertex_attribute_formats[i] = format; |
| key.vi.vertex_attribute_bindings[i] = binding; |
| key.vi.vertex_attribute_offsets[i] = offset; |
| key.vi.instance_rate_divisors[i] = state->vi->bindings[binding].divisor; |
| |
| /* vertex_attribute_strides is only needed to workaround GFX6/7 offset>=stride checks. */ |
| if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI_BINDING_STRIDES) && pdev->info.gfx_level < GFX8) { |
| /* From the Vulkan spec 1.2.157: |
| * |
| * "If the bound pipeline state object was created with the |
| * VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled then pStrides[i] |
| * specifies the distance in bytes between two consecutive elements within the |
| * corresponding buffer. In this case the VkVertexInputBindingDescription::stride state |
| * from the pipeline state object is ignored." |
| * |
| * Make sure the vertex attribute stride is zero to avoid computing a wrong offset if |
| * it's initialized to something else than zero. |
| */ |
| key.vi.vertex_attribute_strides[i] = state->vi->bindings[binding].stride; |
| } |
| |
| if (state->vi->bindings[binding].input_rate) { |
| key.vi.instance_rate_inputs |= 1u << i; |
| } |
| |
| const struct ac_vtx_format_info *vtx_info = |
| ac_get_vtx_format_info(pdev->info.gfx_level, pdev->info.family, format); |
| unsigned attrib_align = vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size; |
| |
| /* If offset is misaligned, then the buffer offset must be too. Just skip updating |
| * vertex_binding_align in this case. |
| */ |
| if (offset % attrib_align == 0) { |
| key.vi.vertex_binding_align[binding] = MAX2(key.vi.vertex_binding_align[binding], attrib_align); |
| } |
| } |
| } |
| |
| if (state->ts) |
| key.ts.patch_control_points = state->ts->patch_control_points; |
| |
| const bool alpha_to_coverage_unknown = |
| !state->ms || BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE); |
| const bool alpha_to_coverage_enabled = alpha_to_coverage_unknown || state->ms->alpha_to_coverage_enable; |
| const bool alpha_to_one_unknown = !state->ms || BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_ONE_ENABLE); |
| const bool alpha_to_one_enabled = alpha_to_one_unknown || state->ms->alpha_to_one_enable; |
| |
| /* alpha-to-coverage is always exported via MRTZ on GFX11 but it's also using MRTZ when |
| * alpha-to-one is enabled (alpha to MRTZ.a and one to MRT0.a). |
| */ |
| key.ms.alpha_to_coverage_via_mrtz = |
| alpha_to_coverage_enabled && (pdev->info.gfx_level >= GFX11 || alpha_to_one_enabled); |
| |
| if (state->ms) { |
| key.ms.sample_shading_enable = state->ms->sample_shading_enable; |
| if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) && |
| state->ms->rasterization_samples > 1) { |
| key.ms.rasterization_samples = state->ms->rasterization_samples; |
| } |
| } |
| |
| if (state->ia) { |
| key.ia.topology = radv_translate_prim(state->ia->primitive_topology); |
| } |
| |
| if (!state->vi || !(state->shader_stages & (VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | |
| VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT))) { |
| key.unknown_rast_prim = true; |
| } |
| |
| if (state->rs) { |
| if (pdev->info.gfx_level >= GFX10) |
| key.rs.provoking_vtx_last = state->rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT; |
| |
| if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_CULL_MODE)) |
| key.rs.cull_mode = state->rs->cull_mode; |
| } |
| |
| key.ps.force_vrs_enabled = device->force_vrs_enabled && !radv_is_static_vrs_enabled(state); |
| |
| if ((radv_is_vrs_enabled(state) || key.ps.force_vrs_enabled) && |
| (pdev->info.family == CHIP_NAVI21 || pdev->info.family == CHIP_NAVI22 || pdev->info.family == CHIP_VANGOGH)) |
| key.adjust_frag_coord_z = true; |
| |
| if (radv_pipeline_needs_ps_epilog(state, lib_flags)) |
| key.ps.has_epilog = true; |
| |
| key.ps.epilog = radv_pipeline_generate_ps_epilog_key(device, state); |
| |
| /* Alpha to coverage is exported via MRTZ when depth/stencil/samplemask are also exported. |
| * Though, when a PS epilog is needed and the MS state is NULL (with dynamic rendering), it's not |
| * possible to know the info at compile time and MRTZ needs to be exported in the epilog. |
| */ |
| if (key.ps.has_epilog) { |
| if (pdev->info.gfx_level >= GFX11) { |
| key.ps.exports_mrtz_via_epilog = alpha_to_coverage_unknown; |
| } else { |
| key.ps.exports_mrtz_via_epilog = |
| (alpha_to_coverage_unknown && alpha_to_one_enabled) || (alpha_to_one_unknown && alpha_to_coverage_enabled); |
| } |
| } |
| |
| key.dynamic_rasterization_samples = BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) || |
| (!!(state->shader_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !state->ms); |
| |
| if (pdev->use_ngg) { |
| VkShaderStageFlags ngg_stage; |
| |
| if (state->shader_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { |
| ngg_stage = VK_SHADER_STAGE_GEOMETRY_BIT; |
| } else if (state->shader_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { |
| ngg_stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; |
| } else { |
| ngg_stage = VK_SHADER_STAGE_VERTEX_BIT; |
| } |
| |
| key.dynamic_provoking_vtx_mode = |
| BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) && |
| (ngg_stage == VK_SHADER_STAGE_VERTEX_BIT || ngg_stage == VK_SHADER_STAGE_GEOMETRY_BIT); |
| } |
| |
| if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) && state->ia && |
| state->ia->primitive_topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST && |
| !BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_POLYGON_MODE) && state->rs && |
| state->rs->polygon_mode != VK_POLYGON_MODE_POINT) { |
| key.enable_remove_point_size = true; |
| } |
| |
| if (device->vk.enabled_features.smoothLines) { |
| /* Make the line rasterization mode dynamic for smooth lines to conditionally enable the lowering at draw time. |
| * This is because it's not possible to know if the graphics pipeline will draw lines at this point and it also |
| * simplifies the implementation. |
| */ |
| if (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_LINE_MODE) || |
| (state->rs && state->rs->line.mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH)) |
| key.dynamic_line_rast_mode = true; |
| |
| /* For GPL, when the fragment shader is compiled without any pre-rasterization information, |
| * ensure the line rasterization mode is considered dynamic because we can't know if it's |
| * going to draw lines or not. |
| */ |
| key.dynamic_line_rast_mode |= !!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) && |
| !(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT); |
| } |
| |
| return key; |
| } |
| |
| static struct radv_graphics_pipeline_key |
| radv_generate_graphics_pipeline_key(const struct radv_device *device, const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct vk_graphics_pipeline_state *state, |
| VkGraphicsPipelineLibraryFlagBitsEXT lib_flags) |
| { |
| VkPipelineCreateFlags2 create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| struct radv_graphics_pipeline_key key = {0}; |
| |
| key.gfx_state = radv_generate_graphics_state_key(device, state, lib_flags); |
| |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->pStages[i]; |
| gl_shader_stage s = vk_to_mesa_shader_stage(stage->stage); |
| |
| key.stage_info[s] = radv_pipeline_get_shader_key(device, stage, create_flags, pCreateInfo->pNext); |
| |
| if (s == MESA_SHADER_MESH && (state->shader_stages & VK_SHADER_STAGE_TASK_BIT_EXT)) |
| key.stage_info[s].has_task_shader = true; |
| } |
| |
| return key; |
| } |
| |
| static void |
| radv_fill_shader_info_ngg(struct radv_device *device, struct radv_shader_stage *stages, |
| VkShaderStageFlagBits active_nir_stages) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| |
| if (!pdev->cache_key.use_ngg) |
| return; |
| |
| if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.next_stage != MESA_SHADER_TESS_CTRL) { |
| stages[MESA_SHADER_VERTEX].info.is_ngg = true; |
| } else if (stages[MESA_SHADER_TESS_EVAL].nir) { |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true; |
| } else if (stages[MESA_SHADER_MESH].nir) { |
| stages[MESA_SHADER_MESH].info.is_ngg = true; |
| } |
| |
| if (pdev->info.gfx_level >= GFX11) { |
| if (stages[MESA_SHADER_GEOMETRY].nir) |
| stages[MESA_SHADER_GEOMETRY].info.is_ngg = true; |
| } else { |
| /* GFX10/GFX10.3 can't always enable NGG due to HW bugs/limitations. */ |
