| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * SPDX-License-Identifier: MIT |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| */ |
| |
| #include "tu_cmd_buffer.h" |
| |
| #include "vk_common_entrypoints.h" |
| #include "vk_render_pass.h" |
| #include "vk_util.h" |
| |
| #include "tu_buffer.h" |
| #include "tu_clear_blit.h" |
| #include "tu_cs.h" |
| #include "tu_event.h" |
| #include "tu_image.h" |
| #include "tu_tracepoints.h" |
| |
| #include "common/freedreno_gpu_event.h" |
| #include "common/freedreno_lrz.h" |
| |
| static void |
| tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| struct u_trace_iterator begin, struct u_trace_iterator end) |
| { |
| if (u_trace_iterator_equal(begin, end)) |
| return; |
| |
| tu_cs_emit_wfi(cs); |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| u_trace_clone_append(begin, end, &cmd->trace, cs, tu_copy_buffer); |
| } |
| |
| static void |
| tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| struct u_trace *trace) |
| { |
| tu_clone_trace_range(cmd, cs, u_trace_begin_iterator(trace), |
| u_trace_end_iterator(trace)); |
| } |
| |
| template <chip CHIP> |
| void |
| tu_emit_raw_event_write(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| enum vgt_event_type event, |
| bool needs_seqno) |
| { |
| if (CHIP == A6XX) { |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1); |
| tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event)); |
| } else { |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1); |
| tu_cs_emit(cs, |
| CP_EVENT_WRITE7_0(.event = event, |
| .write_src = EV_WRITE_USER_32B, |
| .write_dst = EV_DST_RAM, |
| .write_enabled = needs_seqno).value); |
| } |
| |
| if (needs_seqno) { |
| tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy)); |
| tu_cs_emit(cs, 0); |
| } |
| } |
| TU_GENX(tu_emit_raw_event_write); |
| |
| template <chip CHIP> |
| void |
| tu_emit_event_write(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| enum fd_gpu_event event) |
| { |
| struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event]; |
| tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event, |
| event_info.needs_seqno); |
| } |
| TU_GENX(tu_emit_event_write); |
| |
| /* Emits the tessfactor address to the top-level CS if it hasn't been already. |
| * Updating this register requires a WFI if outstanding drawing is using it, but |
| * tu6_init_hardware() will have WFIed before we started and no other draws |
| * could be using the tessfactor address yet since we only emit one per cmdbuf. |
| */ |
| template <chip CHIP> |
| static void |
| tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd) |
| { |
| if (cmd->state.tessfactor_addr_set) |
| return; |
| |
| tu_cs_emit_regs(&cmd->cs, PC_TESSFACTOR_ADDR(CHIP, .qword = cmd->device->tess_bo->iova)); |
| /* Updating PC_TESSFACTOR_ADDR could race with the next draw which uses it. */ |
| cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE; |
| cmd->state.tessfactor_addr_set = true; |
| } |
| |
| static void |
| tu6_lazy_init_vsc(struct tu_cmd_buffer *cmd) |
| { |
| struct tu_device *dev = cmd->device; |
| uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes; |
| |
| /* VSC buffers: |
| * use vsc pitches from the largest values used so far with this device |
| * if there hasn't been overflow, there will already be a scratch bo |
| * allocated for these sizes |
| * |
| * if overflow is detected, the stream size is increased by 2x |
| */ |
| mtx_lock(&dev->mutex); |
| |
| struct tu6_global *global = dev->global_bo_map; |
| |
| uint32_t vsc_draw_overflow = global->vsc_draw_overflow; |
| uint32_t vsc_prim_overflow = global->vsc_prim_overflow; |
| |
| if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch) |
| dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD; |
| |
| if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch) |
| dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD; |
| |
| cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch; |
| cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch; |
| |
| mtx_unlock(&dev->mutex); |
| |
| struct tu_bo *vsc_bo; |
| uint32_t size0 = cmd->vsc_prim_strm_pitch * num_vsc_pipes + |
| cmd->vsc_draw_strm_pitch * num_vsc_pipes; |
| |
| tu_get_scratch_bo(dev, size0 + num_vsc_pipes * 4, &vsc_bo); |
| |
| cmd->vsc_draw_strm_va = vsc_bo->iova + cmd->vsc_prim_strm_pitch * num_vsc_pipes; |
| cmd->vsc_draw_strm_size_va = vsc_bo->iova + size0; |
| cmd->vsc_prim_strm_va = vsc_bo->iova; |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| if (CHIP == A6XX) { |
| tu_cs_emit_regs(cs, |
| A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.qword = cmd->vsc_draw_strm_size_va)); |
| tu_cs_emit_regs(cs, |
| A6XX_VSC_PRIM_STRM_ADDRESS(.qword = cmd->vsc_prim_strm_va)); |
| tu_cs_emit_regs( |
| cs, A6XX_VSC_DRAW_STRM_ADDRESS(.qword = cmd->vsc_draw_strm_va)); |
| } else { |
| tu_cs_emit_pkt7(cs, CP_SET_PSEUDO_REG, 3 * 3); |
| tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(DRAW_STRM_ADDRESS)); |
| tu_cs_emit_qw(cs, cmd->vsc_draw_strm_va); |
| tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(DRAW_STRM_SIZE_ADDRESS)); |
| tu_cs_emit_qw(cs, cmd->vsc_draw_strm_size_va); |
| tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(PRIM_STRM_ADDRESS)); |
| tu_cs_emit_qw(cs, cmd->vsc_prim_strm_va); |
| } |
| |
| cmd->vsc_initialized = true; |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer, |
| struct tu_cs *cs, |
| struct tu_cache_state *cache) |
| { |
| BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits; |
| cache->flush_bits = 0; |
| |
| if (TU_DEBUG(FLUSHALL)) |
| flushes |= TU_CMD_FLAG_ALL_CLEAN | TU_CMD_FLAG_ALL_INVALIDATE; |
| |
| if (TU_DEBUG(SYNCDRAW)) |
| flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES | |
| TU_CMD_FLAG_WAIT_FOR_IDLE | |
| TU_CMD_FLAG_WAIT_FOR_ME; |
| |
| /* Experiments show that invalidating CCU while it still has data in it |
| * doesn't work, so make sure to always flush before invalidating in case |
| * any data remains that hasn't yet been made available through a barrier. |
| * However it does seem to work for UCHE. |
| */ |
| if (flushes & (TU_CMD_FLAG_CCU_CLEAN_COLOR | |
| TU_CMD_FLAG_CCU_INVALIDATE_COLOR)) |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_COLOR); |
| if (flushes & (TU_CMD_FLAG_CCU_CLEAN_DEPTH | |
| TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)) |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_DEPTH); |
| if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR) |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR); |
| if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH) |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH); |
| if (flushes & TU_CMD_FLAG_CACHE_CLEAN) |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_CLEAN); |
| if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE) |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE); |
| if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) { |
| tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP, |
| .cs_bindless = CHIP == A6XX ? 0x1f : 0xff, |
| .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff, |
| )); |
| } |
| if (CHIP >= A7XX && flushes & TU_CMD_FLAG_BLIT_CACHE_CLEAN) |
| /* On A7XX, blit cache flushes are required to ensure blit writes are visible |
| * via UCHE. This isn't necessary on A6XX, all writes should be visible implictly. |
| */ |
| tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_BLIT_CACHE); |
| if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_CCHE_INVALIDATE) && |
| /* Invalidating UCHE seems to also invalidate CCHE */ |
| !(flushes & TU_CMD_FLAG_CACHE_INVALIDATE)) |
| tu_cs_emit_pkt7(cs, CP_CCHE_INVALIDATE, 0); |
| if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES) |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE) |
| tu_cs_emit_wfi(cs); |
| if (flushes & TU_CMD_FLAG_WAIT_FOR_ME) |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| } |
| |
| /* "Normal" cache flushes outside the renderpass, that don't require any special handling */ |
| template <chip CHIP> |
| void |
| tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer) |
| { |
| tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->cs, &cmd_buffer->state.cache); |
| } |
| TU_GENX(tu_emit_cache_flush); |
| |
| /* Renderpass cache flushes inside the draw_cs */ |
| template <chip CHIP> |
| void |
| tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer) |
| { |
| if (!cmd_buffer->state.renderpass_cache.flush_bits && |
| likely(!tu_env.debug)) |
| return; |
| tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->draw_cs, |
| &cmd_buffer->state.renderpass_cache); |
| if (cmd_buffer->state.renderpass_cache.flush_bits & |
| TU_CMD_FLAG_BLIT_CACHE_CLEAN) { |
| cmd_buffer->state.blit_cache_cleaned = true; |
| } |
| } |
| TU_GENX(tu_emit_cache_flush_renderpass); |
| |
| template <chip CHIP> |
| static void |
| emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem) |
| { |
| /* The CCUs are a cache that allocates memory from GMEM while facilitating |
| * framebuffer caching for sysmem rendering. The CCU is split into two parts, |
| * one for color and one for depth. The size and offset of these in GMEM can |
| * be configured separately. |
| * |
| * The most common configuration for the CCU is to occupy as much as possible |
| * of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On |
| * the other hand, when rendering to GMEM, the CCUs can be left enabled at |
| * any configuration as they don't interfere with GMEM rendering and only |
| * overwrite GMEM when sysmem operations are performed. |
| * |
| * The vast majority of GMEM rendering doesn't need any sysmem operations |
| * but there are some cases where it is required. For example, when the |
| * framebuffer isn't aligned to the tile size or with certain MSAA resolves. |
| * |
| * To correctly handle these cases, we need to be able to switch between |
| * sysmem and GMEM rendering. We do this by allocating a carveout at the |
| * end of GMEM for the color CCU (as none of these operations are depth) |
| * which the color CCU offset is set to and the GMEM size available to the |
| * GMEM layout calculations is adjusted accordingly. |
| */ |
| uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem |
| : dev->physical_device->ccu_offset_bypass; |
| |
| uint32_t color_offset_hi = color_offset >> 21; |
| color_offset &= 0x1fffff; |
| |
| uint32_t depth_offset = gmem ? 0 |
| : dev->physical_device->ccu_depth_offset_bypass; |
| |
| uint32_t depth_offset_hi = depth_offset >> 21; |
| depth_offset &= 0x1fffff; |
| |
| enum a6xx_ccu_cache_size color_cache_size = !gmem ? CCU_CACHE_SIZE_FULL : !gmem ? CCU_CACHE_SIZE_FULL : |
| (a6xx_ccu_cache_size)(dev->physical_device->info->a6xx.gmem_ccu_color_cache_fraction); |
| |
| if (CHIP == A7XX) { |
| tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL2( |
| .depth_offset_hi = depth_offset_hi, |
| .color_offset_hi = color_offset_hi, |
| .depth_cache_size = CCU_CACHE_SIZE_FULL, |
| .depth_offset = depth_offset, |
| .color_cache_size = color_cache_size, |
| .color_offset = color_offset |
| )); |
| |
| if (dev->physical_device->info->a7xx.has_gmem_vpc_attr_buf) { |
| tu_cs_emit_regs(cs, |
| A7XX_VPC_ATTR_BUF_SIZE_GMEM( |
| .size_gmem = |
| gmem ? dev->physical_device->vpc_attr_buf_size_gmem |
| : dev->physical_device->vpc_attr_buf_size_bypass), |
| A7XX_VPC_ATTR_BUF_BASE_GMEM( |
| .base_gmem = |
| gmem ? dev->physical_device->vpc_attr_buf_offset_gmem |
| : dev->physical_device->vpc_attr_buf_offset_bypass), ); |
| tu_cs_emit_regs(cs, |
| A7XX_PC_ATTR_BUF_SIZE_GMEM( |
| .size_gmem = |
| gmem ? dev->physical_device->vpc_attr_buf_size_gmem |
| : dev->physical_device->vpc_attr_buf_size_bypass), ); |
| } |
| } else { |
| tu_cs_emit_regs(cs, RB_CCU_CNTL(CHIP, |
| .gmem_fast_clear_disable = |
| !dev->physical_device->info->a6xx.has_gmem_fast_clear, |
| .concurrent_resolve = |
| dev->physical_device->info->a6xx.concurrent_resolve, |
| .depth_offset_hi = 0, |
| .color_offset_hi = color_offset_hi, |
| .depth_cache_size = CCU_CACHE_SIZE_FULL, |
| .depth_offset = 0, |
| .color_cache_size = color_cache_size, |
| .color_offset = color_offset |
| )); |
| } |
| } |
| |
| /* Cache flushes for things that use the color/depth read/write path (i.e. |
| * blits and draws). This deals with changing CCU state as well as the usual |
| * cache flushing. |
| */ |
| template <chip CHIP> |
| void |
| tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer, |
| struct tu_cs *cs, |
| enum tu_cmd_ccu_state ccu_state) |
| { |
| assert(ccu_state != TU_CMD_CCU_UNKNOWN); |
| /* It's unsafe to flush inside condition because we clear flush_bits */ |
| assert(!cs->cond_stack_depth); |
| |
| /* Changing CCU state must involve invalidating the CCU. In sysmem mode, |
| * the CCU may also contain data that we haven't flushed out yet, so we |
| * also need to flush. Also, in order to program RB_CCU_CNTL, we need to |
| * emit a WFI as it isn't pipelined. |
| * |
| * Note: On A7XX, with the introduction of RB_CCU_CNTL2, we no longer need |
| * to emit a WFI when changing a subset of CCU state. |
| */ |
| if (ccu_state != cmd_buffer->state.ccu_state) { |
| if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) { |
| cmd_buffer->state.cache.flush_bits |= |
| TU_CMD_FLAG_CCU_CLEAN_COLOR | |
| TU_CMD_FLAG_CCU_CLEAN_DEPTH; |
| cmd_buffer->state.cache.pending_flush_bits &= ~( |
| TU_CMD_FLAG_CCU_CLEAN_COLOR | |
| TU_CMD_FLAG_CCU_CLEAN_DEPTH); |
| } |
| cmd_buffer->state.cache.flush_bits |= |
| TU_CMD_FLAG_CCU_INVALIDATE_COLOR | |
| TU_CMD_FLAG_CCU_INVALIDATE_DEPTH | |
| (CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0); |
| cmd_buffer->state.cache.pending_flush_bits &= ~( |
| TU_CMD_FLAG_CCU_INVALIDATE_COLOR | |
| TU_CMD_FLAG_CCU_INVALIDATE_DEPTH | |
| (CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0)); |
| } |
| |
| tu6_emit_flushes<CHIP>(cmd_buffer, cs, &cmd_buffer->state.cache); |
| |
| if (ccu_state != cmd_buffer->state.ccu_state) { |
| emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device, |
| ccu_state == TU_CMD_CCU_GMEM); |
| cmd_buffer->state.ccu_state = ccu_state; |
| } |
| } |
| TU_GENX(tu_emit_cache_flush_ccu); |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_zs(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| struct tu_cs *cs) |
| { |
| const uint32_t a = subpass->depth_stencil_attachment.attachment; |
| if (a == VK_ATTACHMENT_UNUSED) { |
| tu_cs_emit_regs(cs, |
| RB_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE), |
| A6XX_RB_DEPTH_BUFFER_PITCH(0), |
| A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0), |
| A6XX_RB_DEPTH_BUFFER_BASE(0), |
| A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE)); |
| |
| tu_cs_emit_regs(cs, RB_STENCIL_INFO(CHIP, 0)); |
| |
| return; |
| } |
| |
| const struct tu_image_view *iview = cmd->state.attachments[a]; |
| const struct tu_render_pass_attachment *attachment = |
| &cmd->state.pass->attachments[a]; |
| enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format); |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6); |
| tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP, |
| .depth_format = fmt, |
| .tilemode = TILE6_3, |
| .losslesscompen = iview->view.ubwc_enabled, |
| ).value); |
| if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) |
| tu_cs_image_depth_ref(cs, iview, 0); |
| else |
| tu_cs_image_ref(cs, &iview->view, 0); |
| tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt)); |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3); |
| tu_cs_image_flag_ref(cs, &iview->view, 0); |
| |
| if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT || |
| attachment->format == VK_FORMAT_S8_UINT) { |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6); |
| tu_cs_emit(cs, RB_STENCIL_INFO(CHIP, |
| .separate_stencil = true, |
| .tilemode = TILE6_3, |
| ).value); |
| if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) { |
| tu_cs_image_stencil_ref(cs, iview, 0); |
| tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0)); |
| } else { |
| tu_cs_image_ref(cs, &iview->view, 0); |
| tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0)); |
| } |
| } else { |
| tu_cs_emit_regs(cs, |
| RB_STENCIL_INFO(CHIP, 0)); |
| } |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_mrt(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| struct tu_cs *cs) |
| { |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| |
| enum a6xx_format mrt0_format = FMT6_NONE; |
| |
| uint32_t written = 0; |
| for (uint32_t i = 0; i < subpass->color_count; ++i) { |
| uint32_t a = subpass->color_attachments[i].attachment; |
| unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i]; |
| if (a == VK_ATTACHMENT_UNUSED || |
| remapped == MESA_VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| const struct tu_image_view *iview = cmd->state.attachments[a]; |
| |
| tu_cs_emit_regs(cs, |
| RB_MRT_BUF_INFO(CHIP, remapped, .dword = iview->view.RB_MRT_BUF_INFO), |
| A6XX_RB_MRT_PITCH(remapped, iview->view.pitch), |
| A6XX_RB_MRT_ARRAY_PITCH(remapped, iview->view.layer_size), |
| A6XX_RB_MRT_BASE(remapped, .qword = tu_layer_address(&iview->view, 0)), |
| A6XX_RB_MRT_BASE_GMEM(remapped, |
| tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0) |
| ), |
| ); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_SP_FS_MRT_REG(remapped, .dword = iview->view.SP_FS_MRT_REG)); |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR(remapped), 3); |
| tu_cs_image_flag_ref(cs, &iview->view, 0); |
| |
| if (remapped == 0) |
| mrt0_format = (enum a6xx_format) (iview->view.SP_FS_MRT_REG & 0xff); |
| |
| written |= 1u << remapped; |
| } |
| |
| u_foreach_bit (i, ~written) { |
| if (i >= subpass->color_count) |
| break; |
| |
| /* From the VkPipelineRenderingCreateInfo definition: |
| * |
| * Valid formats indicate that an attachment can be used - but it |
| * is still valid to set the attachment to NULL when beginning |
| * rendering. |
| * |
| * This means that with dynamic rendering, pipelines may write to |
| * some attachments that are UNUSED here. Setting the format to 0 |
| * here should prevent them from writing to anything. This also seems |
| * to also be required for alpha-to-coverage which can use the alpha |
| * value for an otherwise-unused attachment. |
| */ |
| tu_cs_emit_regs(cs, |
| RB_MRT_BUF_INFO(CHIP, i), |
| A6XX_RB_MRT_PITCH(i), |
| A6XX_RB_MRT_ARRAY_PITCH(i), |
| A6XX_RB_MRT_BASE(i), |
| A6XX_RB_MRT_BASE_GMEM(i), |
| ); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_SP_FS_MRT_REG(i, .dword = 0)); |
| } |
| |
| tu_cs_emit_regs(cs, A6XX_GRAS_LRZ_MRT_BUF_INFO_0(.color_format = mrt0_format)); |
| |
| const bool dither = subpass->legacy_dithering_enabled; |
| const uint32_t dither_cntl = |
| A6XX_RB_DITHER_CNTL( |
| .dither_mode_mrt0 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt1 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt2 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt3 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt4 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt5 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt6 = dither ? DITHER_ALWAYS : DITHER_DISABLE, |
| .dither_mode_mrt7 = dither ? DITHER_ALWAYS : DITHER_DISABLE, ) |
| .value; |
| tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL(.dword = dither_cntl)); |
| if (CHIP >= A7XX) { |
| tu_cs_emit_regs(cs, A7XX_SP_DITHER_CNTL(.dword = dither_cntl)); |
| } |
| |
| tu_cs_emit_regs(cs, |
| A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl)); |
| tu_cs_emit_regs(cs, |
| A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl)); |
| |
| unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1); |
| tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1)); |
| } |
| |
| struct tu_bin_size_params { |
| enum a6xx_render_mode render_mode; |
| bool force_lrz_write_dis; |
| enum a6xx_buffers_location buffers_location; |
| enum a6xx_lrz_feedback_mask lrz_feedback_zmode_mask; |
| }; |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_bin_size(struct tu_cs *cs, |
| uint32_t bin_w, |
| uint32_t bin_h, |
| struct tu_bin_size_params &&p) |
| { |
| if (CHIP == A6XX) { |
| tu_cs_emit_regs( |
| cs, A6XX_GRAS_BIN_CONTROL(.binw = bin_w, |
| .binh = bin_h, |
| .render_mode = p.render_mode, |
| .force_lrz_write_dis = p.force_lrz_write_dis, |
| .buffers_location = p.buffers_location, |
| .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, )); |
| } else { |
| tu_cs_emit_regs(cs, |
| A6XX_GRAS_BIN_CONTROL(.binw = bin_w, |
| .binh = bin_h, |
| .render_mode = p.render_mode, |
| .force_lrz_write_dis = p.force_lrz_write_dis, |
| .lrz_feedback_zmode_mask = |
| p.lrz_feedback_zmode_mask, )); |
| } |
| |
| tu_cs_emit_regs(cs, RB_BIN_CONTROL(CHIP, |
| .binw = bin_w, |
| .binh = bin_h, |
| .render_mode = p.render_mode, |
| .force_lrz_write_dis = p.force_lrz_write_dis, |
| .buffers_location = p.buffers_location, |
| .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, )); |
| |
| /* no flag for RB_BIN_CONTROL2... */ |
| tu_cs_emit_regs(cs, |
| A6XX_RB_BIN_CONTROL2(.binw = bin_w, |
| .binh = bin_h)); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_render_cntl(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| struct tu_cs *cs, |
| bool binning); |
| |
| template <> |
| void |
| tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| struct tu_cs *cs, |
| bool binning) |
| { |
| /* doesn't RB_RENDER_CNTL set differently for binning pass: */ |
| bool no_track = !cmd->device->physical_device->info->a6xx.has_cp_reg_write; |
| uint32_t cntl = 0; |
| cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2); |
| if (binning) { |
| if (no_track) |
| return; |
| cntl |= A6XX_RB_RENDER_CNTL_BINNING; |
| } else { |
| uint32_t mrts_ubwc_enable = 0; |
| for (uint32_t i = 0; i < subpass->color_count; ++i) { |
| uint32_t a = subpass->color_attachments[i].attachment; |
| unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i]; |
| if (a == VK_ATTACHMENT_UNUSED || |
| remapped == MESA_VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| const struct tu_image_view *iview = cmd->state.attachments[a]; |
| if (iview->view.ubwc_enabled) |
| mrts_ubwc_enable |= 1 << remapped; |
| } |
| |
| cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable); |
| |
| const uint32_t a = subpass->depth_stencil_attachment.attachment; |
| if (a != VK_ATTACHMENT_UNUSED) { |
| const struct tu_image_view *iview = cmd->state.attachments[a]; |
| if (iview->view.ubwc_enabled) |
| cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH; |
| } |
| |
| if (no_track) { |
| tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1); |
| tu_cs_emit(cs, cntl); |
| return; |
| } |
| |
| /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs |
| * in order to set it correctly for the different subpasses. However, |
| * that means the packets we're emitting also happen during binning. So |
| * we need to guard the write on !BINNING at CP execution time. |
| */ |
| tu_cs_reserve(cs, 3 + 4); |
| tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2); |
| tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) | |
| CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM); |
| tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4)); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3); |
| tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL)); |
| tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL); |
| tu_cs_emit(cs, cntl); |
| } |
| |
| template <> |
| void |
| tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| struct tu_cs *cs, |
| bool binning) |
| { |
| tu_cs_emit_regs( |
| cs, RB_RENDER_CNTL(A7XX, .binning = binning, .raster_mode = TYPE_TILED, |
| .raster_direction = LR_TB)); |
| tu_cs_emit_regs(cs, A7XX_GRAS_SU_RENDER_CNTL(.binning = binning)); |
| } |
| |
| static void |
| tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align) |
| { |
| struct tu_physical_device *phys_dev = cmd->device->physical_device; |
| const VkRect2D *render_area = &cmd->state.render_area; |
| |
| /* Avoid assertion fails with an empty render area at (0, 0) where the |
| * subtraction below wraps around. Empty render areas should be forced to |
| * the sysmem path by use_sysmem_rendering(). It's not even clear whether |
| * an empty scissor here works, and the blob seems to force sysmem too as |
| * it sets something wrong (non-empty) for the scissor. |
| */ |
| if (render_area->extent.width == 0 || |
| render_area->extent.height == 0) |
| return; |
| |
| uint32_t x1 = render_area->offset.x; |
| uint32_t y1 = render_area->offset.y; |
| uint32_t x2 = x1 + render_area->extent.width - 1; |
| uint32_t y2 = y1 + render_area->extent.height - 1; |
| |
| if (align) { |
| x1 = x1 & ~(phys_dev->info->gmem_align_w - 1); |