| if (stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_GEOMETRY].nir && |
| stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations * |
| stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out > |
| 256) { |
| /* Fallback to the legacy path if tessellation is |
| * enabled with extreme geometry because |
| * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it |
| * might hang. |
| */ |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; |
| } |
| |
| struct radv_shader_stage *last_vgt_stage = NULL; |
| radv_foreach_stage(i, active_nir_stages) |
| { |
| if (radv_is_last_vgt_stage(&stages[i])) { |
| last_vgt_stage = &stages[i]; |
| } |
| } |
| |
| if ((last_vgt_stage && last_vgt_stage->nir->xfb_info) || |
| ((instance->debug_flags & RADV_DEBUG_NO_NGG_GS) && stages[MESA_SHADER_GEOMETRY].nir)) { |
| /* NGG needs to be disabled on GFX10/GFX10.3 when: |
| * - streamout is used because NGG streamout isn't supported |
| * - NGG GS is explictly disabled to workaround performance issues |
| */ |
| if (stages[MESA_SHADER_TESS_EVAL].nir) |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; |
| else |
| stages[MESA_SHADER_VERTEX].info.is_ngg = false; |
| } |
| |
| if (stages[MESA_SHADER_GEOMETRY].nir) { |
| if (stages[MESA_SHADER_TESS_EVAL].nir) |
| stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_TESS_EVAL].info.is_ngg; |
| else |
| stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_VERTEX].info.is_ngg; |
| } |
| |
| /* When pre-rasterization stages are compiled separately with shader objects, NGG GS needs to |
| * be disabled because if the next stage of VS/TES is GS and GS is unknown, it might use |
| * streamout but it's not possible to know that when compiling VS or TES only. |
| */ |
| if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.next_stage == MESA_SHADER_GEOMETRY && |
| !stages[MESA_SHADER_GEOMETRY].nir) { |
| stages[MESA_SHADER_VERTEX].info.is_ngg = false; |
| } else if (stages[MESA_SHADER_TESS_EVAL].nir && |
| stages[MESA_SHADER_TESS_EVAL].info.next_stage == MESA_SHADER_GEOMETRY && |
| !stages[MESA_SHADER_GEOMETRY].nir) { |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; |
| } else if (stages[MESA_SHADER_GEOMETRY].nir && |
| (!stages[MESA_SHADER_VERTEX].nir && !stages[MESA_SHADER_TESS_EVAL].nir)) { |
| stages[MESA_SHADER_GEOMETRY].info.is_ngg = false; |
| } |
| } |
| } |
| |
| static bool |
| radv_consider_force_vrs(const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage *last_vgt_stage, |
| const struct radv_shader_stage *fs_stage) |
| { |
| if (!gfx_state->ps.force_vrs_enabled) |
| return false; |
| |
| /* Mesh shaders aren't considered. */ |
| if (last_vgt_stage->info.stage == MESA_SHADER_MESH) |
| return false; |
| |
| if (last_vgt_stage->nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) |
| return false; |
| |
| /* VRS has no effect if there is no pixel shader. */ |
| if (last_vgt_stage->info.next_stage == MESA_SHADER_NONE) |
| return false; |
| |
| /* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games, or with Primitive |
| * Ordered Pixel Shading (regardless of whether per-pixel data is addressed with gl_FragCoord or a custom |
| * interpolator) as that'd result in races between adjacent primitives with no common fine pixels. |
| */ |
| nir_shader *fs_shader = fs_stage->nir; |
| if (fs_shader && (BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) || |
| BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_PIXEL_COORD) || |
| fs_shader->info.fs.sample_interlock_ordered || fs_shader->info.fs.sample_interlock_unordered || |
| fs_shader->info.fs.pixel_interlock_ordered || fs_shader->info.fs.pixel_interlock_unordered)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static gl_shader_stage |
| radv_get_next_stage(gl_shader_stage stage, VkShaderStageFlagBits active_nir_stages) |
| { |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| if (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { |
| return MESA_SHADER_TESS_CTRL; |
| } else if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { |
| return MESA_SHADER_GEOMETRY; |
| } else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) { |
| return MESA_SHADER_FRAGMENT; |
| } else { |
| return MESA_SHADER_NONE; |
| } |
| case MESA_SHADER_TESS_CTRL: |
| return MESA_SHADER_TESS_EVAL; |
| case MESA_SHADER_TESS_EVAL: |
| if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { |
| return MESA_SHADER_GEOMETRY; |
| } else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) { |
| return MESA_SHADER_FRAGMENT; |
| } else { |
| return MESA_SHADER_NONE; |
| } |
| case MESA_SHADER_GEOMETRY: |
| case MESA_SHADER_MESH: |
| if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) { |
| return MESA_SHADER_FRAGMENT; |
| } else { |
| return MESA_SHADER_NONE; |
| } |
| case MESA_SHADER_TASK: |
| return MESA_SHADER_MESH; |
| case MESA_SHADER_FRAGMENT: |
| return MESA_SHADER_NONE; |
| default: |
| unreachable("invalid graphics shader stage"); |
| } |
| } |
| |
| static void |
| radv_fill_shader_info(struct radv_device *device, const enum radv_pipeline_type pipeline_type, |
| const struct radv_graphics_state_key *gfx_state, struct radv_shader_stage *stages, |
| VkShaderStageFlagBits active_nir_stages) |
| { |
| radv_foreach_stage(i, active_nir_stages) |
| { |
| bool consider_force_vrs = false; |
| |
| if (radv_is_last_vgt_stage(&stages[i])) { |
| consider_force_vrs = radv_consider_force_vrs(gfx_state, &stages[i], &stages[MESA_SHADER_FRAGMENT]); |
| } |
| |
| radv_nir_shader_info_pass(device, stages[i].nir, &stages[i].layout, &stages[i].key, gfx_state, pipeline_type, |
| consider_force_vrs, &stages[i].info); |
| } |
| |
| radv_nir_shader_info_link(device, gfx_state, stages); |
| } |
| |
| static void |
| radv_declare_pipeline_args(struct radv_device *device, struct radv_shader_stage *stages, |
| const struct radv_graphics_state_key *gfx_state, VkShaderStageFlagBits active_nir_stages) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) { |
| radv_declare_shader_args(device, gfx_state, &stages[MESA_SHADER_TESS_CTRL].info, MESA_SHADER_TESS_CTRL, |
| MESA_SHADER_VERTEX, &stages[MESA_SHADER_TESS_CTRL].args); |
| stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs; |
| stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask = |
| stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask; |
| |
| stages[MESA_SHADER_VERTEX].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs; |
| stages[MESA_SHADER_VERTEX].info.inline_push_constant_mask = |
| stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask; |
| stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args; |
| |
| active_nir_stages &= ~(1 << MESA_SHADER_VERTEX); |
| active_nir_stages &= ~(1 << MESA_SHADER_TESS_CTRL); |
| } |
| |
| if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) { |
| gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| radv_declare_shader_args(device, gfx_state, &stages[MESA_SHADER_GEOMETRY].info, MESA_SHADER_GEOMETRY, pre_stage, |
| &stages[MESA_SHADER_GEOMETRY].args); |
| stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs; |
| stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask = |
| stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask; |
| |
| stages[pre_stage].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs; |
| stages[pre_stage].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask; |
| stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args; |
| active_nir_stages &= ~(1 << pre_stage); |
| active_nir_stages &= ~(1 << MESA_SHADER_GEOMETRY); |
| } |
| |
| u_foreach_bit (i, active_nir_stages) { |
| radv_declare_shader_args(device, gfx_state, &stages[i].info, i, MESA_SHADER_NONE, &stages[i].args); |
| stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs; |
| stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask; |
| } |
| } |
| |
| static struct radv_shader * |
| radv_create_gs_copy_shader(struct radv_device *device, struct vk_pipeline_cache *cache, |
| struct radv_shader_stage *gs_stage, const struct radv_graphics_state_key *gfx_state, |
| bool keep_executable_info, bool keep_statistic_info, bool skip_shaders_cache, |
| struct radv_shader_binary **gs_copy_binary) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_instance *instance = radv_physical_device_instance(pdev); |
| |
| const struct radv_shader_info *gs_info = &gs_stage->info; |