| y1 = y1 & ~(phys_dev->info->gmem_align_h - 1); |
| x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1; |
| y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1; |
| } |
| |
| tu_cs_emit_regs(cs, |
| A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1), |
| A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2)); |
| } |
| |
| void |
| tu6_emit_window_scissor(struct tu_cs *cs, |
| uint32_t x1, |
| uint32_t y1, |
| uint32_t x2, |
| uint32_t y2) |
| { |
| tu_cs_emit_regs(cs, |
| A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1), |
| A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1), |
| A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2)); |
| } |
| |
| template <chip CHIP> |
| void |
| tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1) |
| { |
| tu_cs_emit_regs(cs, |
| A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1)); |
| |
| tu_cs_emit_regs(cs, |
| SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1)); |
| |
| tu_cs_emit_regs(cs, |
| A7XX_SP_PS_2D_WINDOW_OFFSET(.x = x1, .y = y1)); |
| } |
| |
| void |
| tu6_apply_depth_bounds_workaround(struct tu_device *device, |
| uint32_t *rb_depth_cntl) |
| { |
| if (!device->physical_device->info->a6xx.depth_bounds_require_depth_test_quirk) |
| return; |
| |
| /* On some GPUs it is necessary to enable z test for depth bounds test when |
| * UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to |
| * pass z test. Relevant tests: |
| * dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable |
| * dEQP-VK.dynamic_state.ds_state.depth_bounds_1 |
| */ |
| *rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE | |
| A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS); |
| } |
| |
| static void |
| tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state) |
| { |
| uint32_t enable_mask; |
| switch (id) { |
| case TU_DRAW_STATE_VS: |
| case TU_DRAW_STATE_FS: |
| case TU_DRAW_STATE_VPC: |
| /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even |
| * when resources would actually be used in the binning shader. |
| * Presumably the overhead of prefetching the resources isn't |
| * worth it. |
| */ |
| case TU_DRAW_STATE_DESC_SETS_LOAD: |
| enable_mask = CP_SET_DRAW_STATE__0_GMEM | |
| CP_SET_DRAW_STATE__0_SYSMEM; |
| break; |
| case TU_DRAW_STATE_VS_BINNING: |
| case TU_DRAW_STATE_GS_BINNING: |
| enable_mask = CP_SET_DRAW_STATE__0_BINNING; |
| break; |
| case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM: |
| enable_mask = CP_SET_DRAW_STATE__0_GMEM; |
| break; |
| case TU_DRAW_STATE_PRIM_MODE_GMEM: |
| /* On a7xx the prim mode is the same for gmem and sysmem, and it no |
| * longer depends on dynamic state, so we reuse the gmem state for |
| * everything: |
| */ |
| if (cs->device->physical_device->info->a6xx.has_coherent_ubwc_flag_caches) { |
| enable_mask = CP_SET_DRAW_STATE__0_GMEM | |
| CP_SET_DRAW_STATE__0_SYSMEM | |
| CP_SET_DRAW_STATE__0_BINNING; |
| } else { |
| enable_mask = CP_SET_DRAW_STATE__0_GMEM; |
| } |
| break; |
| case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM: |
| enable_mask = CP_SET_DRAW_STATE__0_SYSMEM; |
| break; |
| case TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM: |
| if (!cs->device->physical_device->info->a6xx.has_coherent_ubwc_flag_caches) { |
| /* By also applying the state during binning we ensure that there |
| * is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation. |
| */ |
| enable_mask = |
| CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING; |
| } else { |
| static_assert(TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM == |
| TU_DYNAMIC_STATE_A7XX_FRAGMENT_SHADING_RATE); |
| enable_mask = CP_SET_DRAW_STATE__0_GMEM | |
| CP_SET_DRAW_STATE__0_SYSMEM | |
| CP_SET_DRAW_STATE__0_BINNING; |
| } |
| |
| break; |
| default: |
| enable_mask = CP_SET_DRAW_STATE__0_GMEM | |
| CP_SET_DRAW_STATE__0_SYSMEM | |
| CP_SET_DRAW_STATE__0_BINNING; |
| break; |
| } |
| |
| STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32); |
| |
| /* We need to reload the descriptors every time the descriptor sets |
| * change. However, the commands we send only depend on the pipeline |
| * because the whole point is to cache descriptors which are used by the |
| * pipeline. There's a problem here, in that the firmware has an |
| * "optimization" which skips executing groups that are set to the same |
| * value as the last draw. This means that if the descriptor sets change |
| * but not the pipeline, we'd try to re-execute the same buffer which |
| * the firmware would ignore and we wouldn't pre-load the new |
| * descriptors. Set the DIRTY bit to avoid this optimization. |
| * |
| * We set the dirty bit for shader draw states because they contain |
| * CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw |
| * state, so if PROGRAM_CONFIG changes but one of the shaders stays the |
| * same then we still need to re-emit everything. The GLES blob which |
| * implements separate shader draw states does the same thing. |
| * |
| * We also need to set this bit for draw states which may be patched by the |
| * GPU, because their underlying memory may change between setting the draw |
| * state. |
| */ |
| if (id == TU_DRAW_STATE_DESC_SETS_LOAD || |
| id == TU_DRAW_STATE_VS || |
| id == TU_DRAW_STATE_VS_BINNING || |
| id == TU_DRAW_STATE_HS || |
| id == TU_DRAW_STATE_DS || |
| id == TU_DRAW_STATE_GS || |
| id == TU_DRAW_STATE_GS_BINNING || |
| id == TU_DRAW_STATE_FS || |
| state.writeable) |
| enable_mask |= CP_SET_DRAW_STATE__0_DIRTY; |
| |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) | |
| enable_mask | |
| CP_SET_DRAW_STATE__0_GROUP_ID(id) | |
| COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE)); |
| tu_cs_emit_qw(cs, state.iova); |
| } |
| |
| void |
| tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples, |
| bool msaa_disable) |
| { |
| const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples); |
| msaa_disable |= (samples == MSAA_ONE); |
| tu_cs_emit_regs(cs, |
| A6XX_SP_TP_RAS_MSAA_CNTL(samples), |
| A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples, |
| .msaa_disable = msaa_disable)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_GRAS_RAS_MSAA_CNTL(samples), |
| A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples, |
| .msaa_disable = msaa_disable)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_RB_RAS_MSAA_CNTL(samples), |
| A6XX_RB_DEST_MSAA_CNTL(.samples = samples, |
| .msaa_disable = msaa_disable)); |
| } |
| |
| static void |
| tu6_update_msaa(struct tu_cmd_buffer *cmd) |
| { |
| VkSampleCountFlagBits samples = |
| cmd->vk.dynamic_graphics_state.ms.rasterization_samples;; |
| |
| /* The samples may not be set by the pipeline or dynamically if raster |
| * discard is enabled. We can set any valid value, but don't set the |
| * default invalid value of 0. |
| */ |
| if (samples == 0) |
| samples = VK_SAMPLE_COUNT_1_BIT; |
| tu6_emit_msaa(&cmd->draw_cs, samples, cmd->state.msaa_disable); |
| } |
| |
| static void |
| tu6_update_msaa_disable(struct tu_cmd_buffer *cmd) |
| { |
| VkPrimitiveTopology topology = |
| (VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology; |
| bool is_line = |
| topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST || |
| topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY || |
| topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP || |
| topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY || |
| (topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST && |
| cmd->state.shaders[MESA_SHADER_TESS_EVAL] && |
| cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant && |
| cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES); |
| bool msaa_disable = is_line && |
| cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR; |
| |
| if (cmd->state.msaa_disable != msaa_disable) { |
| cmd->state.msaa_disable = msaa_disable; |
| tu6_update_msaa(cmd); |
| } |
| } |
| |
| static bool |
| use_hw_binning(struct tu_cmd_buffer *cmd) |
| { |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout]; |
| |
| /* XFB commands are emitted for BINNING || SYSMEM, which makes it |
| * incompatible with non-hw binning GMEM rendering. this is required because |
| * some of the XFB commands need to only be executed once. |
| * use_sysmem_rendering() should have made sure we only ended up here if no |
| * XFB was used. |
| */ |
| if (cmd->state.rp.xfb_used) { |
| assert(tiling->binning_possible); |
| return true; |
| } |
| |
| /* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED, |
| * which wasn't designed to care about tilers and expects the result not to |
| * be multiplied by tile count. |
| * See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131 |
| */ |
| if (cmd->state.rp.has_prim_generated_query_in_rp || |
| cmd->state.prim_generated_query_running_before_rp) { |
| assert(tiling->binning_possible); |
| return true; |
| } |
| |
| return tiling->binning; |
| } |
| |
| static bool |
| use_sysmem_rendering(struct tu_cmd_buffer *cmd, |
| struct tu_renderpass_result **autotune_result) |
| { |
| if (TU_DEBUG(SYSMEM)) |
| return true; |
| |
| /* can't fit attachments into gmem */ |
| if (!cmd->state.tiling->possible) |
| return true; |
| |
| if (cmd->state.framebuffer->layers > 1) |
| return true; |
| |
| /* Use sysmem for empty render areas */ |
| if (cmd->state.render_area.extent.width == 0 || |
| cmd->state.render_area.extent.height == 0) |
| return true; |
| |
| if (cmd->state.rp.has_tess) |
| return true; |
| |
| if (cmd->state.rp.disable_gmem) |
| return true; |
| |
| /* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */ |
| if (cmd->state.rp.xfb_used && !cmd->state.tiling->binning_possible) |
| return true; |
| |
| /* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning |
| * GMEM rendering, see use_hw_binning. |
| */ |
| if ((cmd->state.rp.has_prim_generated_query_in_rp || |
| cmd->state.prim_generated_query_running_before_rp) && |
| !cmd->state.tiling->binning_possible) |
| return true; |
| |
| if (TU_DEBUG(GMEM)) |
| return false; |
| |
| bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune, |
| cmd, autotune_result); |
| if (*autotune_result) { |
| list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results); |
| } |
| |
| return use_sysmem; |
| } |
| |
| /* Optimization: there is no reason to load gmem if there is no |
| * geometry to process. COND_REG_EXEC predicate is set here, |
| * but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs, |
| * for each blit separately. |
| */ |
| static void |
| tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| uint32_t pipe, uint32_t slot, bool skip_wfm) |
| { |
| if (cmd->state.tiling->binning_possible && |
| cmd->state.pass->has_cond_load_store) { |
| tu_cs_emit_pkt7(cs, CP_REG_TEST, 1); |
| tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_STATE_REG(pipe)) | |
| A6XX_CP_REG_TEST_0_BIT(slot) | |
| COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME)); |
| } else { |
| /* COND_REG_EXECs are not emitted in non-binning case */ |
| } |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_tile_select(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot, |
| const struct tu_image_view *fdm) |
| { |
| struct tu_physical_device *phys_dev = cmd->device->physical_device; |
| const struct tu_tiling_config *tiling = cmd->state.tiling; |
| bool hw_binning = use_hw_binning(cmd); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_START) | |
| A6XX_CP_SET_MARKER_0_USES_GMEM); |
| |
| tu6_emit_bin_size<CHIP>( |
| cs, tiling->tile0.width, tiling->tile0.height, |
| { |
| .render_mode = RENDERING_PASS, |
| .force_lrz_write_dis = !phys_dev->info->a6xx.has_lrz_feedback, |
| .buffers_location = BUFFERS_IN_GMEM, |
| .lrz_feedback_zmode_mask = |
| phys_dev->info->a6xx.has_lrz_feedback |
| ? (hw_binning ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_LRZ_LATE_Z : |
| LRZ_FEEDBACK_EARLY_LRZ_LATE_Z) |
| : LRZ_FEEDBACK_NONE, |
| }); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VFD_MODE_CNTL(RENDERING_PASS)); |
| |
| const uint32_t x1 = tiling->tile0.width * tx; |
| const uint32_t y1 = tiling->tile0.height * ty; |
| const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE); |
| const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE); |
| tu6_emit_window_scissor(cs, x1, y1, x2 - 1, y2 - 1); |
| tu6_emit_window_offset<CHIP>(cs, x1, y1); |
| |
| if (hw_binning) { |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MODE, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4); |
| tu_cs_emit(cs, tiling->pipe_sizes[pipe] | |
| CP_SET_BIN_DATA5_0_VSC_N(slot)); |
| tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch); |
| tu_cs_emit(cs, pipe * 4); |
| tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch); |
| } |
| |
| tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, hw_binning); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1); |
| tu_cs_emit(cs, !hw_binning); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MODE, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| if (fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm)) { |
| unsigned views = |
| cmd->state.pass->num_views ? cmd->state.pass->num_views : 1; |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| struct tu_frag_area raw_areas[views]; |
| if (fdm) { |
| tu_fragment_density_map_sample(fdm, |
| (x1 + MIN2(x2, fb->width)) / 2, |
| (y1 + MIN2(y2, fb->height)) / 2, |
| fb->width, fb->height, views, |
| raw_areas); |
| } else { |
| for (unsigned i = 0; i < views; i++) |
| raw_areas[i].width = raw_areas[i].height = 1.0f; |
| } |
| |
| VkExtent2D frag_areas[views]; |
| for (unsigned i = 0; i < views; i++) { |
| float floor_x, floor_y; |
| float area = raw_areas[i].width * raw_areas[i].height; |
| float frac_x = modff(raw_areas[i].width, &floor_x); |
| float frac_y = modff(raw_areas[i].height, &floor_y); |
| /* The spec allows rounding up one of the axes as long as the total |
| * area is less than or equal to the original area. Take advantage of |
| * this to try rounding up the number with the largest fraction. |
| */ |
| if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y : |
| floor_x * (floor_y + 1.f)) <= area) { |
| if (frac_x > frac_y) |
| floor_x += 1.f; |
| else |
| floor_y += 1.f; |
| } |
| frag_areas[i].width = floor_x; |
| frag_areas[i].height = floor_y; |
| |
| /* Make sure that the width/height divides the tile width/height so |
| * we don't have to do extra awkward clamping of the edges of each |
| * bin when resolving. Note that because the tile width is rounded to |
| * a multiple of 32 any power of two 32 or less will work. |
| * |
| * TODO: Try to take advantage of the total area allowance here, too. |
| */ |
| while (tiling->tile0.width % frag_areas[i].width != 0) |
| frag_areas[i].width--; |
| while (tiling->tile0.height % frag_areas[i].height != 0) |
| frag_areas[i].height--; |
| } |
| |
| /* If at any point we were forced to use the same scaling for all |
| * viewports, we need to make sure that any users *not* using shared |
| * scaling, including loads/stores, also consistently share the scaling. |
| */ |
| if (cmd->state.rp.shared_viewport) { |
| VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX }; |
| for (unsigned i = 0; i < views; i++) { |
| frag_area.width = MIN2(frag_area.width, frag_areas[i].width); |
| frag_area.height = MIN2(frag_area.height, frag_areas[i].height); |
| } |
| |
| for (unsigned i = 0; i < views; i++) |
| frag_areas[i] = frag_area; |
| } |
| |
| VkRect2D bin = { { x1, y1 }, { x2 - x1, y2 - y1 } }; |
| util_dynarray_foreach (&cmd->fdm_bin_patchpoints, |
| struct tu_fdm_bin_patchpoint, patch) { |
| tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size); |
| tu_cs_emit_qw(cs, patch->iova); |
| patch->apply(cmd, cs, patch->data, bin, views, frag_areas); |
| } |
| |
| /* Make the CP wait until the CP_MEM_WRITE's to the command buffers |
| * land. When loading FS params via UBOs, we also need to invalidate |
| * UCHE because the FS param patchpoint is read through UCHE. |
| */ |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| if (cmd->device->compiler->load_shader_consts_via_preamble) { |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE); |
| tu_cs_emit_wfi(cs); |
| } |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| } |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| uint32_t layer_mask, |
| uint32_t a, |
| uint32_t gmem_a) |
| { |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| const struct tu_image_view *dst = cmd->state.attachments[a]; |
| const struct tu_image_view *src = cmd->state.attachments[gmem_a]; |
| |
| tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| const struct tu_subpass *subpass) |
| { |
| if (subpass->resolve_attachments) { |
| /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass |
| * Commands": |
| * |
| * End-of-subpass multisample resolves are treated as color |
| * attachment writes for the purposes of synchronization. |
| * This applies to resolve operations for both color and |
| * depth/stencil attachments. That is, they are considered to |
| * execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
| * pipeline stage and their writes are synchronized with |
| * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between |
| * rendering within a subpass and any resolve operations at the end |
| * of the subpass occurs automatically, without need for explicit |
| * dependencies or pipeline barriers. However, if the resolve |
| * attachment is also used in a different subpass, an explicit |
| * dependency is needed. |
| * |
| * We use the CP_BLIT path for sysmem resolves, which is really a |
| * transfer command, so we have to manually flush similar to the gmem |
| * resolve case. However, a flush afterwards isn't needed because of the |
| * last sentence and the fact that we're in sysmem mode. |
| */ |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR); |
| if (subpass->resolve_depth_stencil) |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH); |
| |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE); |
| |
| /* Wait for the flushes to land before using the 2D engine */ |
| tu_cs_emit_wfi(cs); |
| |
| for (unsigned i = 0; i < subpass->resolve_count; i++) { |
| uint32_t a = subpass->resolve_attachments[i].attachment; |
| if (a == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i); |
| |
| tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a); |
| } |
| } |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| const struct tu_render_pass *pass = cmd->state.pass; |
| const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1]; |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| |
| if (pass->has_fdm) |
| tu_cs_set_writeable(cs, true); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RESOLVE) | |
| A6XX_CP_SET_MARKER_0_USES_GMEM); |
| |
| tu6_emit_blit_scissor(cmd, cs, true); |
| |
| struct tu_resolve_group resolve_group = {}; |
| |
| /* Resolve should happen before store in case BLIT_EVENT_STORE_AND_CLEAR is |
| * used for a store. |
| */ |
| if (subpass->resolve_attachments) { |
| for (unsigned i = 0; i < subpass->resolve_count; i++) { |
| uint32_t a = subpass->resolve_attachments[i].attachment; |
| if (a != VK_ATTACHMENT_UNUSED) { |
| uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i); |
| tu_store_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, gmem_a, |
| fb->layers, subpass->multiview_mask, false); |
| } |
| } |
| } |
| |
| for (uint32_t a = 0; a < pass->attachment_count; ++a) { |
| if (pass->attachments[a].gmem) { |
| const bool cond_exec_allowed = cmd->state.tiling->binning_possible && |
| cmd->state.pass->has_cond_load_store; |
| tu_store_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, a, |
| fb->layers, subpass->multiview_mask, |
| cond_exec_allowed); |
| } |
| } |
| |
| tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group); |
| |
| if (pass->has_fdm) |
| tu_cs_set_writeable(cs, false); |
| } |
| |
| void |
| tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) | |
| CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS | |
| CP_SET_DRAW_STATE__0_GROUP_ID(0)); |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0)); |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0)); |
| |
| cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE; |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_init_static_regs(struct tu_device *dev, struct tu_cs *cs) |
| { |
| const struct tu_physical_device *phys_dev = dev->physical_device; |
| |
| if (CHIP >= A7XX) { |
| /* On A7XX, RB_CCU_CNTL was broken into two registers, RB_CCU_CNTL which has |
| * static properties that can be set once, this requires a WFI to take effect. |
| * While the newly introduced register RB_CCU_CNTL2 has properties that may |
| * change per-RP and don't require a WFI to take effect, only CCU inval/flush |
| * events are required. |
| */ |
| |
| enum a7xx_concurrent_resolve_mode resolve_mode = CONCURRENT_RESOLVE_MODE_2; |
| if (TU_DEBUG(NO_CONCURRENT_RESOLVES)) |
| resolve_mode = CONCURRENT_RESOLVE_MODE_DISABLED; |
| |
| enum a7xx_concurrent_unresolve_mode unresolve_mode = CONCURRENT_UNRESOLVE_MODE_FULL; |
| if (TU_DEBUG(NO_CONCURRENT_UNRESOLVES)) |
| unresolve_mode = CONCURRENT_UNRESOLVE_MODE_DISABLED; |
| |
| tu_cs_emit_regs(cs, RB_CCU_CNTL(A7XX, |
| .gmem_fast_clear_disable = |
| !dev->physical_device->info->a6xx.has_gmem_fast_clear, |
| .concurrent_resolve_mode = resolve_mode, |
| .concurrent_unresolve_mode = unresolve_mode, |
| )); |
| } |
| |
| for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->a6xx.magic_raw); i++) { |
| auto magic_reg = phys_dev->info->a6xx.magic_raw[i]; |
| if (!magic_reg.reg) |
| break; |
| |
| uint32_t value = magic_reg.value; |
| switch(magic_reg.reg) { |
| case REG_A6XX_TPL1_DBG_ECO_CNTL1: |
| value = (value & ~A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT) | |
| (phys_dev->info->a7xx.enable_tp_ubwc_flag_hint |
| ? A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT |
| : 0); |
| break; |
| } |
| |
| tu_cs_emit_write_reg(cs, magic_reg.reg, value); |
| } |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL, |
| phys_dev->info->a6xx.magic.RB_DBG_ECO_CNTL); |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_FLOAT_CNTL, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_DBG_ECO_CNTL, |
| phys_dev->info->a6xx.magic.SP_DBG_ECO_CNTL); |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_ENABLE, 0x3f); |
| if (CHIP == A6XX) |
| tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44); |
| tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_DBG_ECO_CNTL, |
| phys_dev->info->a6xx.magic.TPL1_DBG_ECO_CNTL); |
| if (CHIP == A6XX) { |
| tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80); |
| tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0); |
| } |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_VPC_DBG_ECO_CNTL, |
| phys_dev->info->a6xx.magic.VPC_DBG_ECO_CNTL); |
| tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_DBG_ECO_CNTL, |
| phys_dev->info->a6xx.magic.GRAS_DBG_ECO_CNTL); |
| if (CHIP == A6XX) { |
| tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_DBG_ECO_CNTL, |
| phys_dev->info->a6xx.magic.HLSQ_DBG_ECO_CNTL); |
| } |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_CHICKEN_BITS, |
| phys_dev->info->a6xx.magic.SP_CHICKEN_BITS); |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0); // 2 on a740 ??? |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0); |
| if (CHIP == A6XX) |
| tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false)); |
| tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, |
| phys_dev->info->a6xx.magic.UCHE_UNKNOWN_0E12); |
| tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, |
| phys_dev->info->a6xx.magic.UCHE_CLIENT_PF); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, |
| phys_dev->info->a6xx.magic.RB_UNKNOWN_8E01); |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0); |
| tu_cs_emit_regs(cs, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true, |
| .isammode = ISAMMODE_GL, |
| .shared_consts_enable = false)); |
| |
| /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */ |
| tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010); |
| tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, |
| phys_dev->info->a6xx.magic.PC_MODE_CNTL); |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0); |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0); |
| |
| if (CHIP == A6XX) { |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0); |
| } |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0); |
| |
| tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false)); |
| tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0); |
| |
| tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true)); |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0); |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_SU_CONSERVATIVE_RAS_CNTL, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0); |
| if (CHIP == A6XX) { |
| tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0); |
| } |
| tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0); |
| tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_MODE_CNTL, |
| 0x000000a0 | |
| A6XX_SP_TP_MODE_CNTL_ISAMMODE(ISAMMODE_GL)); |
| tu_cs_emit_regs(cs, HLSQ_CONTROL_5_REG(CHIP, .dword = 0xfc)); |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000); |
| |
| tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, phys_dev->info->a6xx.magic.PC_MODE_CNTL); |
| |
| tu_cs_emit_regs(cs, A6XX_RB_ALPHA_CONTROL()); /* always disable alpha test */ |
| |
| tu_cs_emit_regs(cs, |
| A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo, |
| .bo_offset = gb_offset(bcolor_builtin))); |
| tu_cs_emit_regs(cs, |
| A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo, |
| .bo_offset = gb_offset(bcolor_builtin))); |
| |
| if (CHIP == A7XX) { |
| tu_cs_emit_regs(cs, TPL1_BICUBIC_WEIGHTS_TABLE_0(CHIP, 0), |
| TPL1_BICUBIC_WEIGHTS_TABLE_1(CHIP, 0x3fe05ff4), |
| TPL1_BICUBIC_WEIGHTS_TABLE_2(CHIP, 0x3fa0ebee), |
| TPL1_BICUBIC_WEIGHTS_TABLE_3(CHIP, 0x3f5193ed), |
| TPL1_BICUBIC_WEIGHTS_TABLE_4(CHIP, 0x3f0243f0), ); |
| } |
| |
| if (CHIP >= A7XX) { |
| /* Blob sets these two per draw. */ |
| tu_cs_emit_regs(cs, A7XX_PC_TESS_PARAM_SIZE(TU_TESS_PARAM_SIZE)); |
| /* Blob adds a bit more space ({0x10, 0x20, 0x30, 0x40} bytes) |
| * but the meaning of this additional space is not known, |
| * so we play safe and don't add it. |
| */ |
| tu_cs_emit_regs(cs, A7XX_PC_TESS_FACTOR_SIZE(TU_TESS_FACTOR_SIZE)); |
| } |
| |
| /* There is an optimization to skip executing draw states for draws with no |
| * instances. Instead of simply skipping the draw, internally the firmware |
| * sets a bit in PC_DRAW_INITIATOR that seemingly skips the draw. However |
| * there is a hardware bug where this bit does not always cause the FS |
| * early preamble to be skipped. Because the draw states were skipped, |
| * SP_FS_CTRL_REG0, SP_FS_OBJ_START and so on are never updated and a |
| * random FS preamble from the last draw is executed. If the last visible |
| * draw is from the same submit, it shouldn't be a problem because we just |
| * re-execute the same preamble and preambles don't have side effects, but |
| * if it's from another process then we could execute a garbage preamble |
| * leading to hangs and faults. To make sure this doesn't happen, we reset |
| * SP_FS_CTRL_REG0 here, making sure that the EARLYPREAMBLE bit isn't set |
| * so any leftover early preamble doesn't get executed. Other stages don't |
| * seem to be affected. |
| */ |
| if (phys_dev->info->a6xx.has_early_preamble) { |
| tu_cs_emit_regs(cs, A6XX_SP_FS_CTRL_REG0()); |
| } |
| } |
| |
| /* Set always-identical registers used specifically for GMEM */ |
| static void |
| tu7_emit_tile_render_begin_regs(struct tu_cs *cs) |
| { |
| tu_cs_emit_regs(cs, |
| A7XX_RB_UNKNOWN_8812(0x0)); |
| tu_cs_emit_regs(cs, |
| A7XX_RB_UNKNOWN_8E06(0x0)); |
| |
| tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0)); |
| |
| tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2)); |
| tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4)); |
| |
| tu_cs_emit_regs(cs, A7XX_RB_BLIT_CLEAR_MODE(.clear_mode = CLEAR_MODE_GMEM)); |
| } |
| |
| /* Emit the bin restore preamble, which runs in between bins when L1 |
| * preemption with skipsaverestore happens and we switch back to this context. |
| * We need to restore static registers normally programmed at cmdbuf start |
| * which weren't saved, and we need to program the CCU state which is normally |
| * programmed before rendering the bins and isn't saved/restored by the CP |
| * because it is always the same for GMEM render passes. |
| */ |
| template <chip CHIP> |
| static void |
| tu_emit_bin_preamble(struct tu_device *dev, struct tu_cs *cs) |
| { |
| struct tu_physical_device *phys_dev = dev->physical_device; |
| |
| tu6_init_static_regs<CHIP>(dev, cs); |
| emit_rb_ccu_cntl<CHIP>(cs, dev, true); |
| |
| if (CHIP == A6XX) { |
| tu_cs_emit_regs(cs, |
| A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL)); |
| } |
| |
| if (CHIP == A7XX) { |
| tu7_emit_tile_render_begin_regs(cs); |
| } |
| |
| /* TODO use CP_MEM_TO_SCRATCH_MEM on a7xx. The VSC scratch mem should be |
| * automatically saved, unlike GPU registers, so we wouldn't have to |
| * manually restore this state. |
| */ |
| tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3); |
| tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VSC_STATE(0)) | |
| CP_MEM_TO_REG_0_CNT(32)); |
| tu_cs_emit_qw(cs, dev->global_bo->iova + gb_offset(vsc_state)); |
| } |
| |
| VkResult |
| tu_init_bin_preamble(struct tu_device *device) |
| { |
| struct tu_cs preamble_cs; |
| VkResult result = tu_cs_begin_sub_stream(&device->sub_cs, 256, &preamble_cs); |
| if (result != VK_SUCCESS) |
| return vk_startup_errorf(device->instance, result, "bin restore"); |
| |
| TU_CALLX(device, tu_emit_bin_preamble)(device, &preamble_cs); |
| |
| device->bin_preamble_entry = tu_cs_end_sub_stream(&device->sub_cs, &preamble_cs); |
| |
| return VK_SUCCESS; |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| struct tu_device *dev = cmd->device; |
| const struct tu_physical_device *phys_dev = dev->physical_device; |
| |
| if (CHIP == A6XX) { |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE); |
| } else { |
| tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1); |
| tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) | |
| CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE); |
| |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR); |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH); |
| tu_emit_raw_event_write<CHIP>(cmd, cs, UNK_40, false); |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE); |
| tu_cs_emit_wfi(cs); |
| } |
| |
| tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP, |
| .vs_state = true, |
| .hs_state = true, |
| .ds_state = true, |
| .gs_state = true, |
| .fs_state = true, |
| .cs_state = true, |
| .cs_ibo = true, |
| .gfx_ibo = true, |
| .cs_shared_const = true, |
| .gfx_shared_const = true, |
| .cs_bindless = CHIP == A6XX ? 0x1f : 0xff, |
| .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,)); |
| |
| tu_cs_emit_wfi(cs); |
| |
| if (dev->dbg_cmdbuf_stomp_cs) { |
| tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs); |
| } |
| |
| cmd->state.cache.pending_flush_bits &= |
| ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE); |
| |
| tu6_init_static_regs<CHIP>(cmd->device, cs); |
| |
| emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false); |
| cmd->state.ccu_state = TU_CMD_CCU_SYSMEM; |
| |
| tu_disable_draw_states(cmd, cs); |
| |
| if (phys_dev->info->a7xx.cmdbuf_start_a725_quirk) { |
| tu_cs_reserve(cs, 3 + 4); |
| tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2); |
| tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) | |
| CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC); |
| tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4)); |
| tu_cs_emit_ib(cs, &dev->cmdbuf_start_a725_quirk_entry); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3); |
| tu_cs_emit_qw(cs, cmd->device->bin_preamble_entry.bo->iova + |
| cmd->device->bin_preamble_entry.offset); |
| tu_cs_emit(cs, CP_SET_AMBLE_2_DWORDS(cmd->device->bin_preamble_entry.size / |
| sizeof(uint32_t)) | |
| CP_SET_AMBLE_2_TYPE(BIN_PREAMBLE_AMBLE_TYPE)); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3); |
| tu_cs_emit_qw(cs, 0); |
| tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(PREAMBLE_AMBLE_TYPE)); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3); |
| tu_cs_emit_qw(cs, 0); |
| tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(POSTAMBLE_AMBLE_TYPE)); |
| |
| tu_cs_sanity_check(cs); |
| } |
| |
| static void |
| update_vsc_pipe(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| uint32_t num_vsc_pipes) |
| { |
| const struct tu_tiling_config *tiling = cmd->state.tiling; |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width, |
| .height = tiling->tile0.height)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width, |
| .ny = tiling->tile_count.height)); |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes); |
| tu_cs_emit_array(cs, tiling->pipe_config, num_vsc_pipes); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch), |
| A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch), |
| A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD)); |
| |
| tu_cs_emit_regs(cs, A7XX_VSC_UNKNOWN_0D08(0)); |
| } |
| |
| static void |
| emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| const struct tu_tiling_config *tiling = cmd->state.tiling; |
| const uint32_t used_pipe_count = |
| tiling->pipe_count.width * tiling->pipe_count.height; |
| |
| for (int i = 0; i < used_pipe_count; i++) { |
| tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8); |
| tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) | |
| CP_COND_WRITE5_0_WRITE_MEMORY); |
| tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i))); |
| tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0)); |
| tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD)); |
| tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0)); |
| tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow)); |
| tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch)); |
| |
| tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8); |
| tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) | |
| CP_COND_WRITE5_0_WRITE_MEMORY); |
| tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i))); |
| tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0)); |
| tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD)); |
| tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0)); |
| tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow)); |
| tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch)); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| struct tu_physical_device *phys_dev = cmd->device->physical_device; |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| |
| /* If this command buffer may be executed multiple times, then |
| * viewports/scissor states may have been changed by previous executions |
| * and we need to reset them before executing the binning IB. |
| */ |
| if (!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) && |
| cmd->fdm_bin_patchpoints.size != 0) { |
| unsigned num_views = MAX2(cmd->state.pass->num_views, 1); |
| VkExtent2D unscaled_frag_areas[num_views]; |
| for (unsigned i = 0; i < num_views; i++) |
| unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 }; |
| VkRect2D bin = { { 0, 0 }, { fb->width, fb->height } }; |
| util_dynarray_foreach (&cmd->fdm_bin_patchpoints, |
| struct tu_fdm_bin_patchpoint, patch) { |
| tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size); |
| tu_cs_emit_qw(cs, patch->iova); |
| patch->apply(cmd, cs, patch->data, bin, num_views, unscaled_frag_areas); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| } |
| |
| tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_VISIBILITY)); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1); |
| tu_cs_emit(cs, 0x1); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MODE, 1); |
| tu_cs_emit(cs, 0x1); |
| |
| tu_cs_emit_wfi(cs); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VFD_MODE_CNTL(.render_mode = BINNING_PASS)); |
| |
| update_vsc_pipe(cmd, cs, phys_dev->info->num_vsc_pipes); |
| |
| if (CHIP == A6XX) { |
| tu_cs_emit_regs(cs, |
| A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL)); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1); |
| tu_cs_emit(cs, UNK_2C); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0)); |
| |
| trace_start_binning_ib(&cmd->trace, cs); |
| |
| /* emit IB to binning drawcmds: */ |
| tu_cs_emit_call(cs, &cmd->draw_cs); |
| |
| trace_end_binning_ib(&cmd->trace, cs); |
| |
| /* switching from binning pass to GMEM pass will cause a switch from |
| * PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states) |
| * so make sure these states are re-emitted |
| * (eventually these states shouldn't exist at all with shader prologue) |
| * only VS and GS are invalidated, as FS isn't emitted in binning pass, |
| * and we don't use HW binning when tesselation is used |
| */ |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) | |
| CP_SET_DRAW_STATE__0_DISABLE | |
| CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST)); |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0)); |
| tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0)); |
| |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1); |
| tu_cs_emit(cs, UNK_2D); |
| |
| /* This flush is probably required because the VSC, which produces the |
| * visibility stream, is a client of UCHE, whereas the CP needs to read the |
| * visibility stream (without caching) to do draw skipping. The |
| * WFI+WAIT_FOR_ME combination guarantees that the binning commands |
| * submitted are finished before reading the VSC regs (in |
| * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as |
| * part of draws). |
| */ |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_CLEAN); |
| |
| tu_cs_emit_wfi(cs); |
| |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| |
| emit_vsc_overflow_test(cmd, cs); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MODE, 1); |
| tu_cs_emit(cs, 0x0); |
| } |
| |
| static struct tu_draw_state |
| tu_emit_input_attachments(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| bool gmem) |
| { |
| const struct tu_tiling_config *tiling = cmd->state.tiling; |
| |
| /* note: we can probably emit input attachments just once for the whole |
| * renderpass, this would avoid emitting both sysmem/gmem versions |
| * |
| * emit two texture descriptors for each input, as a workaround for |
| * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil) |
| * tu_shader lowers uint input attachment loads to use the 2nd descriptor |
| * in the pair |
| * TODO: a smarter workaround |
| */ |
| |
| if (!subpass->input_count) |
| return (struct tu_draw_state) {}; |
| |
| struct tu_cs_memory texture; |
| VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2, |
| A6XX_TEX_CONST_DWORDS, &texture); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return (struct tu_draw_state) {}; |
| } |
| |
| for (unsigned i = 0; i < subpass->input_count * 2; i++) { |
| uint32_t a = subpass->input_attachments[i / 2].attachment; |
| if (a == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| const struct tu_image_view *iview = cmd->state.attachments[a]; |
| const struct tu_render_pass_attachment *att = |
| &cmd->state.pass->attachments[a]; |
| uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i]; |
| uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0); |
| uint32_t cpp = att->cpp; |
| |
| memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4); |
| |
| /* Cube descriptors require a different sampling instruction in shader, |
| * however we don't know whether image is a cube or not until the start |
| * of a renderpass. We have to patch the descriptor to make it compatible |
| * with how it is sampled in shader. |
| */ |
| enum a6xx_tex_type tex_type = |
| (enum a6xx_tex_type)((dst[2] & A6XX_TEX_CONST_2_TYPE__MASK) >> |
| A6XX_TEX_CONST_2_TYPE__SHIFT); |
| if (tex_type == A6XX_TEX_CUBE) { |
| dst[2] &= ~A6XX_TEX_CONST_2_TYPE__MASK; |
| dst[2] |= A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D); |
| |
| uint32_t depth = (dst[5] & A6XX_TEX_CONST_5_DEPTH__MASK) >> |
| A6XX_TEX_CONST_5_DEPTH__SHIFT; |
| dst[5] &= ~A6XX_TEX_CONST_5_DEPTH__MASK; |
| dst[5] |= A6XX_TEX_CONST_5_DEPTH(depth * 6); |
| } |
| |
| if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) { |
| /* note this works because spec says fb and input attachments |
| * must use identity swizzle |
| * |
| * Also we clear swap to WZYX. This is because the view might have |
| * picked XYZW to work better with border colors. |
| */ |
| dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK | |
| A6XX_TEX_CONST_0_SWAP__MASK | |
| A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK | |
| A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK); |
| if (!cmd->device->physical_device->info->a6xx.has_z24uint_s8uint) { |
| dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) | |
| A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) | |
| A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) | |
| A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) | |
| A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE); |
| } else { |
| dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) | |
| A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) | |
| A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) | |
| A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) | |
| A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE); |
| } |
| } |
| |
| if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) { |
| dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK; |
| dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT); |
| dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK); |
| dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_pitch); |
| dst[3] = 0; |
| dst[4] = iview->stencil_base_addr; |
| dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32; |
| |
| cpp = att->samples; |
| gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout]; |
| } |
| |
| if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem) |
| continue; |
| |
| /* patched for gmem */ |
| dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK); |
| dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2); |
| dst[2] = |
| A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) | |
| A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp); |
| /* Note: it seems the HW implicitly calculates the array pitch with the |
| * GMEM tiling, so we don't need to specify the pitch ourselves. |
| */ |
| dst[3] = 0; |
| dst[4] = cmd->device->physical_device->gmem_base + gmem_offset; |
| dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK; |
| for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++) |
| dst[i] = 0; |
| } |
| |
| struct tu_cs cs; |
| struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9); |
| |
| tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3); |
| tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) | |
| CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2)); |
| tu_cs_emit_qw(&cs, texture.iova); |
| |
| tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_CONST(.qword = texture.iova)); |
| |
| tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2)); |
| |
| assert(cs.cur == cs.end); /* validate draw state size */ |
| |
| return ds; |
| } |
| |
| static void |
| tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass) |
| { |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, |
| tu_emit_input_attachments(cmd, subpass, true)); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, |
| tu_emit_input_attachments(cmd, subpass, false)); |
| } |
| |
| static void |
| tu_trace_start_render_pass(struct tu_cmd_buffer *cmd) |
| { |
| if (!u_trace_enabled(&cmd->device->trace_context)) |
| return; |
| |
| uint32_t load_cpp = 0; |
| uint32_t store_cpp = 0; |
| uint32_t clear_cpp = 0; |
| bool has_depth = false; |
| char ubwc[MAX_RTS + 3]; |
| for (uint32_t i = 0; i < cmd->state.pass->attachment_count; i++) { |
| const struct tu_render_pass_attachment *attachment = |
| &cmd->state.pass->attachments[i]; |
| if (attachment->load) { |
| load_cpp += attachment->cpp; |
| } |
| |
| if (attachment->store) { |
| store_cpp += attachment->cpp; |
| } |
| |
| if (attachment->clear_mask) { |
| clear_cpp += attachment->cpp; |
| } |
| |
| has_depth |= vk_format_has_depth(attachment->format); |
| } |
| |
| uint8_t ubwc_len = 0; |
| const struct tu_subpass *subpass = &cmd->state.pass->subpasses[0]; |
| for (uint32_t i = 0; i < subpass->color_count; i++) { |
| uint32_t att = subpass->color_attachments[i].attachment; |
| ubwc[ubwc_len++] = att == VK_ATTACHMENT_UNUSED ? '-' |
| : cmd->state.attachments[att]->view.ubwc_enabled |
| ? 'y' |
| : 'n'; |
| } |
| if (subpass->depth_used) { |
| ubwc[ubwc_len++] = '|'; |
| ubwc[ubwc_len++] = |
| cmd->state.attachments[subpass->depth_stencil_attachment.attachment] |
| ->view.ubwc_enabled |
| ? 'y' |
| : 'n'; |
| } |
| ubwc[ubwc_len] = '\0'; |
| |
| uint32_t max_samples = 0; |
| for (uint32_t i = 0; i < cmd->state.pass->subpass_count; i++) { |
| max_samples = MAX2(max_samples, cmd->state.pass->subpasses[i].samples); |
| } |
| |
| trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer, |
| cmd->state.tiling, max_samples, clear_cpp, |
| load_cpp, store_cpp, has_depth, ubwc); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_trace_end_render_pass(struct tu_cmd_buffer *cmd, bool gmem) |
| { |
| if (!u_trace_enabled(&cmd->device->trace_context)) |
| return; |
| |
| uint32_t avg_per_sample_bandwidth = |
| cmd->state.rp.drawcall_bandwidth_per_sample_sum / |
| MAX2(cmd->state.rp.drawcall_count, 1); |
| |
| struct u_trace_address addr = {}; |
| if (cmd->state.lrz.image_view) { |
| struct tu_image *image = cmd->state.lrz.image_view->image; |
| addr.bo = image->bo; |
| addr.offset = (image->iova - image->bo->iova) + image->lrz_fc_offset + |
| offsetof(fd_lrzfc_layout<CHIP>, dir_track); |
| } |
| |
| trace_end_render_pass(&cmd->trace, &cmd->cs, gmem, |
| cmd->state.rp.drawcall_count, |
| avg_per_sample_bandwidth, cmd->state.lrz.valid, |
| cmd->state.rp.lrz_disable_reason, addr); |
| } |
| |
| static void |
| tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd) |
| { |
| /* We need to re-emit any draw states that are patched in order for them to |
| * be correctly added to the per-renderpass patchpoint list, even if they |
| * are the same as before. |
| */ |
| if (cmd->state.pass->has_fdm) |
| cmd->state.dirty |= TU_CMD_DIRTY_FDM; |
| |
| /* We need to re-emit MSAA at the beginning of every renderpass because it |
| * isn't part of a draw state that gets automatically re-emitted. |
| */ |
| BITSET_SET(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES); |
| /* PC_PRIMITIVE_CNTL_0 isn't a part of a draw state and may be changed |
| * by blits. |
| */ |
| BITSET_SET(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| struct tu_renderpass_result *autotune_result) |
| { |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| |
| tu_lrz_sysmem_begin<CHIP>(cmd, cs); |
| |
| assert(fb->width > 0 && fb->height > 0); |
| tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1); |
| tu6_emit_window_offset<CHIP>(cs, 0, 0); |
| |
| tu6_emit_bin_size<CHIP>(cs, 0, 0, { |
| .render_mode = RENDERING_PASS, |
| .force_lrz_write_dis = |
| !cmd->device->physical_device->info->a6xx.has_lrz_feedback, |
| .buffers_location = BUFFERS_IN_SYSMEM, |
| .lrz_feedback_zmode_mask = |
| cmd->device->physical_device->info->a6xx.has_lrz_feedback |
| ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_LRZ_LATE_Z |
| : LRZ_FEEDBACK_NONE, |
| }); |
| |
| if (CHIP == A7XX) { |
| tu_cs_emit_regs(cs, |
| A7XX_RB_UNKNOWN_8812(0x3ff)); // all buffers in sysmem |
| tu_cs_emit_regs(cs, |
| A7XX_RB_UNKNOWN_8E06(cmd->device->physical_device->info->a6xx.magic.RB_UNKNOWN_8E06)); |
| |
| tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0)); |
| |
| tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2)); |
| tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4)); |
| |
| tu_cs_emit_regs(cs, A7XX_RB_BLIT_CLEAR_MODE(.clear_mode = CLEAR_MODE_SYSMEM)); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_DIRECT_RENDER)); |
| |
| /* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */ |
| tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1); |
| tu_cs_emit(cs, 0x1); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MODE, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result); |
| |
| tu_cs_sanity_check(cs); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| struct tu_renderpass_result *autotune_result) |
| { |
| tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result); |
| |
| /* Do any resolves of the last subpass. These are handled in the |
| * tile_store_cs in the gmem path. |
| */ |
| tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass); |
| |
| tu_cs_emit_call(cs, &cmd->draw_epilogue_cs); |
| |
| tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| tu_lrz_sysmem_end<CHIP>(cmd, cs); |
| |
| tu_cs_sanity_check(cs); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| struct tu_renderpass_result *autotune_result) |