| ac_nir_gs_output_info output_info = { |
| .streams = gs_info->gs.output_streams, |
| .sysval_mask = gs_info->gs.output_usage_mask, |
| .varying_mask = gs_info->gs.output_usage_mask, |
| }; |
| nir_shader *nir = ac_nir_create_gs_copy_shader( |
| gs_stage->nir, pdev->info.gfx_level, gs_info->outinfo.clip_dist_mask | gs_info->outinfo.cull_dist_mask, |
| gs_info->outinfo.vs_output_param_offset, gs_info->outinfo.param_exports, false, false, false, |
| gs_info->force_vrs_per_vertex, &output_info); |
| |
| nir->info.internal = true; |
| |
| nir_validate_shader(nir, "after ac_nir_create_gs_copy_shader"); |
| nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); |
| |
| struct radv_shader_stage gs_copy_stage = { |
| .stage = MESA_SHADER_VERTEX, |
| .shader_sha1 = {0}, |
| .key = |
| { |
| .optimisations_disabled = gs_stage->key.optimisations_disabled, |
| }, |
| }; |
| radv_nir_shader_info_init(gs_copy_stage.stage, MESA_SHADER_FRAGMENT, &gs_copy_stage.info); |
| radv_nir_shader_info_pass(device, nir, &gs_stage->layout, &gs_stage->key, gfx_state, RADV_PIPELINE_GRAPHICS, false, |
| &gs_copy_stage.info); |
| gs_copy_stage.info.wave_size = 64; /* Wave32 not supported. */ |
| gs_copy_stage.info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */ |
| gs_copy_stage.info.so = gs_info->so; |
| gs_copy_stage.info.outinfo = gs_info->outinfo; |
| gs_copy_stage.info.force_vrs_per_vertex = gs_info->force_vrs_per_vertex; |
| gs_copy_stage.info.type = RADV_SHADER_TYPE_GS_COPY; |
| |
| radv_declare_shader_args(device, gfx_state, &gs_copy_stage.info, MESA_SHADER_VERTEX, MESA_SHADER_NONE, |
| &gs_copy_stage.args); |
| gs_copy_stage.info.user_sgprs_locs = gs_copy_stage.args.user_sgprs_locs; |
| gs_copy_stage.info.inline_push_constant_mask = gs_copy_stage.args.ac.inline_push_const_mask; |
| |
| NIR_PASS(_, nir, ac_nir_lower_intrinsics_to_args, pdev->info.gfx_level, pdev->info.has_ls_vgpr_init_bug, |
| AC_HW_VERTEX_SHADER, 64, 64, &gs_copy_stage.args.ac); |
| NIR_PASS(_, nir, radv_nir_lower_abi, pdev->info.gfx_level, &gs_copy_stage, gfx_state, pdev->info.address32_hi); |
| |
| struct radv_graphics_pipeline_key key = {0}; |
| bool dump_shader = radv_can_dump_shader(device, nir); |
| |
| if (dump_shader) |
| simple_mtx_lock(&instance->shader_dump_mtx); |
| |
| char *nir_string = NULL; |
| if (keep_executable_info || dump_shader) |
| nir_string = radv_dump_nir_shaders(instance, &nir, 1); |
| |
| *gs_copy_binary = radv_shader_nir_to_asm(device, &gs_copy_stage, &nir, 1, &key.gfx_state, keep_executable_info, |
| keep_statistic_info); |
| struct radv_shader *copy_shader = |
| radv_shader_create(device, cache, *gs_copy_binary, skip_shaders_cache || dump_shader); |
| |
| if (copy_shader) { |
| copy_shader->nir_string = nir_string; |
| radv_shader_dump_debug_info(device, dump_shader, *gs_copy_binary, copy_shader, &nir, 1, &gs_copy_stage.info); |
| } |
| |
| if (dump_shader) |
| simple_mtx_unlock(&instance->shader_dump_mtx); |
| |
| return copy_shader; |
| } |
| |
| static void |
| radv_graphics_shaders_nir_to_asm(struct radv_device *device, struct vk_pipeline_cache *cache, |
| struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state, |
| bool keep_executable_info, bool keep_statistic_info, bool skip_shaders_cache, |
| VkShaderStageFlagBits active_nir_stages, struct radv_shader **shaders, |
| struct radv_shader_binary **binaries, struct radv_shader **gs_copy_shader, |
| struct radv_shader_binary **gs_copy_binary) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_instance *instance = radv_physical_device_instance(pdev); |
| |
| for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) { |
| if (!(active_nir_stages & (1 << s))) |
| continue; |
| |
| nir_shader *nir_shaders[2] = {stages[s].nir, NULL}; |
| unsigned shader_count = 1; |
| |
| /* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */ |
| if (pdev->info.gfx_level >= GFX9 && |
| ((s == MESA_SHADER_GEOMETRY && |
| (active_nir_stages & (VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT))) || |
| (s == MESA_SHADER_TESS_CTRL && (active_nir_stages & VK_SHADER_STAGE_VERTEX_BIT)))) { |
| gl_shader_stage pre_stage; |
| |
| if (s == MESA_SHADER_GEOMETRY && (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) { |
| pre_stage = MESA_SHADER_TESS_EVAL; |
| } else { |
| pre_stage = MESA_SHADER_VERTEX; |
| } |
| |
| nir_shaders[0] = stages[pre_stage].nir; |
| nir_shaders[1] = stages[s].nir; |
| shader_count = 2; |
| } |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| bool dump_shader = false; |
| for (unsigned i = 0; i < shader_count; ++i) |
| dump_shader |= radv_can_dump_shader(device, nir_shaders[i]); |
| |
| bool dump_nir = dump_shader && (instance->debug_flags & RADV_DEBUG_DUMP_NIR); |
| |
| if (dump_shader) { |
| simple_mtx_lock(&instance->shader_dump_mtx); |
| |
| if (dump_nir) { |
| for (uint32_t i = 0; i < shader_count; i++) |
| nir_print_shader(nir_shaders[i], stderr); |
| } |
| } |
| |
| char *nir_string = NULL; |
| if (keep_executable_info || dump_shader) |
| nir_string = radv_dump_nir_shaders(instance, nir_shaders, shader_count); |
| |
| binaries[s] = radv_shader_nir_to_asm(device, &stages[s], nir_shaders, shader_count, gfx_state, |
| keep_executable_info, keep_statistic_info); |
| shaders[s] = radv_shader_create(device, cache, binaries[s], skip_shaders_cache || dump_shader); |
| |
| shaders[s]->nir_string = nir_string; |
| |
| radv_shader_dump_debug_info(device, dump_shader, binaries[s], shaders[s], nir_shaders, shader_count, |
| &stages[s].info); |
| |
| if (dump_shader) |
| simple_mtx_unlock(&instance->shader_dump_mtx); |
| |
| if (s == MESA_SHADER_GEOMETRY && !stages[s].info.is_ngg) { |
| *gs_copy_shader = |
| radv_create_gs_copy_shader(device, cache, &stages[MESA_SHADER_GEOMETRY], gfx_state, keep_executable_info, |
| keep_statistic_info, skip_shaders_cache, gs_copy_binary); |
| } |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| |
| active_nir_stages &= ~(1 << nir_shaders[0]->info.stage); |
| if (nir_shaders[1]) |
| active_nir_stages &= ~(1 << nir_shaders[1]->info.stage); |
| } |
| } |
| |
| static void |
| radv_pipeline_retain_shaders(struct radv_retained_shaders *retained_shaders, struct radv_shader_stage *stages) |
| { |
| for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { |
| if (stages[s].stage == MESA_SHADER_NONE) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| /* Serialize the NIR shader to reduce memory pressure. */ |
| struct blob blob; |
| |
| blob_init(&blob); |
| nir_serialize(&blob, stages[s].nir, true); |
| blob_finish_get_buffer(&blob, &retained_shaders->stages[s].serialized_nir, |
| &retained_shaders->stages[s].serialized_nir_size); |
| |
| memcpy(retained_shaders->stages[s].shader_sha1, stages[s].shader_sha1, sizeof(stages[s].shader_sha1)); |
| memcpy(&retained_shaders->stages[s].key, &stages[s].key, sizeof(stages[s].key)); |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| } |
| |
| static void |
| radv_pipeline_import_retained_shaders(const struct radv_device *device, struct radv_graphics_lib_pipeline *lib, |
| struct radv_shader_stage *stages) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_retained_shaders *retained_shaders = &lib->retained_shaders; |
| |
| /* Import the stages (SPIR-V only in case of cache hits). */ |
| for (uint32_t i = 0; i < lib->stage_count; i++) { |
| const VkPipelineShaderStageCreateInfo *sinfo = &lib->stages[i]; |
| gl_shader_stage s = vk_to_mesa_shader_stage(sinfo->stage); |
| |
| radv_pipeline_stage_init(lib->base.base.create_flags, sinfo, |
| &lib->layout, &lib->stage_keys[s], &stages[s]); |
| } |
| |
| /* Import the NIR shaders (after SPIRV->NIR). */ |
| for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) { |
| if (!retained_shaders->stages[s].serialized_nir_size) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| /* Deserialize the NIR shader. */ |
| const struct nir_shader_compiler_options *options = &pdev->nir_options[s]; |
| struct blob_reader blob_reader; |
| blob_reader_init(&blob_reader, retained_shaders->stages[s].serialized_nir, |
| retained_shaders->stages[s].serialized_nir_size); |
| |
| stages[s].stage = s; |
| stages[s].nir = nir_deserialize(NULL, options, &blob_reader); |
| stages[s].entrypoint = nir_shader_get_entrypoint(stages[s].nir)->function->name; |
| memcpy(stages[s].shader_sha1, retained_shaders->stages[s].shader_sha1, sizeof(stages[s].shader_sha1)); |
| memcpy(&stages[s].key, &retained_shaders->stages[s].key, sizeof(stages[s].key)); |
| |
| radv_shader_layout_init(&lib->layout, s, &stages[s].layout); |
| |
| stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT; |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| } |
| |
| static void |
| radv_pipeline_load_retained_shaders(const struct radv_device *device, const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| struct radv_shader_stage *stages) |
| { |
| const VkPipelineCreateFlags2 create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| |
| /* Nothing to load if no libs are imported. */ |
| if (!libs_info) |
| return; |
| |
| /* Nothing to load if fast-linking is enabled and if there is no retained shaders. */ |
| if (radv_should_import_lib_binaries(create_flags)) |
| return; |
| |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| radv_pipeline_import_retained_shaders(device, gfx_pipeline_lib, stages); |
| } |
| } |
| |
| static unsigned |
| radv_get_rasterization_prim(const struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state) |
| { |
| unsigned rast_prim; |
| |
| if (gfx_state->unknown_rast_prim) |
| return -1; |
| |
| if (stages[MESA_SHADER_GEOMETRY].nir) { |
| rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_GEOMETRY].nir->info.gs.output_primitive); |
| } else if (stages[MESA_SHADER_TESS_EVAL].nir) { |
| if (stages[MESA_SHADER_TESS_EVAL].nir->info.tess.point_mode) { |
| rast_prim = V_028A6C_POINTLIST; |
| } else { |
| rast_prim = radv_conv_tess_prim_to_gs_out(stages[MESA_SHADER_TESS_EVAL].nir->info.tess._primitive_mode); |
| } |
| } else if (stages[MESA_SHADER_MESH].nir) { |
| rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_MESH].nir->info.mesh.primitive_type); |
| } else { |
| rast_prim = radv_conv_prim_to_gs_out(gfx_state->ia.topology, false); |
| } |
| |
| return rast_prim; |
| } |
| |
| static bool |
| radv_is_fast_linking_enabled(const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineCreateFlags2 create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| |
| if (!libs_info) |
| return false; |
| |
| return !(create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT); |
| } |
| |
| static bool |
| radv_skip_graphics_pipeline_compile(const struct radv_device *device, const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineBinaryInfoKHR *binary_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_BINARY_INFO_KHR); |
| const VkPipelineCreateFlags2 create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| VkShaderStageFlagBits binary_stages = 0; |
| VkShaderStageFlags active_stages = 0; |
| |
| /* No compilation when pipeline binaries are imported. */ |
| if (binary_info && binary_info->binaryCount > 0) |
| return true; |
| |
| /* Do not skip for libraries. */ |
| if (create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) |
| return false; |
| |
| /* Do not skip when fast-linking isn't enabled. */ |
| if (!radv_is_fast_linking_enabled(pCreateInfo)) |
| return false; |
| |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i]; |
| active_stages |= sinfo->stage; |
| } |
| |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| if (libs_info) { |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB); |
| |
| active_stages |= gfx_pipeline_lib->base.active_stages; |
| |
| for (uint32_t s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { |
| if (!gfx_pipeline_lib->base.base.shaders[s]) |
| continue; |
| |
| binary_stages |= mesa_to_vk_shader_stage(s); |
| } |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| /* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */ |
| if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { |
| binary_stages |= VK_SHADER_STAGE_VERTEX_BIT; |
| } |
| |
| if (binary_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { |
| if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { |
| binary_stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; |
| } else { |
| binary_stages |= VK_SHADER_STAGE_VERTEX_BIT; |
| } |
| } |
| } |
| |
| /* Only skip compilation when all binaries have been imported. */ |
| return binary_stages == active_stages; |
| } |
| |
| void |
| radv_graphics_shaders_compile(struct radv_device *device, struct vk_pipeline_cache *cache, |
| struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state, |
| bool keep_executable_info, bool keep_statistic_info, bool is_internal, |
| bool skip_shaders_cache, struct radv_retained_shaders *retained_shaders, bool noop_fs, |
| struct radv_shader **shaders, struct radv_shader_binary **binaries, |
| struct radv_shader **gs_copy_shader, struct radv_shader_binary **gs_copy_binary) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| const bool nir_cache = instance->perftest_flags & RADV_PERFTEST_NIR_CACHE; |
| for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { |
| if (stages[s].stage == MESA_SHADER_NONE) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| /* NIR might already have been imported from a library. */ |
| if (!stages[s].nir) { |
| struct radv_spirv_to_nir_options options = { |
| .lower_view_index_to_zero = !gfx_state->has_multiview_view_index, |
| .lower_view_index_to_device_index = stages[s].key.view_index_from_device_index, |
| }; |
| blake3_hash key; |
| |
| if (nir_cache) { |
| radv_hash_graphics_spirv_to_nir(key, &stages[s], &options); |
| stages[s].nir = radv_pipeline_cache_lookup_nir(device, cache, s, key); |
| } |
| if (!stages[s].nir) { |
| stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], &options, is_internal); |
| if (nir_cache) |
| radv_pipeline_cache_insert_nir(device, cache, key, stages[s].nir); |
| } |
| } |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| |
| if (retained_shaders) { |
| radv_pipeline_retain_shaders(retained_shaders, stages); |
| } |
| |
| VkShaderStageFlagBits active_nir_stages = 0; |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| if (stages[i].nir) |
| active_nir_stages |= mesa_to_vk_shader_stage(i); |
| } |
| |
| if (!pdev->mesh_fast_launch_2 && stages[MESA_SHADER_MESH].nir && |
| BITSET_TEST(stages[MESA_SHADER_MESH].nir->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID)) { |
| nir_shader *mesh = stages[MESA_SHADER_MESH].nir; |
| nir_shader *task = stages[MESA_SHADER_TASK].nir; |
| |
| /* Mesh shaders only have a 1D "vertex index" which we use |
| * as "workgroup index" to emulate the 3D workgroup ID. |
| */ |
| nir_lower_compute_system_values_options o = { |
| .lower_workgroup_id_to_index = true, |
| .shortcut_1d_workgroup_id = true, |
| .num_workgroups[0] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[0] : 0, |
| .num_workgroups[1] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[1] : 0, |
| .num_workgroups[2] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[2] : 0, |
| }; |
| |
| NIR_PASS(_, mesh, nir_lower_compute_system_values, &o); |
| } |
| |
| radv_foreach_stage(i, active_nir_stages) |
| { |
| gl_shader_stage next_stage; |
| |
| if (stages[i].next_stage != MESA_SHADER_NONE) { |
| next_stage = stages[i].next_stage; |
| } else { |
| next_stage = radv_get_next_stage(i, active_nir_stages); |
| } |
| |
| radv_nir_shader_info_init(i, next_stage, &stages[i].info); |
| } |
| |
| /* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */ |
| radv_fill_shader_info_ngg(device, stages, active_nir_stages); |
| |
| if (stages[MESA_SHADER_GEOMETRY].nir) { |
| unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream; |
| |
| if (stages[MESA_SHADER_GEOMETRY].info.is_ngg) { |
| nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives | |
| nir_lower_gs_intrinsics_count_vertices_per_primitive | |
| nir_lower_gs_intrinsics_overwrite_incomplete; |
| } |
| |
| NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags); |
| } |
| |
| /* Remove all varyings when the fragment shader is a noop. */ |
| if (noop_fs) { |
| radv_foreach_stage(i, active_nir_stages) |
| { |
| if (radv_is_last_vgt_stage(&stages[i])) { |
| radv_remove_varyings(stages[i].nir); |
| break; |
| } |
| } |
| } |
| |
| radv_graphics_shaders_link(device, gfx_state, stages); |
| |
| if (stages[MESA_SHADER_FRAGMENT].nir) { |
| unsigned rast_prim = radv_get_rasterization_prim(stages, gfx_state); |
| |
| NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_nir_lower_fs_barycentric, gfx_state, rast_prim); |
| |
| NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, nir_lower_fragcoord_wtrans); |
| |