| { |
| struct tu_physical_device *phys_dev = cmd->device->physical_device; |
| const struct tu_tiling_config *tiling = cmd->state.tiling; |
| tu_lrz_tiling_begin<CHIP>(cmd, cs); |
| |
| tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| if (CHIP >= A7XX) { |
| tu7_emit_tile_render_begin_regs(cs); |
| } |
| |
| tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM); |
| |
| if (use_hw_binning(cmd)) { |
| if (!cmd->vsc_initialized) { |
| tu6_lazy_init_vsc(cmd); |
| } |
| |
| /* We always emit VSC before each renderpass, because due to |
| * skipsaverestore the underlying VSC registers may have become |
| * invalid. Normally we'd need to WFI before setting these non-context |
| * registers, but we should be safe because we're only setting it to the |
| * same value it had before. |
| * |
| * TODO: On a6xx, we have to emit this per-bin or make the amble include |
| * these registers, because CP_SET_BIN_DATA5_OFFSET will use the |
| * register instead of the pseudo register and its value won't survive |
| * across preemptions. The blob seems to take the second approach and |
| * emits the preamble lazily. |
| */ |
| tu_emit_vsc<CHIP>(cmd, cs); |
| |
| tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height, |
| { |
| .render_mode = BINNING_PASS, |
| .buffers_location = BUFFERS_IN_GMEM, |
| .lrz_feedback_zmode_mask = |
| phys_dev->info->a6xx.has_lrz_feedback |
| ? LRZ_FEEDBACK_EARLY_LRZ_LATE_Z |
| : LRZ_FEEDBACK_NONE |
| }); |
| |
| tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true); |
| |
| tu6_emit_binning_pass<CHIP>(cmd, cs); |
| |
| if (CHIP == A6XX) { |
| tu_cs_emit_regs(cs, |
| A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL)); |
| |
| tu_cs_emit_regs(cs, |
| A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL)); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 0x1); |
| tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1); |
| tu_cs_emit(cs, 0x1); |
| } else { |
| if (tiling->binning_possible) { |
| /* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since |
| * the actual binner didn't run. |
| */ |
| int pipe_count = tiling->pipe_count.width * tiling->pipe_count.height; |
| tu_cs_emit_pkt4(cs, REG_A6XX_VSC_STATE_REG(0), pipe_count); |
| for (int i = 0; i < pipe_count; i++) |
| tu_cs_emit(cs, ~0); |
| } |
| } |
| |
| if (tiling->binning_possible) { |
| /* Upload state regs to memory to be restored on skipsaverestore |
| * preemption. |
| */ |
| tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3); |
| tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_VSC_STATE_REG(0)) | |
| CP_REG_TO_MEM_0_CNT(32)); |
| tu_cs_emit_qw(cs, global_iova(cmd, vsc_state)); |
| } |
| |
| tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result); |
| |
| tu_cs_sanity_check(cs); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot, |
| const struct tu_image_view *fdm) |
| { |
| tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tx, ty, pipe, slot, fdm); |
| tu_lrz_before_tile<CHIP>(cmd, &cmd->cs); |
| |
| trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs); |
| |
| /* Primitives that passed all tests are still counted in in each |
| * tile even with HW binning beforehand. Do not permit it. |
| */ |
| if (cmd->state.prim_generated_query_running_before_rp) |
| tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS); |
| |
| tu_cs_emit_call(cs, &cmd->draw_cs); |
| |
| if (cmd->state.prim_generated_query_running_before_rp) |
| tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS); |
| |
| if (use_hw_binning(cmd)) { |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_END_OF_DRAWS) | |
| A6XX_CP_SET_MARKER_0_USES_GMEM); |
| } |
| |
| /* Predicate is changed in draw_cs so we have to re-emit it */ |
| if (cmd->state.rp.draw_cs_writes_to_cond_pred) |
| tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, false); |
| |
| tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 0x0); |
| |
| tu_cs_emit_call(cs, &cmd->tile_store_cs); |
| |
| tu_clone_trace_range(cmd, cs, cmd->trace_renderpass_start, |
| cmd->trace_renderpass_end); |
| |
| tu_cs_emit_wfi(cs); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_END)); |
| |
| tu_cs_sanity_check(cs); |
| |
| trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| struct tu_renderpass_result *autotune_result) |
| { |
| tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result); |
| |
| tu_cs_emit_call(cs, &cmd->draw_epilogue_cs); |
| |
| tu_lrz_tiling_end<CHIP>(cmd, cs); |
| |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE); |
| |
| tu_cs_sanity_check(cs); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_cmd_render_tiles(struct tu_cmd_buffer *cmd, |
| struct tu_renderpass_result *autotune_result) |
| { |
| const struct tu_tiling_config *tiling = cmd->state.tiling; |
| const struct tu_image_view *fdm = NULL; |
| |
| if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) { |
| fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment]; |
| } |
| |
| /* Create gmem stores now (at EndRenderPass time)) because they needed to |
| * know whether to allow their conditional execution, which was tied to a |
| * state that was known only at the end of the renderpass. They will be |
| * called from tu6_render_tile(). |
| */ |
| tu_cs_begin(&cmd->tile_store_cs); |
| tu6_emit_tile_store<CHIP>(cmd, &cmd->tile_store_cs); |
| tu_cs_end(&cmd->tile_store_cs); |
| |
| cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace); |
| |
| tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result); |
| |
| /* Note: we reverse the order of walking the pipes and tiles on every |
| * other row, to improve texture cache locality compared to raster order. |
| */ |
| for (uint32_t py = 0; py < tiling->pipe_count.height; py++) { |
| uint32_t pipe_row = py * tiling->pipe_count.width; |
| for (uint32_t pipe_row_i = 0; pipe_row_i < tiling->pipe_count.width; pipe_row_i++) { |
| uint32_t px; |
| if (py & 1) |
| px = tiling->pipe_count.width - 1 - pipe_row_i; |
| else |
| px = pipe_row_i; |
| uint32_t pipe = pipe_row + px; |
| uint32_t tx1 = px * tiling->pipe0.width; |
| uint32_t ty1 = py * tiling->pipe0.height; |
| uint32_t tx2 = MIN2(tx1 + tiling->pipe0.width, tiling->tile_count.width); |
| uint32_t ty2 = MIN2(ty1 + tiling->pipe0.height, tiling->tile_count.height); |
| uint32_t tile_row_stride = tx2 - tx1; |
| uint32_t slot_row = 0; |
| for (uint32_t ty = ty1; ty < ty2; ty++) { |
| for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) { |
| uint32_t tx; |
| if (ty & 1) |
| tx = tile_row_stride - 1 - tile_row_i; |
| else |
| tx = tile_row_i; |
| uint32_t slot = slot_row + tx; |
| tu6_render_tile<CHIP>(cmd, &cmd->cs, tx1 + tx, ty, pipe, slot, fdm); |
| } |
| slot_row += tile_row_stride; |
| } |
| } |
| } |
| |
| tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result); |
| |
| tu_trace_end_render_pass<CHIP>(cmd, true); |
| |
| /* We have trashed the dynamically-emitted viewport, scissor, and FS params |
| * via the patchpoints, so we need to re-emit them if they are reused for a |
| * later render pass. |
| */ |
| if (cmd->state.pass->has_fdm) |
| cmd->state.dirty |= TU_CMD_DIRTY_FDM; |
| |
| /* tu6_render_tile has cloned these tracepoints for each tile */ |
| if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end)) |
| u_trace_disable_event_range(cmd->trace_renderpass_start, |
| cmd->trace_renderpass_end); |
| |
| /* Reset the gmem store CS entry lists so that the next render pass |
| * does its own stores. |
| */ |
| tu_cs_discard_entries(&cmd->tile_store_cs); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd, |
| struct tu_renderpass_result *autotune_result) |
| { |
| cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace); |
| |
| tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result); |
| |
| trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs); |
| |
| tu_cs_emit_call(&cmd->cs, &cmd->draw_cs); |
| |
| trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs); |
| |
| tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result); |
| |
| tu_trace_end_render_pass<CHIP>(cmd, false); |
| } |
| |
| template <chip CHIP> |
| void |
| tu_cmd_render(struct tu_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->state.rp.has_tess) |
| tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer); |
| |
| struct tu_renderpass_result *autotune_result = NULL; |
| if (use_sysmem_rendering(cmd_buffer, &autotune_result)) |
| tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result); |
| else |
| tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result); |
| |
| /* Outside of renderpasses we assume all draw states are disabled. We do |
| * this outside the draw CS for the normal case where 3d gmem stores aren't |
| * used. |
| */ |
| tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs); |
| |
| } |
| |
| static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer) |
| { |
| /* discard draw_cs and draw_epilogue_cs entries now that the tiles are |
| rendered */ |
| tu_cs_discard_entries(&cmd_buffer->draw_cs); |
| tu_cs_begin(&cmd_buffer->draw_cs); |
| tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs); |
| tu_cs_begin(&cmd_buffer->draw_epilogue_cs); |
| |
| cmd_buffer->state.pass = NULL; |
| cmd_buffer->state.subpass = NULL; |
| cmd_buffer->state.framebuffer = NULL; |
| cmd_buffer->state.attachments = NULL; |
| cmd_buffer->state.clear_values = NULL; |
| cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */ |
| memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp)); |
| |
| /* LRZ is not valid next time we use it */ |
| cmd_buffer->state.lrz.valid = false; |
| cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ; |
| |
| /* Patchpoints have been executed */ |
| util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints); |
| ralloc_free(cmd_buffer->patchpoints_ctx); |
| cmd_buffer->patchpoints_ctx = NULL; |
| } |
| |
| static VkResult |
| tu_create_cmd_buffer(struct vk_command_pool *pool, |
| VkCommandBufferLevel level, |
| struct vk_command_buffer **cmd_buffer_out) |
| { |
| struct tu_device *device = |
| container_of(pool->base.device, struct tu_device, vk); |
| struct tu_cmd_buffer *cmd_buffer; |
| |
| cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2( |
| &device->vk.alloc, NULL, sizeof(*cmd_buffer), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| |
| if (cmd_buffer == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk, |
| &tu_cmd_buffer_ops, level); |
| if (result != VK_SUCCESS) { |
| vk_free2(&device->vk.alloc, NULL, cmd_buffer); |
| return result; |
| } |
| |
| cmd_buffer->device = device; |
| |
| u_trace_init(&cmd_buffer->trace, &device->trace_context); |
| list_inithead(&cmd_buffer->renderpass_autotune_results); |
| |
| tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs"); |
| tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs"); |
| tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs"); |
| tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs"); |
| tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs"); |
| tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs"); |
| tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs"); |
| |
| for (unsigned i = 0; i < MAX_BIND_POINTS; i++) |
| cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET; |
| |
| *cmd_buffer_out = &cmd_buffer->vk; |
| |
| return VK_SUCCESS; |
| } |
| |
| static void |
| tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer) |
| { |
| struct tu_cmd_buffer *cmd_buffer = |
| container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk); |
| |
| tu_cs_finish(&cmd_buffer->cs); |
| tu_cs_finish(&cmd_buffer->draw_cs); |
| tu_cs_finish(&cmd_buffer->tile_store_cs); |
| tu_cs_finish(&cmd_buffer->draw_epilogue_cs); |
| tu_cs_finish(&cmd_buffer->sub_cs); |
| tu_cs_finish(&cmd_buffer->pre_chain.draw_cs); |
| tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs); |
| |
| u_trace_fini(&cmd_buffer->trace); |
| |
| tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results); |
| |
| for (unsigned i = 0; i < MAX_BIND_POINTS; i++) { |
| if (cmd_buffer->descriptors[i].push_set.layout) |
| vk_descriptor_set_layout_unref(&cmd_buffer->device->vk, |
| &cmd_buffer->descriptors[i].push_set.layout->vk); |
| vk_free(&cmd_buffer->device->vk.alloc, |
| cmd_buffer->descriptors[i].push_set.mapped_ptr); |
| } |
| |
| ralloc_free(cmd_buffer->patchpoints_ctx); |
| util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints); |
| |
| vk_command_buffer_finish(&cmd_buffer->vk); |
| vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc, |
| cmd_buffer); |
| } |
| |
| static void |
| tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer, |
| UNUSED VkCommandBufferResetFlags flags) |
| { |
| struct tu_cmd_buffer *cmd_buffer = |
| container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk); |
| |
| vk_command_buffer_reset(&cmd_buffer->vk); |
| |
| tu_cs_reset(&cmd_buffer->cs); |
| tu_cs_reset(&cmd_buffer->draw_cs); |
| tu_cs_reset(&cmd_buffer->tile_store_cs); |
| tu_cs_reset(&cmd_buffer->draw_epilogue_cs); |
| tu_cs_reset(&cmd_buffer->sub_cs); |
| tu_cs_reset(&cmd_buffer->pre_chain.draw_cs); |
| tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs); |
| |
| tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results); |
| |
| for (unsigned i = 0; i < MAX_BIND_POINTS; i++) { |
| memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets)); |
| if (cmd_buffer->descriptors[i].push_set.layout) { |
| vk_descriptor_set_layout_unref(&cmd_buffer->device->vk, |
| &cmd_buffer->descriptors[i].push_set.layout->vk); |
| } |
| vk_free(&cmd_buffer->device->vk.alloc, cmd_buffer->descriptors[i].push_set.mapped_ptr); |
| memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set)); |
| cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET; |
| cmd_buffer->descriptors[i].max_sets_bound = 0; |
| cmd_buffer->descriptors[i].max_dynamic_offset_size = 0; |
| } |
| |
| u_trace_fini(&cmd_buffer->trace); |
| u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context); |
| |
| cmd_buffer->state.max_vbs_bound = 0; |
| |
| cmd_buffer->vsc_initialized = false; |
| cmd_buffer->prev_fsr_is_null = false; |
| |
| ralloc_free(cmd_buffer->patchpoints_ctx); |
| cmd_buffer->patchpoints_ctx = NULL; |
| util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints); |
| } |
| |
| const struct vk_command_buffer_ops tu_cmd_buffer_ops = { |
| .create = tu_create_cmd_buffer, |
| .reset = tu_reset_cmd_buffer, |
| .destroy = tu_cmd_buffer_destroy, |
| }; |
| |
| /* Initialize the cache, assuming all necessary flushes have happened but *not* |
| * invalidations. |
| */ |
| static void |
| tu_cache_init(struct tu_cache_state *cache) |
| { |
| cache->flush_bits = 0; |
| cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE; |
| } |
| |
| /* Unlike the public entrypoint, this doesn't handle cache tracking, and |
| * tracking the CCU state. It's used for the driver to insert its own command |
| * buffer in the middle of a submit. |
| */ |
| VkResult |
| tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer, |
| const VkCommandBufferBeginInfo *pBeginInfo) |
| { |
| vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo); |
| |
| memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state)); |
| vk_dynamic_graphics_state_init(&cmd_buffer->vk.dynamic_graphics_state); |
| cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi; |
| cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl; |
| cmd_buffer->state.index_size = 0xff; /* dirty restart index */ |
| cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */ |
| |
| tu_cache_init(&cmd_buffer->state.cache); |
| tu_cache_init(&cmd_buffer->state.renderpass_cache); |
| cmd_buffer->usage_flags = pBeginInfo->flags; |
| |
| tu_cs_begin(&cmd_buffer->cs); |
| tu_cs_begin(&cmd_buffer->draw_cs); |
| tu_cs_begin(&cmd_buffer->draw_epilogue_cs); |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| tu_BeginCommandBuffer(VkCommandBuffer commandBuffer, |
| const VkCommandBufferBeginInfo *pBeginInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| /* setup initial configuration into command buffer */ |
| if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) { |
| trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer); |
| |
| switch (cmd_buffer->queue_family_index) { |
| case TU_QUEUE_GENERAL: |
| TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs); |
| break; |
| default: |
| break; |
| } |
| } else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { |
| const bool pass_continue = |
| pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; |
| |
| trace_start_cmd_buffer(&cmd_buffer->trace, |
| pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs, cmd_buffer); |
| |
| assert(pBeginInfo->pInheritanceInfo); |
| |
| cmd_buffer->inherited_pipeline_statistics = |
| pBeginInfo->pInheritanceInfo->pipelineStatistics; |
| |
| vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) { |
| switch (ext->sType) { |
| case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: { |
| const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend = |
| (VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext; |
| cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| if (pass_continue) { |
| const VkCommandBufferInheritanceRenderingInfo *rendering_info = |
| vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, |
| COMMAND_BUFFER_INHERITANCE_RENDERING_INFO); |
| |
| if (TU_DEBUG(DYNAMIC)) { |
| rendering_info = |
| vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level, |
| pBeginInfo); |
| } |
| |
| if (rendering_info) { |
| tu_setup_dynamic_inheritance(cmd_buffer, rendering_info); |
| cmd_buffer->state.pass = &cmd_buffer->dynamic_pass; |
| cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass; |
| |
| const VkRenderingAttachmentLocationInfoKHR *location_info = |
| vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, |
| RENDERING_ATTACHMENT_LOCATION_INFO_KHR); |
| if (location_info) { |
| vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer, |
| location_info); |
| } |
| } else { |
| cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass); |
| cmd_buffer->state.subpass = |
| &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass]; |
| } |
| tu_fill_render_pass_state(&cmd_buffer->state.vk_rp, |
| cmd_buffer->state.pass, |
| cmd_buffer->state.subpass); |
| vk_cmd_set_cb_attachment_count(&cmd_buffer->vk, |
| cmd_buffer->state.subpass->color_count); |
| cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS; |
| |
| cmd_buffer->patchpoints_ctx = ralloc_parent(NULL); |
| |
| /* We can't set the gmem layout here, because the state.pass only has |
| * to be compatible (same formats/sample counts) with the primary's |
| * renderpass, rather than exactly equal. |
| */ |
| |
| tu_lrz_begin_secondary_cmdbuf(cmd_buffer); |
| } else { |
| /* When executing in the middle of another command buffer, the CCU |
| * state is unknown. |
| */ |
| cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN; |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static struct tu_cs |
| tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size) |
| { |
| struct tu_cs cs; |
| |
| assert(id < ARRAY_SIZE(cmd->state.dynamic_state)); |
| cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size); |
| |
| /* note: this also avoids emitting draw states before renderpass clears, |
| * which may use the 3D clear path (for MSAA cases) |
| */ |
| if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) |
| return cs; |
| |
| tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]); |
| |
| return cs; |
| } |
| |
| static void |
| tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs, |
| uint32_t id) |
| { |
| assert(id < ARRAY_SIZE(cmd->state.dynamic_state)); |
| cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs); |
| |
| /* note: this also avoids emitting draw states before renderpass clears, |
| * which may use the 3D clear path (for MSAA cases) |
| */ |
| if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) |
| return; |
| |
| tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer, |
| uint32_t firstBinding, |
| uint32_t bindingCount, |
| const VkBuffer *pBuffers, |
| const VkDeviceSize *pOffsets, |
| const VkDeviceSize *pSizes, |
| const VkDeviceSize *pStrides) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs cs; |
| |
| cmd->state.max_vbs_bound = MAX2( |
| cmd->state.max_vbs_bound, firstBinding + bindingCount); |
| |
| if (pStrides) { |
| vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount, |
| pStrides); |
| } |
| |
| cmd->state.vertex_buffers.iova = |
| tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova; |
| |
| for (uint32_t i = 0; i < bindingCount; i++) { |
| if (pBuffers[i] == VK_NULL_HANDLE) { |
| cmd->state.vb[firstBinding + i].base = 0; |
| cmd->state.vb[firstBinding + i].size = 0; |
| } else { |
| struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]); |
| cmd->state.vb[firstBinding + i].base = buf->iova + pOffsets[i]; |
| cmd->state.vb[firstBinding + i].size = |
| vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE); |
| } |
| } |
| |
| for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) { |
| tu_cs_emit_regs(&cs, |
| A6XX_VFD_FETCH_BASE(i, .qword = cmd->state.vb[i].base), |
| A6XX_VFD_FETCH_SIZE(i, cmd->state.vb[i].size)); |
| } |
| |
| cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer, |
| VkBuffer buffer, |
| VkDeviceSize offset, |
| VkDeviceSize size, |
| VkIndexType indexType) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buf, buffer); |
| |
| size = buf ? vk_buffer_range(&buf->vk, offset, size) : 0; |
| |
| uint32_t index_size, index_shift; |
| uint32_t restart_index = vk_index_to_restart(indexType); |
| |
| switch (indexType) { |
| case VK_INDEX_TYPE_UINT16: |
| index_size = INDEX4_SIZE_16_BIT; |
| index_shift = 1; |
| break; |
| case VK_INDEX_TYPE_UINT32: |
| index_size = INDEX4_SIZE_32_BIT; |
| index_shift = 2; |
| break; |
| case VK_INDEX_TYPE_UINT8_KHR: |
| index_size = INDEX4_SIZE_8_BIT; |
| index_shift = 0; |
| break; |
| default: |
| unreachable("invalid VkIndexType"); |
| } |
| |
| if (buf) { |
| /* initialize/update the restart index */ |
| if (cmd->state.index_size != index_size) |
| tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index)); |
| |
| cmd->state.index_va = buf->iova + offset; |
| cmd->state.max_index_count = size >> index_shift; |
| cmd->state.index_size = index_size; |
| } else { |
| cmd->state.index_va = 0; |
| cmd->state.max_index_count = 0; |
| cmd->state.index_size = 0; |
| } |
| } |
| |
| template <chip CHIP> |
| static void |
| tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd, |
| VkPipelineBindPoint bind_point) |
| { |
| struct tu_descriptor_state *descriptors_state = |
| tu_get_descriptors_state(cmd, bind_point); |
| uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg; |
| struct tu_cs *cs, state_cs; |
| |
| if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { |
| sp_bindless_base_reg = __SP_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg; |
| hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0); |
| |
| if (CHIP == A6XX) { |
| cmd->state.desc_sets = |
| tu_cs_draw_state(&cmd->sub_cs, &state_cs, |
| 4 + 4 * descriptors_state->max_sets_bound + |
| (descriptors_state->max_dynamic_offset_size ? 6 : 0)); |
| } else { |
| cmd->state.desc_sets = |
| tu_cs_draw_state(&cmd->sub_cs, &state_cs, |
| 3 + 2 * descriptors_state->max_sets_bound + |
| (descriptors_state->max_dynamic_offset_size ? 3 : 0)); |
| } |
| cs = &state_cs; |
| } else { |
| assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE); |
| |
| sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg; |
| hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0); |
| |
| cs = &cmd->cs; |
| } |
| |
| tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound); |
| tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound); |
| if (CHIP == A6XX) { |
| tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound); |
| tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound); |
| } |
| |
| /* Dynamic descriptors get the reserved descriptor set. */ |
| if (descriptors_state->max_dynamic_offset_size) { |
| int reserved_set_idx = cmd->device->physical_device->reserved_set_idx; |
| assert(reserved_set_idx >= 0); /* reserved set must be bound */ |
| |
| tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2); |
| tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]); |
| if (CHIP == A6XX) { |
| tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2); |
| tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]); |
| } |
| } |
| |
| tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP, |
| .cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0, |
| .gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0, |
| )); |
| |
| if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { |
| assert(cs->cur == cs->end); /* validate draw state size */ |
| /* note: this also avoids emitting draw states before renderpass clears, |
| * which may use the 3D clear path (for MSAA cases) |
| */ |
| if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) { |
| tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets); |
| } |
| } |
| } |
| |
| /* We lazily emit the draw state for desciptor sets at draw time, so that we can |
| * batch together multiple tu_CmdBindDescriptorSets() calls. ANGLE and zink |
| * will often emit multiple bind calls in a draw. |
| */ |
| static void |
| tu_dirty_desc_sets(struct tu_cmd_buffer *cmd, |
| VkPipelineBindPoint pipelineBindPoint) |
| { |
| if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) { |
| cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS; |
| } else { |
| assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS); |
| cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS; |
| } |
| } |
| |
| static void |
| tu_bind_descriptor_sets(struct tu_cmd_buffer *cmd, |
| const VkBindDescriptorSetsInfoKHR *info, |
| VkPipelineBindPoint bind_point) |
| { |
| VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout); |
| unsigned dyn_idx = 0; |
| |
| struct tu_descriptor_state *descriptors_state = |
| tu_get_descriptors_state(cmd, bind_point); |
| |
| descriptors_state->max_sets_bound = |
| MAX2(descriptors_state->max_sets_bound, |
| info->firstSet + info->descriptorSetCount); |
| |
| unsigned dynamic_offset_offset = 0; |
| for (unsigned i = 0; i < info->firstSet; i++) { |
| dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size; |
| } |
| |
| for (unsigned i = 0; i < info->descriptorSetCount; ++i) { |
| unsigned idx = i + info->firstSet; |
| VK_FROM_HANDLE(tu_descriptor_set, set, info->pDescriptorSets[i]); |
| |
| descriptors_state->sets[idx] = set; |
| descriptors_state->set_iova[idx] = set ? |
| (set->va | BINDLESS_DESCRIPTOR_64B) : 0; |
| |
| if (!set) |
| continue; |
| |
| if (set->layout->has_inline_uniforms) |
| cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS; |
| |
| if (!set->layout->dynamic_offset_size) |
| continue; |
| |
| uint32_t *src = set->dynamic_descriptors; |
| uint32_t *dst = descriptors_state->dynamic_descriptors + |
| dynamic_offset_offset / 4; |
| for (unsigned j = 0; j < set->layout->binding_count; j++) { |
| struct tu_descriptor_set_binding_layout *binding = |
| &set->layout->binding[j]; |
| if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || |
| binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) { |
| for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) { |
| assert(dyn_idx < info->dynamicOffsetCount); |
| uint32_t offset = info->pDynamicOffsets[dyn_idx]; |
| memcpy(dst, src, binding->size); |
| |
| if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) { |
| /* Note: we can assume here that the addition won't roll |
| * over and change the SIZE field. |
| */ |
| uint64_t va = src[0] | ((uint64_t)src[1] << 32); |
| va += offset; |
| dst[0] = va; |
| dst[1] = va >> 32; |
| } else { |
| uint32_t *dst_desc = dst; |
| for (unsigned i = 0; |
| i < binding->size / (4 * A6XX_TEX_CONST_DWORDS); |
| i++, dst_desc += A6XX_TEX_CONST_DWORDS) { |
| /* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */ |
| uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32); |
| uint32_t desc_offset = |
| (dst_desc[2] & |
| A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) >> |
| A6XX_TEX_CONST_2_STARTOFFSETTEXELS__SHIFT; |
| |
| /* Use descriptor's format to determine the shift amount |
| * that's to be used on the offset value. |
| */ |
| uint32_t format = (dst_desc[0] & |
| A6XX_TEX_CONST_0_FMT__MASK) >> |
| A6XX_TEX_CONST_0_FMT__SHIFT; |
| unsigned offset_shift; |
| switch (format) { |
| case FMT6_16_UINT: |
| offset_shift = 1; |
| break; |
| case FMT6_32_UINT: |
| offset_shift = 2; |
| break; |
| case FMT6_8_UINT: |
| default: |
| offset_shift = 0; |
| break; |
| } |
| |
| va += desc_offset << offset_shift; |
| va += offset; |
| unsigned new_offset = (va & 0x3f) >> offset_shift; |
| va &= ~0x3full; |
| dst_desc[4] = va; |
| dst_desc[5] = va >> 32; |
| dst_desc[2] = |
| (dst_desc[2] & ~A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) | |
| A6XX_TEX_CONST_2_STARTOFFSETTEXELS(new_offset); |
| } |
| } |
| |
| dst += binding->size / 4; |
| src += binding->size / 4; |
| } |
| } |
| } |
| |
| dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size; |
| } |
| assert(dyn_idx == info->dynamicOffsetCount); |
| |
| if (dynamic_offset_offset) { |
| descriptors_state->max_dynamic_offset_size = |
| MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset); |
| |
| /* allocate and fill out dynamic descriptor set */ |
| struct tu_cs_memory dynamic_desc_set; |
| int reserved_set_idx = cmd->device->physical_device->reserved_set_idx; |
| VkResult result = |
| tu_cs_alloc(&cmd->sub_cs, |
| descriptors_state->max_dynamic_offset_size / |
| (4 * A6XX_TEX_CONST_DWORDS), |
| A6XX_TEX_CONST_DWORDS, &dynamic_desc_set); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors, |
| descriptors_state->max_dynamic_offset_size); |
| assert(reserved_set_idx >= 0); /* reserved set must be bound */ |
| descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B; |
| } |
| |
| tu_dirty_desc_sets(cmd, bind_point); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindDescriptorSets2KHR( |
| VkCommandBuffer commandBuffer, |
| const VkBindDescriptorSetsInfoKHR *pBindDescriptorSetsInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) { |
| tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo, |
| VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) { |
| tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo, |
| VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindDescriptorBuffersEXT( |
| VkCommandBuffer commandBuffer, |
| uint32_t bufferCount, |
| const VkDescriptorBufferBindingInfoEXT *pBindingInfos) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| for (unsigned i = 0; i < bufferCount; i++) |
| cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address; |
| } |
| |
| static void |
| tu_set_descriptor_buffer_offsets( |
| struct tu_cmd_buffer *cmd, |
| const VkSetDescriptorBufferOffsetsInfoEXT *info, |
| VkPipelineBindPoint bind_point) |
| { |
| VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout); |
| |
| struct tu_descriptor_state *descriptors_state = |
| tu_get_descriptors_state(cmd, bind_point); |
| |
| descriptors_state->max_sets_bound = MAX2(descriptors_state->max_sets_bound, |
| info->firstSet + info->setCount); |
| |
| for (unsigned i = 0; i < info->setCount; ++i) { |
| unsigned idx = i + info->firstSet; |
| struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout; |
| |
| descriptors_state->set_iova[idx] = |
| (cmd->state.descriptor_buffer_iova[info->pBufferIndices[i]] + |
| info->pOffsets[i]) | |
| BINDLESS_DESCRIPTOR_64B; |
| |
| if (set_layout->has_inline_uniforms) |
| cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS; |
| } |
| |
| tu_dirty_desc_sets(cmd, bind_point); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdSetDescriptorBufferOffsets2EXT( |
| VkCommandBuffer commandBuffer, |
| const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| if (pSetDescriptorBufferOffsetsInfo->stageFlags & |
| VK_SHADER_STAGE_COMPUTE_BIT) { |
| tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo, |
| VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pSetDescriptorBufferOffsetsInfo->stageFlags & |
| VK_SHADER_STAGE_ALL_GRAPHICS) { |
| tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo, |
| VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| } |
| |
| static void |
| tu_bind_descriptor_buffer_embedded_samplers( |
| struct tu_cmd_buffer *cmd, |
| const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *info, |
| VkPipelineBindPoint bind_point) |
| { |
| VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout); |
| |
| struct tu_descriptor_set_layout *set_layout = |
| layout->set[info->set].layout; |
| |
| struct tu_descriptor_state *descriptors_state = |
| tu_get_descriptors_state(cmd, bind_point); |
| |
| descriptors_state->max_sets_bound = |
| MAX2(descriptors_state->max_sets_bound, info->set + 1); |
| |
| descriptors_state->set_iova[info->set] = |
| set_layout->embedded_samplers->iova | BINDLESS_DESCRIPTOR_64B; |
| |
| tu_dirty_desc_sets(cmd, bind_point); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT( |
| VkCommandBuffer commandBuffer, |
| const VkBindDescriptorBufferEmbeddedSamplersInfoEXT |
| *pBindDescriptorBufferEmbeddedSamplersInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags & |
| VK_SHADER_STAGE_COMPUTE_BIT) { |
| tu_bind_descriptor_buffer_embedded_samplers( |
| cmd, pBindDescriptorBufferEmbeddedSamplersInfo, |
| VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags & |
| VK_SHADER_STAGE_ALL_GRAPHICS) { |
| tu_bind_descriptor_buffer_embedded_samplers( |
| cmd, pBindDescriptorBufferEmbeddedSamplersInfo, |
| VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| } |
| |
| static enum VkResult |
| tu_push_descriptor_set_update_layout(struct tu_device *device, |
| struct tu_descriptor_set *set, |
| struct tu_descriptor_set_layout *layout) |
| { |
| if (set->layout == layout) |
| return VK_SUCCESS; |
| |
| if (set->layout) |
| vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk); |
| vk_descriptor_set_layout_ref(&layout->vk); |
| set->layout = layout; |
| |
| if (set->host_size < layout->size) { |
| void *new_buf = |
| vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (!new_buf) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| set->mapped_ptr = (uint32_t *) new_buf; |
| set->host_size = layout->size; |
| } |
| return VK_SUCCESS; |
| } |
| |
| static void |
| tu_push_descriptor_set(struct tu_cmd_buffer *cmd, |
| const VkPushDescriptorSetInfoKHR *info, |
| VkPipelineBindPoint bind_point) |
| { |
| VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout, info->layout); |
| struct tu_descriptor_set_layout *layout = |
| pipe_layout->set[info->set].layout; |
| struct tu_descriptor_set *set = |
| &tu_get_descriptors_state(cmd, bind_point)->push_set; |
| |
| struct tu_cs_memory set_mem; |
| VkResult result = tu_cs_alloc(&cmd->sub_cs, |
| DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4), |
| A6XX_TEX_CONST_DWORDS, &set_mem); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| result = tu_push_descriptor_set_update_layout(cmd->device, set, layout); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set), |
| info->descriptorWriteCount, |
| info->pDescriptorWrites, 0, NULL); |
| |
| memcpy(set_mem.map, set->mapped_ptr, layout->size); |
| set->va = set_mem.iova; |
| |
| const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) }; |
| vk_common_CmdBindDescriptorSets(tu_cmd_buffer_to_handle(cmd), bind_point, |
| info->layout, info->set, 1, desc_set, 0, |
| NULL); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdPushDescriptorSet2KHR( |
| VkCommandBuffer commandBuffer, |
| const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) { |
| tu_push_descriptor_set(cmd, pPushDescriptorSetInfo, |
| VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) { |
| tu_push_descriptor_set(cmd, pPushDescriptorSetInfo, |
| VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdPushDescriptorSetWithTemplate2KHR( |
| VkCommandBuffer commandBuffer, |
| const VkPushDescriptorSetWithTemplateInfoKHR |
| *pPushDescriptorSetWithTemplateInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout, |
| pPushDescriptorSetWithTemplateInfo->layout); |
| VK_FROM_HANDLE( |
| tu_descriptor_update_template, templ, |
| pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate); |
| struct tu_descriptor_set_layout *layout = |
| pipe_layout->set[pPushDescriptorSetWithTemplateInfo->set].layout; |
| struct tu_descriptor_set *set = |
| &tu_get_descriptors_state(cmd, templ->bind_point)->push_set; |
| |
| struct tu_cs_memory set_mem; |
| VkResult result = tu_cs_alloc(&cmd->sub_cs, |
| DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4), |
| A6XX_TEX_CONST_DWORDS, &set_mem); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| result = tu_push_descriptor_set_update_layout(cmd->device, set, layout); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| tu_update_descriptor_set_with_template( |
| cmd->device, set, |
| pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate, |
| pPushDescriptorSetWithTemplateInfo->pData); |
| |
| memcpy(set_mem.map, set->mapped_ptr, layout->size); |
| set->va = set_mem.iova; |
| |
| const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) }; |
| vk_common_CmdBindDescriptorSets( |
| tu_cmd_buffer_to_handle(cmd), templ->bind_point, |
| pPushDescriptorSetWithTemplateInfo->layout, |
| pPushDescriptorSetWithTemplateInfo->set, 1, desc_set, 0, NULL); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, |
| uint32_t firstBinding, |
| uint32_t bindingCount, |
| const VkBuffer *pBuffers, |
| const VkDeviceSize *pOffsets, |
| const VkDeviceSize *pSizes) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| /* using COND_REG_EXEC for xfb commands matches the blob behavior |
| * presumably there isn't any benefit using a draw state when the |
| * condition is (SYSMEM | BINNING) |
| */ |
| tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) | |
| CP_COND_REG_EXEC_0_SYSMEM | |
| CP_COND_REG_EXEC_0_BINNING); |
| |
| for (uint32_t i = 0; i < bindingCount; i++) { |
| VK_FROM_HANDLE(tu_buffer, buf, pBuffers[i]); |
| uint64_t iova = buf->iova + pOffsets[i]; |
| uint32_t size = buf->bo->size - (iova - buf->bo->iova); |
| uint32_t idx = i + firstBinding; |
| |
| if (pSizes && pSizes[i] != VK_WHOLE_SIZE) |
| size = pSizes[i]; |
| |
| /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */ |
| uint32_t offset = iova & 0x1f; |
| iova &= ~(uint64_t) 0x1f; |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3); |
| tu_cs_emit_qw(cs, iova); |
| tu_cs_emit(cs, size + offset); |
| |
| cmd->state.streamout_offset[idx] = offset; |
| } |
| |
| tu_cond_exec_end(cs); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, |
| uint32_t firstCounterBuffer, |
| uint32_t counterBufferCount, |
| const VkBuffer *pCounterBuffers, |
| const VkDeviceSize *pCounterBufferOffsets) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) | |
| CP_COND_REG_EXEC_0_SYSMEM | |
| CP_COND_REG_EXEC_0_BINNING); |
| |
| tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false)); |
| |
| /* TODO: only update offset for active buffers */ |
| for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) |
| tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i])); |
| |
| for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) { |
| uint32_t idx = firstCounterBuffer + i; |
| uint32_t offset = cmd->state.streamout_offset[idx]; |
| uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u; |
| |
| if (!pCounterBuffers[i]) |
| continue; |
| |
| VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]); |
| |
| tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3); |
| tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) | |
| CP_MEM_TO_REG_0_UNK31 | |
| CP_MEM_TO_REG_0_CNT(1)); |
| tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset); |
| |
| if (offset) { |
| tu_cs_emit_pkt7(cs, CP_REG_RMW, 3); |
| tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) | |
| CP_REG_RMW_0_SRC1_ADD); |
| tu_cs_emit(cs, 0xffffffff); |
| tu_cs_emit(cs, offset); |
| } |
| } |
| |
| tu_cond_exec_end(cs); |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, |
| uint32_t firstCounterBuffer, |
| uint32_t counterBufferCount, |
| const VkBuffer *pCounterBuffers, |
| const VkDeviceSize *pCounterBufferOffsets) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) | |
| CP_COND_REG_EXEC_0_SYSMEM | |
| CP_COND_REG_EXEC_0_BINNING); |
| |
| tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true)); |
| |
| /* TODO: only flush buffers that need to be flushed */ |
| for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) { |
| /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */ |
| tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2); |
| tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, i)); |
| tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i)); |
| } |
| |
| for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) { |
| uint32_t idx = firstCounterBuffer + i; |
| uint32_t offset = cmd->state.streamout_offset[idx]; |
| uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u; |
| |
| if (!pCounterBuffers[i]) |
| continue; |
| |
| VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]); |
| |
| /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */ |
| tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3); |
| tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) | |
| COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) | |
| 0x40000 | /* ??? */ |
| CP_MEM_TO_REG_0_UNK31 | |
| CP_MEM_TO_REG_0_CNT(1)); |
| tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx)); |
| |
| if (offset) { |
| tu_cs_emit_pkt7(cs, CP_REG_RMW, 3); |
| tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) | |
| CP_REG_RMW_0_SRC1_ADD); |
| tu_cs_emit(cs, 0xffffffff); |
| tu_cs_emit(cs, -offset); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3); |
| tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) | |
| CP_REG_TO_MEM_0_CNT(1)); |
| tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset); |
| } |
| |
| tu_cond_exec_end(cs); |
| |
| cmd->state.rp.xfb_used = true; |
| } |
| TU_GENX(tu_CmdEndTransformFeedbackEXT); |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer, |
| const VkPushConstantsInfoKHR *pPushConstantsInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| memcpy((char *) cmd->push_constants + pPushConstantsInfo->offset, |
| pPushConstantsInfo->pValues, pPushConstantsInfo->size); |
| cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS; |
| } |
| |
| /* Clean everything which has been made available but we haven't actually |
| * cleaned yet. |
| */ |
| static void |
| tu_clean_all_pending(struct tu_cache_state *cache) |
| { |
| cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN; |
| cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_CLEAN; |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR VkResult VKAPI_CALL |
| tu_EndCommandBuffer(VkCommandBuffer commandBuffer) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| /* We currently flush CCU at the end of the command buffer, like |
| * what the blob does. There's implicit synchronization around every |
| * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't |
| * know yet if this command buffer will be the last in the submit so we |
| * have to defensively flush everything else. |
| * |
| * TODO: We could definitely do better than this, since these flushes |
| * aren't required by Vulkan, but we'd need kernel support to do that. |
| * Ideally, we'd like the kernel to flush everything afterwards, so that we |
| * wouldn't have to do any flushes here, and when submitting multiple |
| * command buffers there wouldn't be any unnecessary flushes in between. |
| */ |
| if (cmd_buffer->state.pass) { |
| tu_clean_all_pending(&cmd_buffer->state.renderpass_cache); |
| tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer); |
| |
| trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->draw_cs); |
| } else { |
| tu_clean_all_pending(&cmd_buffer->state.cache); |
| cmd_buffer->state.cache.flush_bits |= |
| TU_CMD_FLAG_CCU_CLEAN_COLOR | |
| TU_CMD_FLAG_CCU_CLEAN_DEPTH; |
| tu_emit_cache_flush<CHIP>(cmd_buffer); |
| |
| trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs); |
| } |
| |
| tu_cs_end(&cmd_buffer->cs); |
| tu_cs_end(&cmd_buffer->draw_cs); |
| tu_cs_end(&cmd_buffer->draw_epilogue_cs); |
| |
| return vk_command_buffer_end(&cmd_buffer->vk); |
| } |
| TU_GENX(tu_EndCommandBuffer); |
| |
| static void |
| tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs) |
| { |
| cmd->state.shaders[MESA_SHADER_VERTEX] = vs; |
| } |
| |
| static void |
| tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs) |
| { |
| cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs; |
| } |
| |
| static void |
| tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes) |
| { |
| if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) { |
| cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes; |
| cmd->state.dirty |= TU_CMD_DIRTY_TES; |
| |
| if (!cmd->state.tess_params.valid || |
| cmd->state.tess_params.output_upper_left != |
| tes->tes.tess_output_upper_left || |
| cmd->state.tess_params.output_lower_left != |
| tes->tes.tess_output_lower_left || |
| cmd->state.tess_params.spacing != tes->tes.tess_spacing) { |
| cmd->state.tess_params.output_upper_left = |
| tes->tes.tess_output_upper_left; |
| cmd->state.tess_params.output_lower_left = |
| tes->tes.tess_output_lower_left; |
| cmd->state.tess_params.spacing = tes->tes.tess_spacing; |
| cmd->state.tess_params.valid = true; |
| cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS; |
| } |
| } |
| } |
| |
| static void |
| tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs) |
| { |
| cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs; |
| } |
| |
| static void |
| tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs) |
| { |
| if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) { |
| cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs; |
| cmd->state.dirty |= TU_CMD_DIRTY_LRZ | TU_CMD_DIRTY_FS; |
| } |
| } |
| |
| /* We cannot do this only at pipeline bind time since pipeline |
| * could have been bound at any time before current renderpass, |
| * e.g. in the previous renderpass. |
| */ |
| static void |
| tu_pipeline_update_rp_state(struct tu_cmd_state *cmd_state) |
| { |
| if (cmd_state->pipeline_disable_gmem && |
| !cmd_state->rp.disable_gmem) { |
| /* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve |
| * not only input attachments but also sampled images or image resources. |
| * But we cannot just patch gmem for image in the descriptors. |
| * |
| * At the moment, in context of DXVK, it is expected that only a few |
| * drawcalls in a frame would use feedback loop and they would be wrapped |
| * in their own renderpasses, so it should be ok to force sysmem. |
| * |
| * However, there are two further possible optimizations if need would |
| * arise for other translation layer: |
| * - Tiling could be enabled if we ensure that there is no barrier in |
| * the renderpass; |
| * - Check that both pipeline and attachments agree that feedback loop |
| * is needed. |
| */ |
| perf_debug( |
| cmd->device, |
| "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout"); |
| cmd_state->rp.disable_gmem = true; |
| } |
| |
| if (cmd_state->pipeline_sysmem_single_prim_mode && |
| !cmd_state->rp.sysmem_single_prim_mode) { |
| perf_debug(cmd->device, "single_prim_mode due to pipeline settings"); |
| cmd_state->rp.sysmem_single_prim_mode = true; |
| } |
| |
| if (cmd_state->pipeline_has_tess) { |
| cmd_state->rp.has_tess = true; |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBindPipeline(VkCommandBuffer commandBuffer, |
| VkPipelineBindPoint pipelineBindPoint, |
| VkPipeline _pipeline) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_pipeline, pipeline, _pipeline); |
| |
| if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) { |
| cmd->state.shaders[MESA_SHADER_COMPUTE] = |
| pipeline->shaders[MESA_SHADER_COMPUTE]; |
| tu_cs_emit_state_ib(&cmd->cs, |
| pipeline->shaders[MESA_SHADER_COMPUTE]->state); |
| cmd->state.compute_load_state = pipeline->load_state; |
| return; |
| } |
| |
| assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline); |
| cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS | |
| TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM; |
| |
| tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]); |
| tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]); |
| tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]); |
| tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]); |
| tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]); |
| |
| /* We precompile static state and count it as dynamic, so we have to |
| * manually clear bitset that tells which dynamic state is set, in order to |
| * make sure that future dynamic state will be emitted. The issue is that |
| * framework remembers only a past REAL dynamic state and compares a new |
| * dynamic state against it, and not against our static state masquaraded |
| * as dynamic. |
| */ |
| BITSET_ANDNOT(cmd->vk.dynamic_graphics_state.set, |
| cmd->vk.dynamic_graphics_state.set, |
| pipeline->static_state_mask); |