| /* frag_depth = gl_FragCoord.z broadcasts to all samples of the fragment shader invocation, |
| * so only optimize it away if we know there is only one sample per invocation. |
| * Because we don't know if sample shading is used with factor 1.0f, this means |
| * we only optimize single sampled shaders. |
| */ |
| if ((gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT) && |
| !gfx_state->dynamic_rasterization_samples && gfx_state->ms.rasterization_samples == 0) |
| NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, nir_opt_fragdepth); |
| |
| NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_nir_opt_fs_builtins, gfx_state); |
| } |
| |
| if (stages[MESA_SHADER_VERTEX].nir && !gfx_state->vs.has_prolog) |
| NIR_PASS(_, stages[MESA_SHADER_VERTEX].nir, radv_nir_optimize_vs_inputs_to_const, gfx_state); |
| |
| radv_foreach_stage(i, active_nir_stages) |
| { |
| int64_t stage_start = os_time_get_nano(); |
| |
| radv_optimize_nir(stages[i].nir, stages[i].key.optimisations_disabled); |
| |
| /* Gather info again, information such as outputs_read can be out-of-date. */ |
| nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir)); |
| radv_nir_lower_io(device, stages[i].nir); |
| |
| stages[i].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| |
| if (stages[MESA_SHADER_FRAGMENT].nir) { |
| bool update_info = false; |
| if (gfx_state->dynamic_line_rast_mode) |
| NIR_PASS(update_info, stages[MESA_SHADER_FRAGMENT].nir, nir_lower_poly_line_smooth, |
| RADV_NUM_SMOOTH_AA_SAMPLES); |
| |
| if (!gfx_state->ps.has_epilog) |
| radv_nir_remap_color_attachment(stages[MESA_SHADER_FRAGMENT].nir, gfx_state); |
| |
| NIR_PASS(update_info, stages[MESA_SHADER_FRAGMENT].nir, nir_opt_frag_coord_to_pixel_coord); |
| if (update_info) |
| nir_shader_gather_info(stages[MESA_SHADER_FRAGMENT].nir, |
| nir_shader_get_entrypoint(stages[MESA_SHADER_FRAGMENT].nir)); |
| } |
| |
| /* Optimize varyings on lowered shader I/O (more efficient than optimizing I/O derefs). */ |
| radv_graphics_shaders_link_varyings(stages); |
| |
| /* Optimize constant clip/cull distance after linking to operate on scalar io in the last |
| * pre raster stage. |
| */ |
| radv_foreach_stage(i, active_nir_stages & (VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) |
| { |
| if (stages[i].key.optimisations_disabled) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| NIR_PASS(_, stages[i].nir, nir_opt_clip_cull_const); |
| |
| stages[i].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| |
| radv_fill_shader_info(device, RADV_PIPELINE_GRAPHICS, gfx_state, stages, active_nir_stages); |
| |
| radv_declare_pipeline_args(device, stages, gfx_state, active_nir_stages); |
| |
| radv_foreach_stage(i, active_nir_stages) |
| { |
| int64_t stage_start = os_time_get_nano(); |
| |
| radv_postprocess_nir(device, gfx_state, &stages[i]); |
| |
| stages[i].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| |
| /* Compile NIR shaders to AMD assembly. */ |
| radv_graphics_shaders_nir_to_asm(device, cache, stages, gfx_state, keep_executable_info, keep_statistic_info, |
| skip_shaders_cache, active_nir_stages, shaders, binaries, gs_copy_shader, |
| gs_copy_binary); |
| |
| if (keep_executable_info) { |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| struct radv_shader *shader = shaders[i]; |
| if (!shader) |
| continue; |
| |
| if (!stages[i].spirv.size) |
| continue; |
| |
| shader->spirv = malloc(stages[i].spirv.size); |
| memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size); |
| shader->spirv_size = stages[i].spirv.size; |
| } |
| } |
| } |
| |
| static bool |
| radv_should_compute_pipeline_hash(const struct radv_device *device, const enum radv_pipeline_type pipeline_type, |
| bool fast_linking_enabled) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| |
| /* Skip computing the pipeline hash when GPL fast-linking is enabled because these shaders aren't |
| * supposed to be cached and computing the hash is costly. Though, make sure it's always computed |
| * when RGP is enabled, otherwise ISA isn't reported. |
| */ |
| return !fast_linking_enabled || |
| ((instance->vk.trace_mode & RADV_TRACE_MODE_RGP) && pipeline_type == RADV_PIPELINE_GRAPHICS); |
| } |
| |
| void |
| radv_graphics_pipeline_state_finish(struct radv_device *device, struct radv_graphics_pipeline_state *gfx_state) |
| { |
| radv_pipeline_layout_finish(device, &gfx_state->layout); |
| vk_free(&device->vk.alloc, gfx_state->vk_data); |
| |
| if (gfx_state->stages) { |
| for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) |
| ralloc_free(gfx_state->stages[i].nir); |
| free(gfx_state->stages); |
| } |
| } |
| |
| VkResult |
| radv_generate_graphics_pipeline_state(struct radv_device *device, const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| struct radv_graphics_pipeline_state *gfx_state) |
| { |
| VK_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout); |
| const VkPipelineCreateFlags2 create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| const bool fast_linking_enabled = radv_is_fast_linking_enabled(pCreateInfo); |
| enum radv_pipeline_type pipeline_type = RADV_PIPELINE_GRAPHICS; |
| VkResult result; |
| |
| memset(gfx_state, 0, sizeof(*gfx_state)); |
| |
| VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = ALL_GRAPHICS_LIB_FLAGS; |
| if (create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) { |
| const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info = |
| vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT); |
| needed_lib_flags = lib_info ? lib_info->flags : 0; |
| pipeline_type = RADV_PIPELINE_GRAPHICS_LIB; |
| } |
| |
| radv_pipeline_layout_init(device, &gfx_state->layout, false); |
| |
| /* If we have libraries, import them first. */ |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| if (libs_info) { |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| const struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| vk_graphics_pipeline_state_merge(&gfx_state->vk, &gfx_pipeline_lib->graphics_state); |
| |
| radv_graphics_pipeline_import_layout(&gfx_state->layout, &gfx_pipeline_lib->layout); |
| |
| needed_lib_flags &= ~gfx_pipeline_lib->lib_flags; |
| } |
| } |
| |
| result = vk_graphics_pipeline_state_fill(&device->vk, &gfx_state->vk, pCreateInfo, NULL, 0, NULL, NULL, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, &gfx_state->vk_data); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| if (pipeline_layout) |
| radv_graphics_pipeline_import_layout(&gfx_state->layout, pipeline_layout); |
| |
| if (radv_should_compute_pipeline_hash(device, pipeline_type, fast_linking_enabled)) |
| radv_pipeline_layout_hash(&gfx_state->layout); |
| |
| gfx_state->compilation_required = !radv_skip_graphics_pipeline_compile(device, pCreateInfo); |
| if (gfx_state->compilation_required) { |
| gfx_state->key = radv_generate_graphics_pipeline_key(device, pCreateInfo, &gfx_state->vk, needed_lib_flags); |
| |
| gfx_state->stages = malloc(sizeof(struct radv_shader_stage) * MESA_VULKAN_SHADER_STAGES); |
| if (!gfx_state->stages) { |
| result = VK_ERROR_OUT_OF_HOST_MEMORY; |
| goto fail; |
| } |
| |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| gfx_state->stages[i].stage = MESA_SHADER_NONE; |
| gfx_state->stages[i].nir = NULL; |
| gfx_state->stages[i].spirv.size = 0; |
| gfx_state->stages[i].next_stage = MESA_SHADER_NONE; |
| } |
| |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i]; |
| gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage); |
| |
| radv_pipeline_stage_init(create_flags, sinfo, &gfx_state->layout, &gfx_state->key.stage_info[stage], |
| &gfx_state->stages[stage]); |
| } |
| |
| radv_pipeline_load_retained_shaders(device, pCreateInfo, gfx_state->stages); |
| } |
| |
| return VK_SUCCESS; |
| |
| fail: |
| radv_graphics_pipeline_state_finish(device, gfx_state); |
| return result; |
| } |
| |
| void |
| radv_graphics_pipeline_hash(const struct radv_device *device, const struct radv_graphics_pipeline_state *gfx_state, |
| unsigned char *hash) |
| { |
| struct mesa_sha1 ctx; |
| |
| _mesa_sha1_init(&ctx); |
| radv_pipeline_hash(device, &gfx_state->layout, &ctx); |
| |
| _mesa_sha1_update(&ctx, &gfx_state->key.gfx_state, sizeof(gfx_state->key.gfx_state)); |
| |
| for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { |
| const struct radv_shader_stage *stage = &gfx_state->stages[s]; |
| |
| if (stage->stage == MESA_SHADER_NONE) |