| |
| vk_cmd_set_dynamic_graphics_state(&cmd->vk, |
| &gfx_pipeline->dynamic_state); |
| cmd->state.program = pipeline->program; |
| |
| cmd->state.load_state = pipeline->load_state; |
| cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem; |
| cmd->state.pipeline_sysmem_single_prim_mode = pipeline->prim_order.sysmem_single_prim_mode; |
| cmd->state.pipeline_has_tess = pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; |
| cmd->state.pipeline_disable_gmem = gfx_pipeline->feedback_loop_may_involve_textures; |
| |
| tu_pipeline_update_rp_state(&cmd->state); |
| |
| if (pipeline->lrz_blend.valid) { |
| if (cmd->state.blend_reads_dest != pipeline->lrz_blend.reads_dest) { |
| cmd->state.blend_reads_dest = pipeline->lrz_blend.reads_dest; |
| cmd->state.dirty |= TU_CMD_DIRTY_LRZ; |
| } |
| } |
| cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid; |
| |
| if (pipeline->bandwidth.valid) |
| cmd->state.bandwidth = pipeline->bandwidth; |
| cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid; |
| |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| /* note: this also avoids emitting draw states before renderpass clears, |
| * which may use the 3D clear path (for MSAA cases) |
| */ |
| if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) { |
| uint32_t mask = pipeline->set_state_mask; |
| |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (10 + util_bitcount(mask))); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem); |
| |
| u_foreach_bit(i, mask) |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]); |
| } |
| |
| cmd->state.pipeline_draw_states = pipeline->set_state_mask; |
| u_foreach_bit(i, pipeline->set_state_mask) |
| cmd->state.dynamic_state[i] = pipeline->dynamic_state[i]; |
| |
| if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport) { |
| cmd->state.per_view_viewport = pipeline->program.per_view_viewport; |
| cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT; |
| } |
| |
| if (gfx_pipeline->feedback_loops != cmd->state.pipeline_feedback_loops) { |
| cmd->state.pipeline_feedback_loops = gfx_pipeline->feedback_loops; |
| cmd->state.dirty |= TU_CMD_DIRTY_FEEDBACK_LOOPS | TU_CMD_DIRTY_LRZ; |
| } |
| |
| if (pipeline->program.writes_shading_rate != |
| cmd->state.pipeline_writes_shading_rate || |
| pipeline->program.reads_shading_rate != |
| cmd->state.pipeline_reads_shading_rate || |
| pipeline->program.accesses_smask != |
| cmd->state.pipeline_accesses_smask) { |
| cmd->state.pipeline_writes_shading_rate = |
| pipeline->program.writes_shading_rate; |
| cmd->state.pipeline_reads_shading_rate = |
| pipeline->program.reads_shading_rate; |
| cmd->state.pipeline_accesses_smask = |
| pipeline->program.accesses_smask; |
| cmd->state.dirty |= TU_CMD_DIRTY_SHADING_RATE; |
| } |
| |
| bool raster_order_attachment_access = |
| pipeline->output.raster_order_attachment_access || |
| pipeline->ds.raster_order_attachment_access; |
| if (!cmd->state.raster_order_attachment_access_valid || |
| raster_order_attachment_access != |
| cmd->state.raster_order_attachment_access) { |
| cmd->state.raster_order_attachment_access = |
| raster_order_attachment_access; |
| cmd->state.dirty |= TU_CMD_DIRTY_RAST_ORDER; |
| cmd->state.raster_order_attachment_access_valid = true; |
| } |
| } |
| |
| void |
| tu_flush_for_access(struct tu_cache_state *cache, |
| enum tu_cmd_access_mask src_mask, |
| enum tu_cmd_access_mask dst_mask) |
| { |
| BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0; |
| |
| if (src_mask & TU_ACCESS_SYSMEM_WRITE) { |
| cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE; |
| } |
| |
| if (src_mask & TU_ACCESS_CP_WRITE) { |
| /* Flush the CP write queue. |
| */ |
| cache->pending_flush_bits |= |
| TU_CMD_FLAG_WAIT_MEM_WRITES | |
| TU_CMD_FLAG_ALL_INVALIDATE; |
| } |
| |
| #define SRC_FLUSH(domain, clean, invalidate) \ |
| if (src_mask & TU_ACCESS_##domain##_WRITE) { \ |
| cache->pending_flush_bits |= TU_CMD_FLAG_##clean | \ |
| (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \ |
| } |
| |
| SRC_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE) |
| SRC_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR) |
| SRC_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH) |
| |
| #undef SRC_FLUSH |
| |
| #define SRC_INCOHERENT_FLUSH(domain, clean, invalidate) \ |
| if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \ |
| flush_bits |= TU_CMD_FLAG_##clean; \ |
| cache->pending_flush_bits |= \ |
| (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \ |
| } |
| |
| SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR) |
| SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH) |
| |
| #undef SRC_INCOHERENT_FLUSH |
| |
| /* Treat host & sysmem write accesses the same, since the kernel implicitly |
| * drains the queue before signalling completion to the host. |
| */ |
| if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) { |
| flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN; |
| } |
| |
| #define DST_FLUSH(domain, clean, invalidate) \ |
| if (dst_mask & (TU_ACCESS_##domain##_READ | \ |
| TU_ACCESS_##domain##_WRITE)) { \ |
| flush_bits |= cache->pending_flush_bits & \ |
| (TU_CMD_FLAG_##invalidate | \ |
| (TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##clean)); \ |
| } |
| |
| DST_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE) |
| DST_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR) |
| DST_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH) |
| |
| #undef DST_FLUSH |
| |
| #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \ |
| if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ | \ |
| TU_ACCESS_##domain##_INCOHERENT_WRITE)) { \ |
| flush_bits |= TU_CMD_FLAG_##invalidate | \ |
| (cache->pending_flush_bits & \ |
| (TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##flush)); \ |
| } |
| |
| DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR) |
| DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH) |
| |
| if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) { |
| flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE; |
| } |
| |
| /* There are multiple incoherent copies of CCHE, so any read through it may |
| * require invalidating it and we cannot optimize away invalidates. |
| */ |
| if (dst_mask & TU_ACCESS_CCHE_READ) { |
| flush_bits |= TU_CMD_FLAG_CCHE_INVALIDATE; |
| } |
| |
| /* The blit cache is a special case dependency between CP_EVENT_WRITE::BLIT |
| * (from GMEM loads/clears) to any GMEM attachment reads done via the UCHE |
| * (Eg: Input attachments/CP_BLIT) which needs an explicit BLIT_CACHE_CLEAN |
| * for the event blit writes to land, it has the following properties: |
| * - Set on reads rather than on writes, like flushes. |
| * - Not executed automatically if pending, like invalidates. |
| * - Pending bits passed through to secondary command buffers, if they're |
| * continuing the render pass. |
| */ |
| if (src_mask & TU_ACCESS_BLIT_WRITE_GMEM) { |
| cache->pending_flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN; |
| } |
| |
| if ((dst_mask & TU_ACCESS_UCHE_READ_GMEM) && |
| (cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN)) { |
| flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN; |
| } |
| |
| #undef DST_INCOHERENT_FLUSH |
| |
| cache->flush_bits |= flush_bits; |
| cache->pending_flush_bits &= ~flush_bits; |
| } |
| |
| /* When translating Vulkan access flags to which cache is accessed |
| * (CCU/UCHE/sysmem), we should take into account both the access flags and |
| * the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a |
| * specific stage return something sensible. The specification for |
| * VK_KHR_synchronization2 says that we should do this: |
| * |
| * Additionally, scoping the pipeline stages into the barrier structs |
| * allows the use of the MEMORY_READ and MEMORY_WRITE flags without |
| * sacrificing precision. The per-stage access flags should be used to |
| * disambiguate specific accesses in a given stage or set of stages - for |
| * instance, between uniform reads and sampling operations. |
| * |
| * Note that while in all known cases the stage is actually enough, we should |
| * still narrow things down based on the access flags to handle "old-style" |
| * barriers that may specify a wider range of stages but more precise access |
| * flags. These helpers allow us to do both. |
| */ |
| |
| static bool |
| filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, |
| VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages) |
| { |
| return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) && |
| (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)); |
| } |
| |
| static bool |
| filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, |
| VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages) |
| { |
| return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) && |
| (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)); |
| } |
| |
| static bool |
| gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, |
| VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages) |
| { |
| return filter_read_access(flags, stages, tu_flags, |
| tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT); |
| } |
| |
| static bool |
| gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, |
| VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages) |
| { |
| return filter_write_access(flags, stages, tu_flags, |
| tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT); |
| } |
| |
| static enum tu_cmd_access_mask |
| vk2tu_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, bool image_only, bool gmem) |
| { |
| BITMASK_ENUM(tu_cmd_access_mask) mask = 0; |
| |
| if (gfx_read_access(flags, stages, |
| VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT | |
| VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT | |
| VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | |
| VK_ACCESS_2_HOST_READ_BIT, |
| VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | |
| VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT | |
| VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | |
| VK_PIPELINE_STAGE_2_HOST_BIT)) |
| mask |= TU_ACCESS_SYSMEM_READ; |
| |
| if (gfx_write_access(flags, stages, |
| VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT, |
| VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT)) |
| mask |= TU_ACCESS_CP_WRITE; |
| |
| if (gfx_write_access(flags, stages, |
| VK_ACCESS_2_HOST_WRITE_BIT, |
| VK_PIPELINE_STAGE_2_HOST_BIT)) |
| mask |= TU_ACCESS_SYSMEM_WRITE; |
| |
| #define SHADER_STAGES \ |
| (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \ |
| VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \ |
| VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \ |
| VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \ |
| VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \ |
| VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \ |
| VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT) |
| |
| |
| if (gfx_read_access(flags, stages, |
| VK_ACCESS_2_INDEX_READ_BIT | |
| VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT | |
| VK_ACCESS_2_UNIFORM_READ_BIT | |
| VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | |
| VK_ACCESS_2_SHADER_READ_BIT | |
| VK_ACCESS_2_SHADER_SAMPLED_READ_BIT | |
| VK_ACCESS_2_SHADER_STORAGE_READ_BIT | |
| VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR, |
| VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT | |
| VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT | |
| VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT | |
| SHADER_STAGES)) |
| mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ; |
| |
| if (gfx_read_access(flags, stages, |
| VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, |
| SHADER_STAGES)) |
| mask |= TU_ACCESS_UCHE_READ_GMEM; |
| |
| if (gfx_read_access(flags, stages, |
| VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT, |
| SHADER_STAGES)) { |
| mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_BINDLESS_DESCRIPTOR_READ | |
| TU_ACCESS_CCHE_READ; |
| } |
| |
| if (gfx_write_access(flags, stages, |
| VK_ACCESS_2_SHADER_WRITE_BIT | |
| VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT | |
| VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT, |
| VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | |
| SHADER_STAGES)) |
| mask |= TU_ACCESS_UCHE_WRITE; |
| |
| /* When using GMEM, the CCU is always flushed automatically to GMEM, and |
| * then GMEM is flushed to sysmem. Furthermore, we already had to flush any |
| * previous writes in sysmem mode when transitioning to GMEM. Therefore we |
| * can ignore CCU and pretend that color attachments and transfers use |
| * sysmem directly. |
| */ |
| |
| if (gfx_read_access(flags, stages, |
| VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT | |
| VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT, |
| VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) { |
| if (gmem) |
| mask |= TU_ACCESS_SYSMEM_READ; |
| else |
| mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ; |
| } |
| |
| if (gfx_read_access(flags, stages, |
| VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, |
| VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) { |
| if (gmem) |
| mask |= TU_ACCESS_SYSMEM_READ; |
| else |
| mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ; |
| } |
| |
| if (gfx_write_access(flags, stages, |
| VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, |
| VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) { |
| if (gmem) { |
| mask |= TU_ACCESS_SYSMEM_WRITE; |
| } else { |
| mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE; |
| } |
| } |
| |
| if (gfx_write_access(flags, stages, |
| VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, |
| VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) { |
| if (gmem) { |
| mask |= TU_ACCESS_SYSMEM_WRITE; |
| } else { |
| mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE; |
| } |
| } |
| |
| if (filter_write_access(flags, stages, |
| VK_ACCESS_2_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_2_COPY_BIT | |
| VK_PIPELINE_STAGE_2_BLIT_BIT | |
| VK_PIPELINE_STAGE_2_CLEAR_BIT | |
| VK_PIPELINE_STAGE_2_RESOLVE_BIT | |
| VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) { |
| if (gmem) { |
| mask |= TU_ACCESS_SYSMEM_WRITE; |
| } else if (image_only) { |
| /* Because we always split up blits/copies of images involving |
| * multiple layers, we always access each layer in the same way, with |
| * the same base address, same format, etc. This means we can avoid |
| * flushing between multiple writes to the same image. This elides |
| * flushes between e.g. multiple blits to the same image. |
| */ |
| mask |= TU_ACCESS_CCU_COLOR_WRITE; |
| } else { |
| mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE; |
| } |
| } |
| |
| if (filter_read_access(flags, stages, |
| VK_ACCESS_2_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_2_COPY_BIT | |
| VK_PIPELINE_STAGE_2_BLIT_BIT | |
| VK_PIPELINE_STAGE_2_RESOLVE_BIT | |
| VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) { |
| mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ; |
| } |
| |
| return mask; |
| } |
| |
| /* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages. |
| */ |
| |
| static VkPipelineStageFlags2 |
| sanitize_src_stage(VkPipelineStageFlags2 stage_mask) |
| { |
| /* From the Vulkan spec: |
| * |
| * VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ... equivalent to |
| * VK_PIPELINE_STAGE_2_NONE in the first scope. |
| * |
| * VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to |
| * VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0 |
| * when specified in the first synchronization scope, ... |
| */ |
| if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT) |
| return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT; |
| |
| return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT; |
| } |
| |
| static VkPipelineStageFlags2 |
| sanitize_dst_stage(VkPipelineStageFlags2 stage_mask) |
| { |
| /* From the Vulkan spec: |
| * |
| * VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to |
| * VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0 |
| * when specified in the second synchronization scope, ... |
| * |
| * VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to |
| * VK_PIPELINE_STAGE_2_NONE in the second scope. |
| * |
| */ |
| if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT) |
| return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT; |
| |
| return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT; |
| } |
| |
| static enum tu_stage |
| vk2tu_single_stage(VkPipelineStageFlags2 vk_stage, bool dst) |
| { |
| /* If the destination stage is executed on the CP, then the CP also has to |
| * wait for any WFI's to finish. This is already done for draw calls, |
| * including before indirect param reads, for the most part, so we just |
| * need to WFI and can use TU_STAGE_GPU. |
| * |
| * However, some indirect draw opcodes, depending on firmware, don't have |
| * implicit CP_WAIT_FOR_ME so we have to handle it manually. |
| * |
| * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly |
| * does CP_WAIT_FOR_ME, so we don't include them here. |
| * |
| * Currently we read the draw predicate using CP_MEM_TO_MEM, which |
| * also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not* |
| * implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to |
| * complete since it's written for DX11 where you can only predicate on the |
| * result of a query object. So if we implement 64-bit comparisons in the |
| * future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit |
| * comparisons, then this will have to be dealt with. |
| */ |
| if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT || |
| vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT || |
| vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT) |
| return TU_STAGE_CP; |
| |
| if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT || |
| vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT) |
| return dst ? TU_STAGE_CP : TU_STAGE_GPU; |
| |
| if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT) |
| return dst ? TU_STAGE_BOTTOM : TU_STAGE_CP; |
| |
| return TU_STAGE_GPU; |
| } |
| |
| static enum tu_stage |
| vk2tu_src_stage(VkPipelineStageFlags2 vk_stages) |
| { |
| enum tu_stage stage = TU_STAGE_CP; |
| u_foreach_bit64 (bit, vk_stages) { |
| enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, false); |
| stage = MAX2(stage, new_stage); |
| } |
| |
| return stage; |
| } |
| |
| static enum tu_stage |
| vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages) |
| { |
| enum tu_stage stage = TU_STAGE_BOTTOM; |
| u_foreach_bit64 (bit, vk_stages) { |
| enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, true); |
| stage = MIN2(stage, new_stage); |
| } |
| |
| return stage; |
| } |
| |
| static void |
| tu_flush_for_stage(struct tu_cache_state *cache, |
| enum tu_stage src_stage, enum tu_stage dst_stage) |
| { |
| /* Even if the source is the host or CP, the destination access could |
| * generate invalidates that we have to wait to complete. |
| */ |
| if (src_stage == TU_STAGE_CP && |
| (cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE)) |
| src_stage = TU_STAGE_GPU; |
| |
| if (src_stage >= dst_stage) { |
| cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE; |
| if (dst_stage == TU_STAGE_CP) |
| cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME; |
| } |
| } |
| |
| void |
| tu_render_pass_state_merge(struct tu_render_pass_state *dst, |
| const struct tu_render_pass_state *src) |
| { |
| dst->xfb_used |= src->xfb_used; |
| dst->has_tess |= src->has_tess; |
| dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp; |
| dst->has_zpass_done_sample_count_write_in_rp |= src->has_zpass_done_sample_count_write_in_rp; |
| dst->disable_gmem |= src->disable_gmem; |
| dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode; |
| dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred; |
| dst->shared_viewport |= src->shared_viewport; |
| |
| dst->drawcall_count += src->drawcall_count; |
| dst->drawcall_bandwidth_per_sample_sum += |
| src->drawcall_bandwidth_per_sample_sum; |
| if (!dst->lrz_disable_reason) |
| dst->lrz_disable_reason = src->lrz_disable_reason; |
| } |
| |
| void |
| tu_restore_suspended_pass(struct tu_cmd_buffer *cmd, |
| struct tu_cmd_buffer *suspended) |
| { |
| cmd->state.pass = suspended->state.suspended_pass.pass; |
| cmd->state.subpass = suspended->state.suspended_pass.subpass; |
| cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer; |
| cmd->state.attachments = suspended->state.suspended_pass.attachments; |
| cmd->state.clear_values = suspended->state.suspended_pass.clear_values; |
| cmd->state.render_area = suspended->state.suspended_pass.render_area; |
| cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout; |
| cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout]; |
| cmd->state.lrz = suspended->state.suspended_pass.lrz; |
| } |
| |
| /* Take the saved pre-chain in "secondary" and copy its commands to "cmd", |
| * appending it after any saved-up commands in "cmd". |
| */ |
| void |
| tu_append_pre_chain(struct tu_cmd_buffer *cmd, |
| struct tu_cmd_buffer *secondary) |
| { |
| tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs); |
| tu_cs_add_entries(&cmd->draw_epilogue_cs, |
| &secondary->pre_chain.draw_epilogue_cs); |
| |
| tu_render_pass_state_merge(&cmd->state.rp, |
| &secondary->pre_chain.state); |
| tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->pre_chain.trace_renderpass_start, |
| secondary->pre_chain.trace_renderpass_end); |
| util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints, |
| &secondary->pre_chain.fdm_bin_patchpoints); |
| } |
| |
| /* Take the saved post-chain in "secondary" and copy it to "cmd". |
| */ |
| void |
| tu_append_post_chain(struct tu_cmd_buffer *cmd, |
| struct tu_cmd_buffer *secondary) |
| { |
| tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs); |
| tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs); |
| |
| tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start, |
| secondary->trace_renderpass_end); |
| cmd->state.rp = secondary->state.rp; |
| util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints, |
| &secondary->fdm_bin_patchpoints); |
| } |
| |
| /* Assuming "secondary" is just a sequence of suspended and resuming passes, |
| * copy its state to "cmd". This also works instead of tu_append_post_chain(), |
| * but it's a bit slower because we don't assume that the chain begins in |
| * "secondary" and therefore have to care about the command buffer's |
| * renderpass state. |
| */ |
| void |
| tu_append_pre_post_chain(struct tu_cmd_buffer *cmd, |
| struct tu_cmd_buffer *secondary) |
| { |
| tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs); |
| tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs); |
| |
| tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start, |
| secondary->trace_renderpass_end); |
| tu_render_pass_state_merge(&cmd->state.rp, |
| &secondary->state.rp); |
| util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints, |
| &secondary->fdm_bin_patchpoints); |
| } |
| |
| /* Take the current render pass state and save it to "pre_chain" to be |
| * combined later. |
| */ |
| static void |
| tu_save_pre_chain(struct tu_cmd_buffer *cmd) |
| { |
| tu_cs_add_entries(&cmd->pre_chain.draw_cs, |
| &cmd->draw_cs); |
| tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs, |
| &cmd->draw_epilogue_cs); |
| cmd->pre_chain.trace_renderpass_start = |
| cmd->trace_renderpass_start; |
| cmd->pre_chain.trace_renderpass_end = |
| cmd->trace_renderpass_end; |
| cmd->pre_chain.state = cmd->state.rp; |
| util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints, |
| &cmd->fdm_bin_patchpoints); |
| cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx; |
| cmd->patchpoints_ctx = NULL; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdExecuteCommands(VkCommandBuffer commandBuffer, |
| uint32_t commandBufferCount, |
| const VkCommandBuffer *pCmdBuffers) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VkResult result; |
| |
| assert(commandBufferCount > 0); |
| |
| /* Emit any pending flushes. */ |
| if (cmd->state.pass) { |
| tu_clean_all_pending(&cmd->state.renderpass_cache); |
| TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd); |
| } else { |
| tu_clean_all_pending(&cmd->state.cache); |
| TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd); |
| } |
| |
| for (uint32_t i = 0; i < commandBufferCount; i++) { |
| VK_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]); |
| |
| if (secondary->usage_flags & |
| VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { |
| assert(tu_cs_is_empty(&secondary->cs)); |
| |
| result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| break; |
| } |
| |
| result = tu_cs_add_entries(&cmd->draw_epilogue_cs, |
| &secondary->draw_epilogue_cs); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| break; |
| } |
| |
| /* If LRZ was made invalid in secondary - we should disable |
| * LRZ retroactively for the whole renderpass. |
| */ |
| if (!secondary->state.lrz.valid) |
| cmd->state.lrz.valid = false; |
| |
| tu_clone_trace(cmd, &cmd->draw_cs, &secondary->trace); |
| tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp); |
| util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints, |
| &secondary->fdm_bin_patchpoints); |
| } else { |
| switch (secondary->state.suspend_resume) { |
| case SR_NONE: |
| assert(tu_cs_is_empty(&secondary->draw_cs)); |
| assert(tu_cs_is_empty(&secondary->draw_epilogue_cs)); |
| tu_cs_add_entries(&cmd->cs, &secondary->cs); |
| tu_clone_trace(cmd, &cmd->cs, &secondary->trace); |
| break; |
| |
| case SR_IN_PRE_CHAIN: |
| /* cmd may be empty, which means that the chain begins before cmd |
| * in which case we have to update its state. |
| */ |
| if (cmd->state.suspend_resume == SR_NONE) { |
| cmd->state.suspend_resume = SR_IN_PRE_CHAIN; |
| cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace); |
| } |
| |
| /* The secondary is just a continuous suspend/resume chain so we |
| * just have to append it to the the command buffer. |
| */ |
| assert(tu_cs_is_empty(&secondary->cs)); |
| tu_append_pre_post_chain(cmd, secondary); |
| break; |
| |
| case SR_AFTER_PRE_CHAIN: |
| case SR_IN_CHAIN: |
| case SR_IN_CHAIN_AFTER_PRE_CHAIN: |
| if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN || |
| secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) { |
| /* In thse cases there is a `pre_chain` in the secondary which |
| * ends that we need to append to the primary. |
| */ |
| |
| if (cmd->state.suspend_resume == SR_NONE) |
| cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace); |
| |
| tu_append_pre_chain(cmd, secondary); |
| |
| /* We're about to render, so we need to end the command stream |
| * in case there were any extra commands generated by copying |
| * the trace. |
| */ |
| tu_cs_end(&cmd->draw_cs); |
| tu_cs_end(&cmd->draw_epilogue_cs); |
| |
| switch (cmd->state.suspend_resume) { |
| case SR_NONE: |
| case SR_IN_PRE_CHAIN: |
| /* The renderpass chain ends in the secondary but isn't |
| * started in the primary, so we have to move the state to |
| * `pre_chain`. |
| */ |
| cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace); |
| tu_save_pre_chain(cmd); |
| cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN; |
| break; |
| case SR_IN_CHAIN: |
| case SR_IN_CHAIN_AFTER_PRE_CHAIN: |
| /* The renderpass ends in the secondary and starts somewhere |
| * earlier in this primary. Since the last render pass in |
| * the chain is in the secondary, we are technically outside |
| * of a render pass. Fix that here by reusing the dynamic |
| * render pass that was setup for the last suspended render |
| * pass before the secondary. |
| */ |
| tu_restore_suspended_pass(cmd, cmd); |
| |
| TU_CALLX(cmd->device, tu_cmd_render)(cmd); |
| if (cmd->state.suspend_resume == SR_IN_CHAIN) |
| cmd->state.suspend_resume = SR_NONE; |
| else |
| cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN; |
| break; |
| case SR_AFTER_PRE_CHAIN: |
| unreachable("resuming render pass is not preceded by suspending one"); |
| } |
| |
| tu_reset_render_pass(cmd); |
| } |
| |
| tu_cs_add_entries(&cmd->cs, &secondary->cs); |
| |
| if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN || |
| secondary->state.suspend_resume == SR_IN_CHAIN) { |
| /* The secondary ends in a "post-chain" (the opposite of a |
| * pre-chain) that we need to copy into the current command |
| * buffer. |
| */ |
| cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace); |
| tu_append_post_chain(cmd, secondary); |
| cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace); |
| cmd->state.suspended_pass = secondary->state.suspended_pass; |
| |
| switch (cmd->state.suspend_resume) { |
| case SR_NONE: |
| cmd->state.suspend_resume = SR_IN_CHAIN; |
| break; |
| case SR_AFTER_PRE_CHAIN: |
| cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN; |
| break; |
| default: |
| unreachable("suspending render pass is followed by a not resuming one"); |
| } |
| } |
| } |
| } |
| |
| cmd->state.index_size = secondary->state.index_size; /* for restart index update */ |
| } |
| cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */ |
| |
| if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) { |
| /* After a secondary command buffer is executed, LRZ is not valid |
| * until it is cleared again. |
| */ |
| cmd->state.lrz.valid = false; |
| } |
| |
| /* After executing secondary command buffers, there may have been arbitrary |
| * flushes executed, so when we encounter a pipeline barrier with a |
| * srcMask, we have to assume that we need to invalidate. Therefore we need |
| * to re-initialize the cache with all pending invalidate bits set. |
| */ |
| if (cmd->state.pass) { |
| struct tu_cache_state *cache = &cmd->state.renderpass_cache; |
| BITMASK_ENUM(tu_cmd_flush_bits) retained_pending_flush_bits = |
| cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN; |
| tu_cache_init(cache); |
| cache->pending_flush_bits |= retained_pending_flush_bits; |
| } else { |
| tu_cache_init(&cmd->state.cache); |
| } |
| } |
| |
| static void |
| tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer, |
| const struct tu_subpass_barrier *barrier, |
| bool external) |
| { |
| /* Note: we don't know until the end of the subpass whether we'll use |
| * sysmem, so assume sysmem here to be safe. |
| */ |
| struct tu_cache_state *cache = |
| external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache; |
| VkPipelineStageFlags2 src_stage_vk = |
| sanitize_src_stage(barrier->src_stage_mask); |
| VkPipelineStageFlags2 dst_stage_vk = |
| sanitize_dst_stage(barrier->dst_stage_mask); |
| BITMASK_ENUM(tu_cmd_access_mask) src_flags = |
| vk2tu_access(barrier->src_access_mask, src_stage_vk, false, false); |
| BITMASK_ENUM(tu_cmd_access_mask) dst_flags = |
| vk2tu_access(barrier->dst_access_mask, dst_stage_vk, false, false); |
| |
| if (barrier->incoherent_ccu_color) |
| src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE; |
| if (barrier->incoherent_ccu_depth) |
| src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE; |
| |
| tu_flush_for_access(cache, src_flags, dst_flags); |
| |
| enum tu_stage src_stage = vk2tu_src_stage(src_stage_vk); |
| enum tu_stage dst_stage = vk2tu_dst_stage(dst_stage_vk); |
| tu_flush_for_stage(cache, src_stage, dst_stage); |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group) |
| { |
| struct tu_cs *cs = &cmd->draw_cs; |
| uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses; |
| |
| /* If we might choose to bin, then put the loads under a check for geometry |
| * having been binned to this tile. If we don't choose to bin in the end, |
| * then we will have manually set those registers to say geometry is present. |
| * |
| * However, if the draw CS has a write to the condition for some other reason |
| * (perf queries), then we can't do this optimization since the |
| * start-of-the-CS geometry condition will have been overwritten. |
| */ |
| bool cond_load_allowed = cmd->state.tiling->binning && |
| cmd->state.pass->has_cond_load_store && |
| !cmd->state.rp.draw_cs_writes_to_cond_pred; |
| |
| if (cmd->state.pass->has_fdm) |
| tu_cs_set_writeable(cs, true); |
| |
| tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM); |
| |
| /* Emit gmem loads that are first used in this subpass. */ |
| bool emitted_scissor = false; |
| for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) { |
| struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i]; |
| if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) { |
| if (!emitted_scissor) { |
| tu6_emit_blit_scissor(cmd, cs, true); |
| emitted_scissor = true; |
| } |
| tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, i, |
| cond_load_allowed, false); |
| } |
| } |
| |
| if (!cmd->device->physical_device->info->a7xx.has_generic_clear) { |
| /* Emit gmem clears that are first used in this subpass. */ |
| emitted_scissor = false; |
| for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) { |
| struct tu_render_pass_attachment *att = |
| &cmd->state.pass->attachments[i]; |
| if (att->clear_mask && att->first_subpass_idx == subpass_idx) { |
| if (!emitted_scissor) { |
| tu6_emit_blit_scissor(cmd, cs, false); |
| emitted_scissor = true; |
| } |
| tu_clear_gmem_attachment<CHIP>(cmd, cs, resolve_group, i); |
| } |
| } |
| } |
| |
| tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */ |
| |
| if (cmd->state.pass->has_fdm) |
| tu_cs_set_writeable(cs, false); |
| |
| } |
| |
| /* Emits sysmem clears that are first used in this subpass. */ |
| template <chip CHIP> |
| static void |
| tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd) |
| { |
| if (cmd->device->physical_device->info->a7xx.has_generic_clear) |
| return; |
| |
| struct tu_cs *cs = &cmd->draw_cs; |
| uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses; |
| |
| tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM); |
| for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) { |
| struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i]; |
| if (att->clear_mask && att->first_subpass_idx == subpass_idx) |
| tu_clear_sysmem_attachment<CHIP>(cmd, cs, i); |
| } |
| tu_cond_exec_end(cs); /* sysmem */ |
| } |
| |
| static void |
| tu7_emit_subpass_clear(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group) |
| { |
| if (cmd->state.render_area.extent.width == 0 || |
| cmd->state.render_area.extent.height == 0) |
| return; |
| |
| struct tu_cs *cs = &cmd->draw_cs; |
| uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses; |
| |
| bool emitted_scissor = false; |
| for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) { |
| struct tu_render_pass_attachment *att = |
| &cmd->state.pass->attachments[i]; |
| if (att->clear_mask && att->first_subpass_idx == subpass_idx) { |
| if (!emitted_scissor) { |
| tu6_emit_blit_scissor(cmd, cs, false); |
| emitted_scissor = true; |
| } |
| tu7_generic_clear_attachment(cmd, cs, resolve_group, i); |
| } |
| } |
| } |
| |
| static void |
| tu7_emit_subpass_shading_rate(struct tu_cmd_buffer *cmd, |
| const struct tu_subpass *subpass, |
| struct tu_cs *cs) |
| { |
| if (subpass->fsr_attachment == VK_ATTACHMENT_UNUSED) { |
| tu_cs_emit_regs(cs, A7XX_GRAS_FSR_BUFFER_DESC(), |
| A7XX_GRAS_FSR_BUFFER_SIZE()); |
| tu_cs_emit_regs(cs, A7XX_GRAS_FSR_BUFFER_PITCH()); |
| tu_cs_emit_regs(cs, A7XX_GRAS_FSR_BUFFER_BASE()); |
| /* We need to invalidate cache when changing to NULL FSR attachment, but |
| * only once. |
| */ |
| if (!cmd->prev_fsr_is_null) { |
| tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE, |
| false); |
| cmd->prev_fsr_is_null = true; |
| } |
| return; |
| } |
| |
| const struct tu_image_view *iview = |
| cmd->state.attachments[subpass->fsr_attachment]; |
| assert(iview->vk.format == VK_FORMAT_R8_UINT); |
| |
| tu_cs_emit_regs( |
| cs, |
| A7XX_GRAS_FSR_BUFFER_DESC(.layered = true, |
| .tile_mode = |
| (a6xx_tile_mode) iview->image->layout[0] |
| .tile_mode, ), |
| A7XX_GRAS_FSR_BUFFER_SIZE(.width = iview->view.width, |
| .height = iview->view.height)); |
| tu_cs_emit_regs( |
| cs, A7XX_GRAS_FSR_BUFFER_PITCH(.pitch = iview->view.pitch, |
| .array_pitch = iview->view.layer_size)); |
| tu_cs_emit_regs(cs, |
| A7XX_GRAS_FSR_BUFFER_BASE(.qword = iview->view.base_addr)); |
| |
| tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE, false); |
| cmd->prev_fsr_is_null = false; |
| } |
| |
| /* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is |
| * starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2()) |
| * |
| * Clears and loads have to happen at this point, because with |
| * VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of |
| * a previous aliased attachment's store. |
| */ |
| template <chip CHIP> |
| static void |
| tu_emit_subpass_begin(struct tu_cmd_buffer *cmd) |
| { |
| tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass); |
| |
| struct tu_resolve_group resolve_group = {}; |
| |
| tu_emit_subpass_begin_gmem<CHIP>(cmd, &resolve_group); |
| tu_emit_subpass_begin_sysmem<CHIP>(cmd); |
| if (cmd->device->physical_device->info->a7xx.has_generic_clear) { |
| tu7_emit_subpass_clear(cmd, &resolve_group); |
| } |
| |
| tu_emit_resolve_group<CHIP>(cmd, &cmd->draw_cs, &resolve_group); |
| |
| tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs); |
| tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs); |
| tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false); |
| |
| if (CHIP >= A7XX) { |
| tu7_emit_subpass_shading_rate(cmd, cmd->state.subpass, &cmd->draw_cs); |
| } |
| |
| tu_set_input_attachments(cmd, cmd->state.subpass); |
| |
| vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count); |
| |
| cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS; |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer, |
| const VkRenderPassBeginInfo *pRenderPassBegin, |
| const VkSubpassBeginInfo *pSubpassBeginInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| if (TU_DEBUG(DYNAMIC)) { |
| vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin, |
| pSubpassBeginInfo); |
| return; |
| } |
| |
| VK_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass); |
| VK_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer); |
| |
| const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo = |
| vk_find_struct_const(pRenderPassBegin->pNext, |
| RENDER_PASS_ATTACHMENT_BEGIN_INFO); |
| |
| cmd->state.pass = pass; |
| cmd->state.subpass = pass->subpasses; |
| cmd->state.framebuffer = fb; |
| cmd->state.render_area = pRenderPassBegin->renderArea; |
| |
| VK_MULTIALLOC(ma); |
| vk_multialloc_add(&ma, &cmd->state.attachments, |
| const struct tu_image_view *, pass->attachment_count); |
| vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue, |
| pRenderPassBegin->clearValueCount); |
| if (ma.size && !vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) { |
| vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| return; |
| } |
| |
| if (cmd->device->dbg_renderpass_stomp_cs) { |
| tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs); |
| } |
| |
| for (unsigned i = 0; i < pass->attachment_count; i++) { |
| cmd->state.attachments[i] = pAttachmentInfo ? |
| tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) : |
| cmd->state.framebuffer->attachments[i].attachment; |
| } |
| for (unsigned i = 0; i < pRenderPassBegin->clearValueCount; i++) |
| cmd->state.clear_values[i] = pRenderPassBegin->pClearValues[i]; |
| |
| tu_choose_gmem_layout(cmd); |
| |
| tu_trace_start_render_pass(cmd); |
| |
| /* Note: because this is external, any flushes will happen before draw_cs |
| * gets called. However deferred flushes could have to happen later as part |
| * of the subpass. |
| */ |
| tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true); |
| cmd->state.renderpass_cache.pending_flush_bits = |
| cmd->state.cache.pending_flush_bits; |
| cmd->state.renderpass_cache.flush_bits = 0; |
| |
| if (pass->subpasses[0].feedback_invalidate) { |
| cmd->state.renderpass_cache.flush_bits |= |
| TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN | |
| TU_CMD_FLAG_WAIT_FOR_IDLE; |
| } |
| |
| tu_lrz_begin_renderpass<CHIP>(cmd); |
| |
| cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace); |
| |
| tu_emit_renderpass_begin(cmd); |
| tu_emit_subpass_begin<CHIP>(cmd); |
| |
| if (pass->has_fdm) |
| cmd->patchpoints_ctx = ralloc_parent(NULL); |
| } |
| TU_GENX(tu_CmdBeginRenderPass2); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBeginRendering(VkCommandBuffer commandBuffer, |
| const VkRenderingInfo *pRenderingInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| tu_setup_dynamic_render_pass(cmd, pRenderingInfo); |
| tu_setup_dynamic_framebuffer(cmd, pRenderingInfo); |
| |
| cmd->state.pass = &cmd->dynamic_pass; |
| cmd->state.subpass = &cmd->dynamic_subpass; |
| cmd->state.framebuffer = &cmd->dynamic_framebuffer; |
| cmd->state.render_area = pRenderingInfo->renderArea; |
| cmd->state.blit_cache_cleaned = false; |
| |
| cmd->state.attachments = cmd->dynamic_attachments; |
| cmd->state.clear_values = cmd->dynamic_clear_values; |
| |
| for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) { |
| uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment; |
| if (!pRenderingInfo->pColorAttachments[i].imageView) |
| continue; |
| |
| cmd->state.clear_values[a] = |
| pRenderingInfo->pColorAttachments[i].clearValue; |
| |
| VK_FROM_HANDLE(tu_image_view, view, |
| pRenderingInfo->pColorAttachments[i].imageView); |
| cmd->state.attachments[a] = view; |
| |
| a = cmd->dynamic_subpass.resolve_attachments[i].attachment; |
| if (a != VK_ATTACHMENT_UNUSED) { |
| VK_FROM_HANDLE(tu_image_view, resolve_view, |
| pRenderingInfo->pColorAttachments[i].resolveImageView); |
| cmd->state.attachments[a] = resolve_view; |
| } |
| } |
| |
| uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment; |
| if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) { |
| const struct VkRenderingAttachmentInfo *common_info = |
| (pRenderingInfo->pDepthAttachment && |
| pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ? |
| pRenderingInfo->pDepthAttachment : |
| pRenderingInfo->pStencilAttachment; |
| if (common_info && common_info->imageView != VK_NULL_HANDLE) { |
| VK_FROM_HANDLE(tu_image_view, view, common_info->imageView); |
| cmd->state.attachments[a] = view; |
| if (pRenderingInfo->pDepthAttachment) { |
| cmd->state.clear_values[a].depthStencil.depth = |
| pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth; |
| } |
| |
| if (pRenderingInfo->pStencilAttachment) { |
| cmd->state.clear_values[a].depthStencil.stencil = |
| pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil; |
| } |
| |
| if (cmd->dynamic_subpass.resolve_count > |
| cmd->dynamic_subpass.color_count) { |
| VK_FROM_HANDLE(tu_image_view, resolve_view, |
| common_info->resolveImageView); |
| a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment; |
| cmd->state.attachments[a] = resolve_view; |
| } |
| } |
| } |
| |
| a = cmd->dynamic_pass.fragment_density_map.attachment; |
| if (a != VK_ATTACHMENT_UNUSED) { |
| const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info = |
| vk_find_struct_const(pRenderingInfo->pNext, |
| RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT); |
| VK_FROM_HANDLE(tu_image_view, view, fdm_info->imageView); |
| cmd->state.attachments[a] = view; |
| } |
| |
| const VkRenderingAttachmentLocationInfoKHR ral_info = { |
| .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR, |
| .colorAttachmentCount = pRenderingInfo->colorAttachmentCount, |
| }; |
| vk_cmd_set_rendering_attachment_locations(&cmd->vk, &ral_info); |
| |
| if (cmd->dynamic_pass.has_fdm) |
| cmd->patchpoints_ctx = ralloc_context(NULL); |
| |
| a = cmd->dynamic_subpass.fsr_attachment; |
| if (a != VK_ATTACHMENT_UNUSED) { |
| const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info = |
| vk_find_struct_const(pRenderingInfo->pNext, |
| RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR); |
| VK_FROM_HANDLE(tu_image_view, view, fsr_info->imageView); |
| cmd->state.attachments[a] = view; |
| } |
| |
| tu_choose_gmem_layout(cmd); |
| |
| cmd->state.renderpass_cache.pending_flush_bits = |
| cmd->state.cache.pending_flush_bits; |
| cmd->state.renderpass_cache.flush_bits = 0; |
| |
| bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT; |
| bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT; |
| cmd->state.suspending = suspending; |
| cmd->state.resuming = resuming; |
| |
| if (!resuming && cmd->device->dbg_renderpass_stomp_cs) { |
| tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs); |
| } |
| |
| /* We can't track LRZ across command buffer boundaries, so we have to |
| * disable LRZ when resuming/suspending unless we can track on the GPU. |
| */ |
| if ((resuming || suspending) && |
| !cmd->device->physical_device->info->a6xx.has_lrz_dir_tracking) { |
| cmd->state.lrz.valid = false; |
| } else { |
| if (resuming) |
| tu_lrz_begin_resumed_renderpass<CHIP>(cmd); |
| else |
| tu_lrz_begin_renderpass<CHIP>(cmd); |
| } |
| |
| |
| if (suspending) { |
| cmd->state.suspended_pass.pass = cmd->state.pass; |
| cmd->state.suspended_pass.subpass = cmd->state.subpass; |
| cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer; |
| cmd->state.suspended_pass.render_area = cmd->state.render_area; |
| cmd->state.suspended_pass.attachments = cmd->state.attachments; |
| cmd->state.suspended_pass.clear_values = cmd->state.clear_values; |
| cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout; |
| } |
| |
| if (!resuming) |
| tu_trace_start_render_pass(cmd); |
| |
| if (!resuming || cmd->state.suspend_resume == SR_NONE) { |
| cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace); |
| } |
| |
| if (!resuming) { |
| tu_emit_renderpass_begin(cmd); |
| tu_emit_subpass_begin<CHIP>(cmd); |
| } |
| |
| if (suspending && !resuming) { |
| /* entering a chain */ |
| switch (cmd->state.suspend_resume) { |
| case SR_NONE: |
| cmd->state.suspend_resume = SR_IN_CHAIN; |
| break; |
| case SR_AFTER_PRE_CHAIN: |
| cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN; |
| break; |
| case SR_IN_PRE_CHAIN: |
| case SR_IN_CHAIN: |
| case SR_IN_CHAIN_AFTER_PRE_CHAIN: |
| unreachable("suspending render pass not followed by resuming pass"); |
| break; |
| } |
| } |
| |
| if (resuming && cmd->state.suspend_resume == SR_NONE) |
| cmd->state.suspend_resume = SR_IN_PRE_CHAIN; |
| } |
| TU_GENX(tu_CmdBeginRendering); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdSetRenderingAttachmentLocationsKHR( |
| VkCommandBuffer commandBuffer, |
| const VkRenderingAttachmentLocationInfoKHR *pLocationInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer, pLocationInfo); |
| |
| tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs); |
| tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false); |
| |
| /* Because this is just a remapping and not a different "reference", there |
| * doesn't need to be a barrier between accesses to the same attachment |
| * with a different index. This is different from "classic" renderpasses. |
| * Before a7xx the CCU includes the render target ID in the cache location |
| * calculation, so we need to manually flush/invalidate color CCU here |
| * since the same render target/attachment may be in a different location. |
| */ |
| if (cmd->device->physical_device->info->chip == 6) { |
| struct tu_cache_state *cache = &cmd->state.renderpass_cache; |
| tu_flush_for_access(cache, TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE, |
| TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE); |
| cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE; |
| } |
| } |
| TU_GENX(tu_CmdSetRenderingAttachmentLocationsKHR); |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdSetRenderingInputAttachmentIndicesKHR( |
| VkCommandBuffer commandBuffer, |
| const VkRenderingInputAttachmentIndexInfoKHR *pLocationInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| vk_common_CmdSetRenderingInputAttachmentIndicesKHR(commandBuffer, pLocationInfo); |
| |
| const struct vk_input_attachment_location_state *ial = |
| &cmd->vk.dynamic_graphics_state.ial; |
| |
| struct tu_subpass *subpass = &cmd->dynamic_subpass; |
| |
| for (unsigned i = 0; i < ARRAY_SIZE(cmd->dynamic_input_attachments); i++) { |
| subpass->input_attachments[i].attachment = VK_ATTACHMENT_UNUSED; |
| } |
| |
| unsigned input_count = 0; |
| for (unsigned i = 0; i < subpass->color_count; i++) { |
| if (ial->color_map[i] == MESA_VK_ATTACHMENT_UNUSED) |
| continue; |
| subpass->input_attachments[ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET].attachment = |
| subpass->color_attachments[i].attachment; |
| input_count = MAX2(input_count, ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET + 1); |
| } |
| |
| if (ial->depth_att != MESA_VK_ATTACHMENT_UNUSED) { |
| if (ial->depth_att == MESA_VK_ATTACHMENT_NO_INDEX) { |
| subpass->input_attachments[0].attachment = |
| subpass->depth_stencil_attachment.attachment; |
| input_count = MAX2(input_count, 1); |
| } else { |
| subpass->input_attachments[ial->depth_att + TU_DYN_INPUT_ATT_OFFSET].attachment = |
| subpass->depth_stencil_attachment.attachment; |
| input_count = MAX2(input_count, ial->depth_att + TU_DYN_INPUT_ATT_OFFSET + 1); |
| } |
| } |
| |
| if (ial->stencil_att != MESA_VK_ATTACHMENT_UNUSED) { |