| continue; |
| |
| _mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1)); |
| _mesa_sha1_update(&ctx, &stage->key, sizeof(stage->key)); |
| } |
| |
| _mesa_sha1_final(&ctx, hash); |
| } |
| |
| static VkResult |
| radv_graphics_pipeline_compile(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_state *gfx_state, struct radv_device *device, |
| struct vk_pipeline_cache *cache, bool fast_linking_enabled) |
| { |
| struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL}; |
| struct radv_shader_binary *gs_copy_binary = NULL; |
| bool keep_executable_info = radv_pipeline_capture_shaders(device, pipeline->base.create_flags); |
| bool keep_statistic_info = radv_pipeline_capture_shader_stats(device, pipeline->base.create_flags); |
| bool skip_shaders_cache = radv_pipeline_skip_shaders_cache(device, &pipeline->base); |
| struct radv_shader_stage *stages = gfx_state->stages; |
| const VkPipelineCreationFeedbackCreateInfo *creation_feedback = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO); |
| VkPipelineCreationFeedback pipeline_feedback = { |
| .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT, |
| }; |
| VkResult result = VK_SUCCESS; |
| const bool retain_shaders = |
| !!(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT); |
| struct radv_retained_shaders *retained_shaders = NULL; |
| |
| int64_t pipeline_start = os_time_get_nano(); |
| |
| if (radv_should_compute_pipeline_hash(device, pipeline->base.type, fast_linking_enabled)) { |
| radv_graphics_pipeline_hash(device, gfx_state, pipeline->base.sha1); |
| |
| pipeline->base.pipeline_hash = *(uint64_t *)pipeline->base.sha1; |
| } |
| |
| /* Skip the shaders cache when any of the below are true: |
| * - fast-linking is enabled because it's useless to cache unoptimized pipelines |
| * - graphics pipeline libraries are created with the RETAIN_LINK_TIME_OPTIMIZATION flag and |
| * module identifiers are used (ie. no SPIR-V provided). |
| */ |
| if (fast_linking_enabled) { |
| skip_shaders_cache = true; |
| } else if (retain_shaders) { |
| assert(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR); |
| for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| if (stages[i].stage != MESA_SHADER_NONE && !stages[i].spirv.size) { |
| skip_shaders_cache = true; |
| break; |
| } |
| } |
| } |
| |
| bool found_in_application_cache = true; |
| if (!skip_shaders_cache && |
| radv_graphics_pipeline_cache_search(device, cache, pipeline, &found_in_application_cache)) { |
| if (found_in_application_cache) |
| pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT; |
| |
| if (retain_shaders) { |
| /* For graphics pipeline libraries created with the RETAIN_LINK_TIME_OPTIMIZATION flag, we |
| * need to retain the stage info because we can't know if the LTO pipelines will |
| * be find in the shaders cache. |
| */ |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base); |
| |
| gfx_pipeline_lib->stages = radv_copy_shader_stage_create_info(device, pCreateInfo->stageCount, |
| pCreateInfo->pStages, gfx_pipeline_lib->mem_ctx); |
| if (!gfx_pipeline_lib->stages) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| |
| gfx_pipeline_lib->stage_count = pCreateInfo->stageCount; |
| |
| for (unsigned i = 0; i < pCreateInfo->stageCount; i++) { |
| gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage); |
| gfx_pipeline_lib->stage_keys[s] = gfx_state->key.stage_info[s]; |
| } |
| } |
| |
| result = VK_SUCCESS; |
| goto done; |
| } |
| |
| if (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT) |
| return VK_PIPELINE_COMPILE_REQUIRED; |
| |
| if (retain_shaders) { |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base); |
| retained_shaders = &gfx_pipeline_lib->retained_shaders; |
| } |
| |
| const bool noop_fs = radv_pipeline_needs_noop_fs(pipeline, &gfx_state->key.gfx_state); |
| |
| radv_graphics_shaders_compile(device, cache, stages, &gfx_state->key.gfx_state, keep_executable_info, |
| keep_statistic_info, pipeline->base.is_internal, skip_shaders_cache, retained_shaders, |
| noop_fs, pipeline->base.shaders, binaries, &pipeline->base.gs_copy_shader, |
| &gs_copy_binary); |
| |
| if (!skip_shaders_cache) { |
| radv_pipeline_cache_insert(device, cache, &pipeline->base); |
| } |
| |
| free(gs_copy_binary); |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| free(binaries[i]); |
| if (stages[i].nir) { |
| if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->base.shaders[i]) { |
| radv_dump_shader_stats(device, &pipeline->base, pipeline->base.shaders[i], i, stderr); |
| } |
| } |
| } |
| |
| done: |
| pipeline_feedback.duration = os_time_get_nano() - pipeline_start; |
| |
| if (creation_feedback) { |
| *creation_feedback->pPipelineCreationFeedback = pipeline_feedback; |
| |
| if (creation_feedback->pipelineStageCreationFeedbackCount > 0) { |
| uint32_t num_feedbacks = 0; |
| |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage); |
| creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback; |
| } |
| |
| /* Stages imported from graphics pipeline libraries are defined as additional entries in the |
| * order they were imported. |
| */ |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| if (libs_info) { |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| if (!gfx_pipeline_lib->base.active_stages) |
| continue; |
| |
| radv_foreach_stage(s, gfx_pipeline_lib->base.active_stages) |
| { |
| creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback; |
| } |
| } |
| } |
| |
| assert(num_feedbacks == creation_feedback->pipelineStageCreationFeedbackCount); |
| } |
| } |
| |
| return result; |
| } |
| |
| struct radv_vgt_shader_key |
| radv_get_vgt_shader_key(const struct radv_device *device, struct radv_shader **shaders, |
| const struct radv_shader *gs_copy_shader) |
| { |
| uint8_t hs_size = 64, gs_size = 64, vs_size = 64; |
| struct radv_shader *last_vgt_shader = NULL; |
| struct radv_vgt_shader_key key; |
| |
| memset(&key, 0, sizeof(key)); |
| |
| if (shaders[MESA_SHADER_GEOMETRY]) { |
| last_vgt_shader = shaders[MESA_SHADER_GEOMETRY]; |
| } else if (shaders[MESA_SHADER_TESS_EVAL]) { |
| last_vgt_shader = shaders[MESA_SHADER_TESS_EVAL]; |
| } else if (shaders[MESA_SHADER_VERTEX]) { |
| last_vgt_shader = shaders[MESA_SHADER_VERTEX]; |
| } else { |
| assert(shaders[MESA_SHADER_MESH]); |
| last_vgt_shader = shaders[MESA_SHADER_MESH]; |
| } |
| |
| vs_size = gs_size = last_vgt_shader->info.wave_size; |
| if (gs_copy_shader) |
| vs_size = gs_copy_shader->info.wave_size; |
| |
| if (shaders[MESA_SHADER_TESS_CTRL]) |
| hs_size = shaders[MESA_SHADER_TESS_CTRL]->info.wave_size; |
| |
| key.tess = !!shaders[MESA_SHADER_TESS_CTRL]; |
| key.gs = !!shaders[MESA_SHADER_GEOMETRY]; |
| if (last_vgt_shader->info.is_ngg) { |
| key.ngg = 1; |
| key.ngg_passthrough = last_vgt_shader->info.is_ngg_passthrough; |
| key.ngg_streamout = last_vgt_shader->info.so.num_outputs > 0; |
| } |
| if (shaders[MESA_SHADER_MESH]) { |
| key.mesh = 1; |
| key.mesh_scratch_ring = shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring; |
| } |
| |
| key.hs_wave32 = hs_size == 32; |
| key.vs_wave32 = vs_size == 32; |
| key.gs_wave32 = gs_size == 32; |
| |
| return key; |
| } |
| |
| static bool |
| gfx103_pipeline_vrs_coarse_shading(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| |
| if (pdev->info.gfx_level != GFX10_3) |
| return false; |
| |
| if (instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING) |
| return false; |
| |
| if (ps && !ps->info.ps.allow_flat_shading) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| radv_pipeline_init_vertex_input_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *vs = radv_get_shader(pipeline->base.shaders, MESA_SHADER_VERTEX); |
| |
| if (!state->vi) |
| return; |
| |
| u_foreach_bit (i, state->vi->bindings_valid) { |
| pipeline->binding_stride[i] = state->vi->bindings[i].stride; |
| } |
| |
| if (vs->info.vs.use_per_attribute_vb_descs) { |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| const enum radeon_family family = pdev->info.family; |
| const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(gfx_level, family); |
| |
| pipeline->vertex_input.bindings_match_attrib = true; |
| |
| u_foreach_bit (i, state->vi->attributes_valid) { |
| uint32_t binding = state->vi->attributes[i].binding; |
| uint32_t offset = state->vi->attributes[i].offset; |
| |
| pipeline->vertex_input.attribute_mask |= BITFIELD_BIT(i); |
| pipeline->vertex_input.bindings[i] = binding; |
| pipeline->vertex_input.bindings_match_attrib &= binding == i; |
| |
| if (state->vi->bindings[binding].stride) { |
| pipeline->vertex_input.attrib_index_offset[i] = offset / state->vi->bindings[binding].stride; |
| } |
| |
| if (state->vi->bindings[binding].input_rate) { |
| pipeline->vertex_input.instance_rate_inputs |= BITFIELD_BIT(i); |
| pipeline->vertex_input.divisors[i] = state->vi->bindings[binding].divisor; |
| |
| if (state->vi->bindings[binding].divisor == 0) { |
| pipeline->vertex_input.zero_divisors |= BITFIELD_BIT(i); |
| } else if (state->vi->bindings[binding].divisor > 1) { |
| pipeline->vertex_input.nontrivial_divisors |= BITFIELD_BIT(i); |
| } |
| } |
| |
| pipeline->vertex_input.offsets[i] = offset; |
| |
| enum pipe_format format = radv_format_to_pipe_format(state->vi->attributes[i].format); |
| const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format]; |
| |
| pipeline->vertex_input.formats[i] = format; |
| uint8_t format_align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1); |
| pipeline->vertex_input.format_align_req_minus_1[i] = format_align_req_minus_1; |
| uint8_t component_align_req_minus_1 = |
| MIN2(vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size, 4) - 1; |
| pipeline->vertex_input.component_align_req_minus_1[i] = component_align_req_minus_1; |
| pipeline->vertex_input.format_sizes[i] = vtx_info->element_size; |
| pipeline->vertex_input.alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << i; |
| pipeline->vertex_input.alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << i; |
| if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) { |
| pipeline->vertex_input.post_shuffle |= BITFIELD_BIT(i); |
| } |
| |
| if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) { |
| pipeline->vertex_input.nontrivial_formats |= BITFIELD_BIT(i); |
| } |
| } |
| } else { |
| u_foreach_bit (i, vs->info.vs.vb_desc_usage_mask) { |
| pipeline->vertex_input.bindings[i] = i; |
| } |
| } |
| } |
| |
| static void |
| radv_pipeline_init_shader_stages_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline) |
| { |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| bool shader_exists = !!pipeline->base.shaders[i]; |
| if (shader_exists || i < MESA_SHADER_COMPUTE) { |
| if (shader_exists) |
| pipeline->base.need_indirect_descriptor_sets |= |
| radv_shader_need_indirect_descriptor_sets(pipeline->base.shaders[i]); |
| } |
| } |
| |
| gl_shader_stage first_stage = |
| radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX; |
| |
| const struct radv_shader *shader = radv_get_shader(pipeline->base.shaders, first_stage); |
| const struct radv_userdata_info *loc = radv_get_user_sgpr_info(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE); |
| |
| if (loc->sgpr_idx != -1) { |
| pipeline->vtx_base_sgpr = shader->info.user_data_0; |
| pipeline->vtx_base_sgpr += loc->sgpr_idx * 4; |
| pipeline->vtx_emit_num = loc->num_sgprs; |
| pipeline->uses_drawid = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_draw_id; |
| pipeline->uses_baseinstance = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_base_instance; |
| |
| assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance); |
| } |
| } |
| |
| uint32_t |
| radv_get_vgt_gs_out(struct radv_shader **shaders, uint32_t primitive_topology, bool is_ngg) |
| { |
| uint32_t gs_out; |
| |
| if (shaders[MESA_SHADER_GEOMETRY]) { |
| gs_out = radv_conv_gl_prim_to_gs_out(shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); |
| } else if (shaders[MESA_SHADER_TESS_CTRL]) { |
| if (shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) { |
| gs_out = V_028A6C_POINTLIST; |
| } else { |
| gs_out = radv_conv_tess_prim_to_gs_out(shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode); |
| } |
| } else if (shaders[MESA_SHADER_MESH]) { |
| gs_out = radv_conv_gl_prim_to_gs_out(shaders[MESA_SHADER_MESH]->info.ms.output_prim); |
| } else { |
| gs_out = radv_conv_prim_to_gs_out(primitive_topology, is_ngg); |
| } |
| |
| return gs_out; |
| } |
| |
| static uint32_t |
| radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state) |
| { |
| const bool is_ngg = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.is_ngg; |
| uint32_t primitive_topology = 0; |
| |
| if (pipeline->last_vgt_api_stage == MESA_SHADER_VERTEX) |
| primitive_topology = radv_translate_prim(state->ia->primitive_topology); |
| |
| return radv_get_vgt_gs_out(pipeline->base.shaders, primitive_topology, is_ngg); |
| } |
| |
| static void |
| radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfoRADV *radv_info, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| pipeline->custom_blend_mode = radv_info->custom_blend_mode; |
| |
| if (radv_pipeline_has_ds_attachments(state->rp)) { |
| pipeline->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(radv_info->db_depth_clear); |
| pipeline->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(radv_info->db_stencil_clear); |
| pipeline->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(radv_info->depth_compress_disable); |
| pipeline->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(radv_info->stencil_compress_disable); |
| } |
| } |
| |
| bool |
| radv_needs_null_export_workaround(const struct radv_device *device, const struct radv_shader *ps, |
| unsigned custom_blend_mode) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| if (!ps) |
| return false; |
| |
| /* Ensure that some export memory is always allocated, for two reasons: |
| * |
| * 1) Correctness: The hardware ignores the EXEC mask if no export |
| * memory is allocated, so KILL and alpha test do not work correctly |
| * without this. |
| * 2) Performance: Every shader needs at least a NULL export, even when |
| * it writes no color/depth output. The NULL export instruction |
| * stalls without this setting. |
| * |
| * Don't add this to CB_SHADER_MASK. |
| * |
| * GFX10 supports pixel shaders without exports by setting both the |
| * color and Z formats to SPI_SHADER_ZERO. The hw will skip export |
| * instructions if any are present. |
| * |
| * GFX11 requires one color output, otherwise the DCC decompression does nothing. |
| * |
| * Primitive Ordered Pixel Shading also requires an export, otherwise interlocking doesn't work |
| * correctly before GFX11, and a hang happens on GFX11. |
| */ |
| return (gfx_level <= GFX9 || ps->info.ps.can_discard || ps->info.ps.pops || |
| (custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 && gfx_level >= GFX11)) && |
| !ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask; |
| } |
| |
| static VkResult |
| radv_graphics_pipeline_import_binaries(struct radv_device *device, struct radv_graphics_pipeline *pipeline, |
| const VkPipelineBinaryInfoKHR *binary_info) |
| { |
| blake3_hash pipeline_hash; |
| struct mesa_blake3 ctx; |
| |
| _mesa_blake3_init(&ctx); |
| |
| for (uint32_t i = 0; i < binary_info->binaryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline_binary, pipeline_binary, binary_info->pPipelineBinaries[i]); |
| struct radv_shader *shader; |
| struct blob_reader blob; |
| |
| blob_reader_init(&blob, pipeline_binary->data, pipeline_binary->size); |
| |
| shader = radv_shader_deserialize(device, pipeline_binary->key, sizeof(pipeline_binary->key), &blob); |
| if (!shader) |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| |
| if (shader->info.stage == MESA_SHADER_VERTEX && i > 0) { |
| /* The GS copy-shader is a VS placed after all other stages. */ |
| pipeline->base.gs_copy_shader = shader; |
| } else { |
| pipeline->base.shaders[shader->info.stage] = shader; |
| } |
| |
| _mesa_blake3_update(&ctx, pipeline_binary->key, sizeof(pipeline_binary->key)); |
| } |
| |
| _mesa_blake3_final(&ctx, pipeline_hash); |
| |
| pipeline->base.pipeline_hash = *(uint64_t *)pipeline_hash; |
| |
| pipeline->has_pipeline_binaries = true; |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device, |
| struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| bool fast_linking_enabled = radv_is_fast_linking_enabled(pCreateInfo); |
| struct radv_graphics_pipeline_state gfx_state; |
| VkResult result = VK_SUCCESS; |
| |
| pipeline->last_vgt_api_stage = MESA_SHADER_NONE; |
| |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| |
| /* If we have libraries, import them first. */ |
| if (libs_info) { |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB); |
| |
| radv_graphics_pipeline_import_lib(device, pipeline, gfx_pipeline_lib); |
| } |
| } |
| |
| radv_pipeline_import_graphics_info(device, pipeline, pCreateInfo); |
| |
| result = radv_generate_graphics_pipeline_state(device, pCreateInfo, &gfx_state); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| const VkPipelineBinaryInfoKHR *binary_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_BINARY_INFO_KHR); |
| |
| if (binary_info && binary_info->binaryCount > 0) { |
| result = radv_graphics_pipeline_import_binaries(device, pipeline, binary_info); |
| } else { |
| if (gfx_state.compilation_required) { |
| result = |
| radv_graphics_pipeline_compile(pipeline, pCreateInfo, &gfx_state, device, cache, fast_linking_enabled); |
| } |
| } |
| |
| if (result != VK_SUCCESS) { |
| radv_graphics_pipeline_state_finish(device, &gfx_state); |
| return result; |
| } |
| |
| uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &gfx_state.vk); |
| |
| radv_pipeline_init_multisample_state(device, pipeline, pCreateInfo, &gfx_state.vk); |
| |
| if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) |
| radv_pipeline_init_input_assembly_state(device, pipeline); |
| radv_pipeline_init_dynamic_state(device, pipeline, &gfx_state.vk, pCreateInfo); |
| |
| if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) |
| radv_pipeline_init_vertex_input_state(device, pipeline, &gfx_state.vk); |
| |
| radv_pipeline_init_shader_stages_state(device, pipeline); |
| |
| pipeline->is_ngg = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.is_ngg; |
| pipeline->has_ngg_culling = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling; |
| pipeline->force_vrs_per_vertex = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex; |
| pipeline->rast_prim = vgt_gs_out_prim_type; |
| pipeline->uses_out_of_order_rast = gfx_state.vk.rs->rasterization_order_amd == VK_RASTERIZATION_ORDER_RELAXED_AMD; |
| pipeline->uses_vrs = radv_is_vrs_enabled(&gfx_state.vk); |
| pipeline->uses_vrs_attachment = radv_pipeline_uses_vrs_attachment(pipeline, &gfx_state.vk); |
| pipeline->uses_vrs_coarse_shading = !pipeline->uses_vrs && gfx103_pipeline_vrs_coarse_shading(device, pipeline); |
| |
| pipeline->base.push_constant_size = gfx_state.layout.push_constant_size; |
| pipeline->base.dynamic_offset_count = gfx_state.layout.dynamic_offset_count; |
| |
| const VkGraphicsPipelineCreateInfoRADV *radv_info = |
| vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_CREATE_INFO_RADV); |
| if (radv_info) { |
| radv_pipeline_init_extra(pipeline, radv_info, &gfx_state.vk); |
| } |
| |
| radv_graphics_pipeline_state_finish(device, &gfx_state); |
| return result; |
| } |
| |
| static VkResult |
| radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) |
| { |
| VK_FROM_HANDLE(radv_device, device, _device); |
| VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache); |
| struct radv_graphics_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS); |
| pipeline->base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| pipeline->base.is_internal = _cache == device->meta_state.cache; |
| |
| result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, &pipeline->base, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(&pipeline->base); |
| radv_rmv_log_graphics_pipeline_create(device, &pipeline->base, pipeline->base.is_internal); |
| return VK_SUCCESS; |
| } |
| |
| void |
| radv_destroy_graphics_pipeline(struct radv_device *device, struct radv_graphics_pipeline *pipeline) |
| { |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| if (pipeline->base.shaders[i]) |
| radv_shader_unref(device, pipeline->base.shaders[i]); |
| } |
| |
| if (pipeline->base.gs_copy_shader) |
| radv_shader_unref(device, pipeline->base.gs_copy_shader); |
| } |
| |
| static VkResult |
| radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline *pipeline, struct radv_device *device, |
| struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| VK_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout); |
| VkResult result; |
| |
| const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info = |
| vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT); |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| bool fast_linking_enabled = radv_is_fast_linking_enabled(pCreateInfo); |
| |
| struct vk_graphics_pipeline_state *state = &pipeline->graphics_state; |
| |
| pipeline->base.last_vgt_api_stage = MESA_SHADER_NONE; |
| pipeline->lib_flags = lib_info ? lib_info->flags : 0; |
| |
| radv_pipeline_layout_init(device, &pipeline->layout, false); |
| |
| /* If we have libraries, import them first. */ |
| if (libs_info) { |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| vk_graphics_pipeline_state_merge(state, &gfx_pipeline_lib->graphics_state); |
| |
| radv_graphics_pipeline_import_layout(&pipeline->layout, &gfx_pipeline_lib->layout); |
| |
| radv_graphics_pipeline_import_lib(device, &pipeline->base, gfx_pipeline_lib); |
| |
| pipeline->lib_flags |= gfx_pipeline_lib->lib_flags; |
| } |
| } |
| |
| result = vk_graphics_pipeline_state_fill(&device->vk, state, pCreateInfo, NULL, 0, NULL, NULL, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, &pipeline->state_data); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| radv_pipeline_import_graphics_info(device, &pipeline->base, pCreateInfo); |
| |
| if (pipeline_layout) |
| radv_graphics_pipeline_import_layout(&pipeline->layout, pipeline_layout); |
| |
| const VkPipelineBinaryInfoKHR *binary_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_BINARY_INFO_KHR); |
| |
| if (binary_info && binary_info->binaryCount > 0) { |
| result = radv_graphics_pipeline_import_binaries(device, &pipeline->base, binary_info); |
| } else { |
| struct radv_graphics_pipeline_state gfx_state; |
| |
| result = radv_generate_graphics_pipeline_state(device, pCreateInfo, &gfx_state); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| result = |
| radv_graphics_pipeline_compile(&pipeline->base, pCreateInfo, &gfx_state, device, cache, fast_linking_enabled); |
| |
| radv_graphics_pipeline_state_finish(device, &gfx_state); |
| } |
| |
| return result; |
| } |
| |
| static VkResult |
| radv_graphics_lib_pipeline_create(VkDevice _device, VkPipelineCache _cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) |
| { |
| VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache); |
| VK_FROM_HANDLE(radv_device, device, _device); |
| struct radv_graphics_lib_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| radv_pipeline_init(device, &pipeline->base.base, RADV_PIPELINE_GRAPHICS_LIB); |
| pipeline->base.base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo); |
| |
| pipeline->mem_ctx = ralloc_context(NULL); |
| |
| result = radv_graphics_lib_pipeline_init(pipeline, device, cache, pCreateInfo); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, &pipeline->base.base, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(&pipeline->base.base); |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| radv_destroy_graphics_lib_pipeline(struct radv_device *device, struct radv_graphics_lib_pipeline *pipeline) |
| { |
| struct radv_retained_shaders *retained_shaders = &pipeline->retained_shaders; |
| |
| radv_pipeline_layout_finish(device, &pipeline->layout); |
| |
| vk_free(&device->vk.alloc, pipeline->state_data); |
| |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| free(retained_shaders->stages[i].serialized_nir); |
| } |
| |
| ralloc_free(pipeline->mem_ctx); |
| |
| radv_destroy_graphics_pipeline(device, &pipeline->base); |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, |
| const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, |
| VkPipeline *pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| unsigned i = 0; |
| |
| for (; i < count; i++) { |
| const VkPipelineCreateFlagBits2 create_flags = vk_graphics_pipeline_create_flags(&pCreateInfos[i]); |
| VkResult r; |
| if (create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) { |
| r = radv_graphics_lib_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); |
| } else { |
| r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); |
| } |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| |
| if (create_flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT) |
| break; |
| } |
| } |
| |
| for (; i < count; ++i) |
| pPipelines[i] = VK_NULL_HANDLE; |
| |
| return result; |
| } |