| if (ial->stencil_att == MESA_VK_ATTACHMENT_NO_INDEX) { |
| subpass->input_attachments[0].attachment = |
| subpass->depth_stencil_attachment.attachment; |
| input_count = MAX2(input_count, 1); |
| } else { |
| subpass->input_attachments[ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET].attachment = |
| subpass->depth_stencil_attachment.attachment; |
| input_count = MAX2(input_count, ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET + 1); |
| } |
| } |
| |
| subpass->input_count = input_count; |
| |
| tu_set_input_attachments(cmd, cmd->state.subpass); |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdNextSubpass2(VkCommandBuffer commandBuffer, |
| const VkSubpassBeginInfo *pSubpassBeginInfo, |
| const VkSubpassEndInfo *pSubpassEndInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| if (TU_DEBUG(DYNAMIC)) { |
| vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo, |
| pSubpassEndInfo); |
| return; |
| } |
| |
| const struct tu_render_pass *pass = cmd->state.pass; |
| const struct tu_framebuffer *fb = cmd->state.framebuffer; |
| struct tu_cs *cs = &cmd->draw_cs; |
| const struct tu_subpass *last_subpass = cmd->state.subpass; |
| |
| const struct tu_subpass *subpass = cmd->state.subpass++; |
| |
| /* Track LRZ valid state |
| * |
| * TODO: Improve this tracking for keeping the state of the past depth/stencil images, |
| * so if they become active again, we reuse its old state. |
| */ |
| if (last_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) { |
| cmd->state.lrz.valid = false; |
| cmd->state.dirty |= TU_CMD_DIRTY_LRZ; |
| } |
| |
| if (cmd->state.tiling->possible) { |
| if (cmd->state.pass->has_fdm) |
| tu_cs_set_writeable(cs, true); |
| |
| tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM); |
| |
| if (subpass->resolve_attachments) { |
| tu6_emit_blit_scissor(cmd, cs, true); |
| |
| struct tu_resolve_group resolve_group = {}; |
| |
| for (unsigned i = 0; i < subpass->resolve_count; i++) { |
| uint32_t a = subpass->resolve_attachments[i].attachment; |
| if (a == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i); |
| |
| tu_store_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, gmem_a, |
| fb->layers, subpass->multiview_mask, false); |
| |
| if (!pass->attachments[a].gmem) |
| continue; |
| |
| /* check if the resolved attachment is needed by later subpasses, |
| * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM.. |
| */ |
| perf_debug(cmd->device, "TODO: missing GMEM->GMEM resolve path\n"); |
| tu_load_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, false, true); |
| } |
| |
| tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group); |
| } |
| |
| tu_cond_exec_end(cs); |
| |
| if (cmd->state.pass->has_fdm) |
| tu_cs_set_writeable(cs, false); |
| |
| tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM); |
| } |
| |
| tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass); |
| |
| if (cmd->state.tiling->possible) |
| tu_cond_exec_end(cs); |
| |
| /* Handle dependencies for the next subpass */ |
| tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false); |
| |
| if (cmd->state.subpass->feedback_invalidate) { |
| cmd->state.renderpass_cache.flush_bits |= |
| TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN | |
| TU_CMD_FLAG_WAIT_FOR_IDLE; |
| } |
| |
| tu_emit_subpass_begin<CHIP>(cmd); |
| } |
| TU_GENX(tu_CmdNextSubpass2); |
| |
| static uint32_t |
| tu6_user_consts_size(const struct tu_const_state *const_state, |
| bool ldgk, |
| gl_shader_stage type) |
| { |
| uint32_t dwords = 0; |
| |
| if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) { |
| unsigned num_units = const_state->push_consts.dwords; |
| dwords += 4 + num_units; |
| assert(num_units > 0); |
| } |
| |
| if (ldgk) { |
| dwords += 6 + (2 * const_state->num_inline_ubos + 4); |
| } else { |
| dwords += 8 * const_state->num_inline_ubos; |
| } |
| |
| return dwords; |
| } |
| |
| static void |
| tu6_emit_per_stage_push_consts(struct tu_cs *cs, |
| const struct tu_const_state *const_state, |
| gl_shader_stage type, |
| uint32_t *push_constants) |
| { |
| if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) { |
| unsigned num_units = const_state->push_consts.dwords; |
| unsigned offset = const_state->push_consts.lo; |
| assert(num_units > 0); |
| |
| /* DST_OFF and NUM_UNIT requires vec4 units */ |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset / 4) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4)); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| for (unsigned i = 0; i < num_units; i++) |
| tu_cs_emit(cs, push_constants[i + offset]); |
| } |
| } |
| |
| static void |
| tu6_emit_inline_ubo(struct tu_cs *cs, |
| const struct tu_const_state *const_state, |
| unsigned constlen, |
| gl_shader_stage type, |
| struct tu_descriptor_state *descriptors) |
| { |
| assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->a7xx.load_shader_consts_via_preamble); |
| |
| /* Emit loads of inline uniforms. These load directly from the uniform's |
| * storage space inside the descriptor set. |
| */ |
| for (unsigned i = 0; i < const_state->num_inline_ubos; i++) { |
| const struct tu_inline_ubo *ubo = &const_state->ubos[i]; |
| |
| if (constlen <= ubo->const_offset_vec4) |
| continue; |
| |
| uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f; |
| |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4))); |
| if (ubo->push_address) { |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit_qw(cs, va + ubo->offset); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| } else { |
| tu_cs_emit_qw(cs, va + ubo->offset); |
| } |
| } |
| } |
| |
| static void |
| tu7_emit_inline_ubo(struct tu_cs *cs, |
| const struct tu_const_state *const_state, |
| const struct ir3_const_state *ir_const_state, |
| unsigned constlen, |
| gl_shader_stage type, |
| struct tu_descriptor_state *descriptors) |
| { |
| uint64_t addresses[7] = {0}; |
| unsigned offset = const_state->inline_uniforms_ubo.idx; |
| |
| if (offset == -1) |
| return; |
| |
| for (unsigned i = 0; i < const_state->num_inline_ubos; i++) { |
| const struct tu_inline_ubo *ubo = &const_state->ubos[i]; |
| |
| uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f; |
| addresses[i] = va + ubo->offset; |
| } |
| |
| /* A7XX TODO: Emit data via sub_cs instead of NOP */ |
| uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4); |
| |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(1)); |
| tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); |
| tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); |
| int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4); |
| tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32)); |
| } |
| |
| static void |
| tu_emit_inline_ubo(struct tu_cs *cs, |
| const struct tu_const_state *const_state, |
| const struct ir3_const_state *ir_const_state, |
| unsigned constlen, |
| gl_shader_stage type, |
| struct tu_descriptor_state *descriptors) |
| { |
| if (!const_state->num_inline_ubos) |
| return; |
| |
| if (cs->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk) { |
| tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors); |
| } else { |
| tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors); |
| } |
| } |
| |
| static void |
| tu6_emit_shared_consts(struct tu_cs *cs, |
| const struct tu_push_constant_range *shared_consts, |
| uint32_t *push_constants, |
| bool compute) |
| { |
| if (shared_consts->dwords > 0) { |
| /* Offset and num_units for shared consts are in units of dwords. */ |
| unsigned num_units = shared_consts->dwords; |
| unsigned offset = shared_consts->lo; |
| |
| enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS; |
| uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6; |
| |
| tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(st) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) | |
| CP_LOAD_STATE6_0_NUM_UNIT(num_units)); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| |
| for (unsigned i = 0; i < num_units; i++) |
| tu_cs_emit(cs, push_constants[i + offset]); |
| } |
| } |
| |
| static void |
| tu7_emit_shared_preamble_consts( |
| struct tu_cs *cs, |
| const struct tu_push_constant_range *shared_consts, |
| uint32_t *push_constants) |
| { |
| tu_cs_emit_pkt4(cs, REG_A7XX_HLSQ_SHARED_CONSTS_IMM(shared_consts->lo), |
| shared_consts->dwords); |
| tu_cs_emit_array(cs, push_constants + shared_consts->lo, |
| shared_consts->dwords); |
| } |
| |
| static uint32_t |
| tu6_const_size(struct tu_cmd_buffer *cmd, |
| const struct tu_push_constant_range *shared_consts, |
| bool compute) |
| { |
| uint32_t dwords = 0; |
| |
| if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) { |
| dwords += shared_consts->dwords + 4; |
| } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) { |
| dwords += shared_consts->dwords + 1; |
| } |
| |
| bool ldgk = cmd->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk; |
| if (compute) { |
| dwords += |
| tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE); |
| } else { |
| for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) |
| dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (gl_shader_stage) type); |
| } |
| |
| return dwords; |
| } |
| |
| static struct tu_draw_state |
| tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute) |
| { |
| uint32_t dwords = 0; |
| const struct tu_push_constant_range *shared_consts = |
| compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts : |
| &cmd->state.program.shared_consts; |
| |
| dwords = tu6_const_size(cmd, shared_consts, compute); |
| |
| if (dwords == 0) |
| return (struct tu_draw_state) {}; |
| |
| struct tu_cs cs; |
| tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs); |
| |
| if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) { |
| tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute); |
| } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) { |
| tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants); |
| } |
| |
| if (compute) { |
| tu6_emit_per_stage_push_consts( |
| &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, |
| MESA_SHADER_COMPUTE, cmd->push_constants); |
| tu_emit_inline_ubo( |
| &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, |
| cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state, |
| cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen, |
| MESA_SHADER_COMPUTE, |
| tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE)); |
| } else { |
| struct tu_descriptor_state *descriptors = |
| tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) { |
| const struct tu_program_descriptor_linkage *link = |
| &cmd->state.program.link[type]; |
| tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state, |
| (gl_shader_stage) type, |
| cmd->push_constants); |
| tu_emit_inline_ubo(&cs, &link->tu_const_state, |
| &link->const_state, link->constlen, |
| (gl_shader_stage) type, descriptors); |
| } |
| } |
| |
| return tu_cs_end_draw_state(&cmd->sub_cs, &cs); |
| } |
| |
| /* Various frontends (ANGLE, zink at least) will enable stencil testing with |
| * what works out to be no-op writes. Simplify what they give us into flags |
| * that LRZ can use. |
| */ |
| static void |
| tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd) |
| { |
| const struct vk_depth_stencil_state *ds = |
| &cmd->vk.dynamic_graphics_state.ds; |
| bool stencil_test_enable = ds->stencil.test_enable; |
| |
| if (!stencil_test_enable) { |
| cmd->state.stencil_front_write = false; |
| cmd->state.stencil_back_write = false; |
| return; |
| } |
| |
| bool stencil_front_writemask = ds->stencil.front.write_mask; |
| bool stencil_back_writemask = ds->stencil.back.write_mask; |
| |
| VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail; |
| VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass; |
| VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail; |
| VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail; |
| VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass; |
| VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail; |
| |
| bool stencil_front_op_writes = |
| front_pass_op != VK_STENCIL_OP_KEEP || |
| front_fail_op != VK_STENCIL_OP_KEEP || |
| front_depth_fail_op != VK_STENCIL_OP_KEEP; |
| |
| bool stencil_back_op_writes = |
| back_pass_op != VK_STENCIL_OP_KEEP || |
| back_fail_op != VK_STENCIL_OP_KEEP || |
| back_depth_fail_op != VK_STENCIL_OP_KEEP; |
| |
| cmd->state.stencil_front_write = |
| stencil_front_op_writes && stencil_front_writemask; |
| cmd->state.stencil_back_write = |
| stencil_back_op_writes && stencil_back_writemask; |
| } |
| |
| static bool |
| tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable) |
| { |
| bool depth_write_enable = |
| cmd->vk.dynamic_graphics_state.ds.depth.write_enable; |
| |
| VkCompareOp depth_compare_op = (VkCompareOp) |
| cmd->vk.dynamic_graphics_state.ds.depth.compare_op; |
| |
| bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER; |
| |
| return depth_test_enable && depth_write_enable && depth_compare_op_writes; |
| } |
| |
| static bool |
| tu6_writes_stencil(struct tu_cmd_buffer *cmd) |
| { |
| return cmd->state.stencil_front_write || cmd->state.stencil_back_write; |
| } |
| |
| static bool |
| tu_fs_reads_dynamic_ds_input_attachment(struct tu_cmd_buffer *cmd, |
| const struct tu_shader *fs) |
| { |
| uint8_t depth_att = cmd->vk.dynamic_graphics_state.ial.depth_att; |
| if (depth_att == MESA_VK_ATTACHMENT_UNUSED) |
| return false; |
| unsigned depth_idx = |
| (depth_att == MESA_VK_ATTACHMENT_NO_INDEX) ? 0 : depth_att + 1; |
| return fs->fs.dynamic_input_attachments_used & (1u << depth_idx); |
| } |
| |
| static void |
| tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs) |
| { |
| enum a6xx_ztest_mode zmode = A6XX_EARLY_Z; |
| bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable; |
| bool depth_write = tu6_writes_depth(cmd, depth_test_enable); |
| bool stencil_write = tu6_writes_stencil(cmd); |
| const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT]; |
| const struct tu_render_pass *pass = cmd->state.pass; |
| const struct tu_subpass *subpass = cmd->state.subpass; |
| |
| if ((fs->variant->has_kill || |
| (cmd->state.pipeline_feedback_loops & VK_IMAGE_ASPECT_DEPTH_BIT) || |
| (cmd->vk.dynamic_graphics_state.feedback_loops & |
| VK_IMAGE_ASPECT_DEPTH_BIT) || |
| tu_fs_reads_dynamic_ds_input_attachment(cmd, fs)) && |
| (depth_write || stencil_write)) { |
| zmode = (cmd->state.lrz.valid && cmd->state.lrz.enabled) |
| ? A6XX_EARLY_LRZ_LATE_Z |
| : A6XX_LATE_Z; |
| } |
| |
| bool force_late_z = |
| (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED && |
| pass->attachments[subpass->depth_stencil_attachment.attachment].format |
| == VK_FORMAT_S8_UINT) || |
| fs->fs.lrz.force_late_z || |
| /* alpha-to-coverage can behave like a discard. */ |
| cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable; |
| if ((force_late_z && !fs->variant->fs.early_fragment_tests) || |
| !depth_test_enable) |
| zmode = A6XX_LATE_Z; |
| |
| /* User defined early tests take precedence above all else */ |
| if (fs->variant->fs.early_fragment_tests) |
| zmode = A6XX_EARLY_Z; |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1); |
| tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode)); |
| |
| tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1); |
| tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode)); |
| } |
| |
| static uint32_t |
| fs_params_offset(struct tu_cmd_buffer *cmd) |
| { |
| const struct tu_program_descriptor_linkage *link = |
| &cmd->state.program.link[MESA_SHADER_FRAGMENT]; |
| const struct ir3_const_state *const_state = &link->const_state; |
| |
| if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC) |
| return 0; |
| |
| if (const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4 >= link->constlen) |
| return 0; |
| |
| return const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4; |
| } |
| |
| static uint32_t |
| fs_params_size(struct tu_cmd_buffer *cmd) |
| { |
| const struct tu_program_descriptor_linkage *link = |
| &cmd->state.program.link[MESA_SHADER_FRAGMENT]; |
| const struct ir3_const_state *const_state = &link->const_state; |
| |
| return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4); |
| } |
| |
| struct apply_fs_params_state { |
| unsigned num_consts; |
| }; |
| |
| static void |
| fdm_apply_fs_params(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| void *data, |
| VkRect2D bin, |
| unsigned views, |
| VkExtent2D *frag_areas) |
| { |
| const struct apply_fs_params_state *state = |
| (const struct apply_fs_params_state *)data; |
| unsigned num_consts = state->num_consts; |
| |
| for (unsigned i = 0; i < num_consts; i++) { |
| assert(i < views); |
| VkExtent2D area = frag_areas[i]; |
| VkOffset2D offset = tu_fdm_per_bin_offset(area, bin); |
| |
| tu_cs_emit(cs, area.width); |
| tu_cs_emit(cs, area.height); |
| tu_cs_emit(cs, fui(offset.x)); |
| tu_cs_emit(cs, fui(offset.y)); |
| } |
| } |
| |
| static void |
| tu_emit_fdm_params(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, struct tu_shader *fs, |
| unsigned num_units) |
| { |
| STATIC_ASSERT(IR3_DP_FS(frag_invocation_count) == IR3_DP_FS_DYNAMIC); |
| tu_cs_emit(cs, fs->fs.per_samp ? |
| cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| |
| STATIC_ASSERT(IR3_DP_FS(frag_size) == IR3_DP_FS_DYNAMIC + 4); |
| STATIC_ASSERT(IR3_DP_FS(frag_offset) == IR3_DP_FS_DYNAMIC + 6); |
| if (num_units > 1) { |
| if (fs->fs.has_fdm) { |
| struct apply_fs_params_state state = { |
| .num_consts = num_units - 1, |
| }; |
| tu_create_fdm_bin_patchpoint(cmd, cs, 4 * (num_units - 1), |
| fdm_apply_fs_params, state); |
| } else { |
| for (unsigned i = 1; i < num_units; i++) { |
| tu_cs_emit(cs, 1); |
| tu_cs_emit(cs, 1); |
| tu_cs_emit(cs, fui(0.0f)); |
| tu_cs_emit(cs, fui(0.0f)); |
| } |
| } |
| } |
| } |
| |
| static void |
| tu6_emit_fs_params(struct tu_cmd_buffer *cmd) |
| { |
| uint32_t offset = fs_params_offset(cmd); |
| |
| if (offset == 0) { |
| cmd->state.fs_params = (struct tu_draw_state) {}; |
| return; |
| } |
| |
| struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT]; |
| |
| unsigned num_units = fs_params_size(cmd); |
| |
| if (fs->fs.has_fdm) |
| tu_cs_set_writeable(&cmd->sub_cs, true); |
| |
| struct tu_cs cs; |
| VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs); |
| if (result != VK_SUCCESS) { |
| tu_cs_set_writeable(&cmd->sub_cs, false); |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units); |
| tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) | |
| CP_LOAD_STATE6_0_NUM_UNIT(num_units)); |
| tu_cs_emit(&cs, 0); |
| tu_cs_emit(&cs, 0); |
| |
| tu_emit_fdm_params(cmd, &cs, fs, num_units); |
| |
| cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs); |
| |
| if (fs->fs.has_fdm) |
| tu_cs_set_writeable(&cmd->sub_cs, false); |
| } |
| |
| static void |
| tu7_emit_fs_params(struct tu_cmd_buffer *cmd) |
| { |
| struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT]; |
| |
| int ubo_offset = fs->const_state.fdm_ubo.idx; |
| if (ubo_offset < 0) { |
| cmd->state.fs_params = (struct tu_draw_state) {}; |
| return; |
| } |
| |
| unsigned num_units = DIV_ROUND_UP(fs->const_state.fdm_ubo.size, 4); |
| |
| if (fs->fs.has_fdm) |
| tu_cs_set_writeable(&cmd->sub_cs, true); |
| |
| struct tu_cs cs; |
| VkResult result = |
| tu_cs_begin_sub_stream_aligned(&cmd->sub_cs, num_units, 4, &cs); |
| if (result != VK_SUCCESS) { |
| tu_cs_set_writeable(&cmd->sub_cs, false); |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| tu_emit_fdm_params(cmd, &cs, fs, num_units); |
| |
| struct tu_draw_state fdm_ubo = tu_cs_end_draw_state(&cmd->sub_cs, &cs); |
| |
| if (fs->fs.has_fdm) |
| tu_cs_set_writeable(&cmd->sub_cs, false); |
| |
| result = tu_cs_begin_sub_stream(&cmd->sub_cs, 6, &cs); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 5); |
| tu_cs_emit(&cs, |
| CP_LOAD_STATE6_0_DST_OFF(ubo_offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO)| |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) | |
| CP_LOAD_STATE6_0_NUM_UNIT(1)); |
| tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); |
| tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); |
| tu_cs_emit_qw(&cs, |
| fdm_ubo.iova | |
| (uint64_t)A6XX_UBO_1_SIZE(num_units) << 32); |
| |
| cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs); |
| } |
| |
| static void |
| tu_emit_fs_params(struct tu_cmd_buffer *cmd) |
| { |
| if (cmd->device->compiler->load_shader_consts_via_preamble) |
| tu7_emit_fs_params(cmd); |
| else |
| tu6_emit_fs_params(cmd); |
| } |
| |
| static void |
| tu_flush_dynamic_input_attachments(struct tu_cmd_buffer *cmd) |
| { |
| struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT]; |
| |
| if (!fs->fs.dynamic_input_attachments_used) |
| return; |
| |
| /* Input attachments may read data from a load op, so we have to invalidate |
| * UCHE and force pending blits to complete unless we know it's already |
| * been invalidated. This is the same as tu_subpass::feedback_invalidate |
| * but for dynamic renderpasses. |
| */ |
| if (!cmd->state.blit_cache_cleaned) { |
| cmd->state.renderpass_cache.flush_bits |= |
| TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN | |
| TU_CMD_FLAG_WAIT_FOR_IDLE; |
| } |
| } |
| |
| template <chip CHIP> |
| static VkResult |
| tu6_draw_common(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| bool indexed, |
| /* note: draw_count is 0 for indirect */ |
| uint32_t draw_count) |
| { |
| const struct tu_program_state *program = &cmd->state.program; |
| struct tu_render_pass_state *rp = &cmd->state.rp; |
| |
| /* Emit state first, because it's needed for bandwidth calculations */ |
| uint32_t dynamic_draw_state_dirty = 0; |
| if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) || |
| (cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) { |
| dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd); |
| } |
| |
| /* Primitive restart value works in non-indexed draws, we have to disable |
| * prim restart for such draws since we may read stale restart index. |
| */ |
| if (cmd->state.last_draw_indexed != indexed) { |
| cmd->state.last_draw_indexed = indexed; |
| BITSET_SET(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE); |
| } |
| |
| /* Fill draw stats for autotuner */ |
| rp->drawcall_count++; |
| |
| rp->drawcall_bandwidth_per_sample_sum += |
| cmd->state.bandwidth.color_bandwidth_per_sample; |
| |
| /* add depth memory bandwidth cost */ |
| const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample; |
| if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable) |
| rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth; |
| if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable) |
| rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth; |
| |
| /* add stencil memory bandwidth cost */ |
| const uint32_t stencil_bandwidth = |
| cmd->state.bandwidth.stencil_cpp_per_sample; |
| if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable) |
| rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2; |
| |
| if (cmd->state.dirty & TU_CMD_DIRTY_FS) |
| tu_flush_dynamic_input_attachments(cmd); |
| |
| tu_emit_cache_flush_renderpass<CHIP>(cmd); |
| |
| if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) || |
| (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) { |
| bool primitive_restart_enabled = |
| cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable; |
| |
| bool primitive_restart = primitive_restart_enabled && indexed; |
| bool provoking_vtx_last = |
| cmd->vk.dynamic_graphics_state.rs.provoking_vertex == |
| VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT; |
| |
| uint32_t primitive_cntl_0 = |
| A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart = primitive_restart, |
| .provoking_vtx_last = provoking_vtx_last).value; |
| tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0)); |
| if (CHIP == A7XX) { |
| tu_cs_emit_regs(cs, A7XX_VPC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0)); |
| } |
| } |
| |
| struct tu_tess_params *tess_params = &cmd->state.tess_params; |
| if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN) || |
| (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) { |
| bool tess_upper_left_domain_origin = |
| (VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin == |
| VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT; |
| tu_cs_emit_regs(cs, A6XX_PC_TESS_CNTL( |
| .spacing = tess_params->spacing, |
| .output = tess_upper_left_domain_origin ? |
| tess_params->output_upper_left : |
| tess_params->output_lower_left)); |
| } |
| |
| /* Early exit if there is nothing to emit, saves CPU cycles */ |
| uint32_t dirty = cmd->state.dirty; |
| if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) |
| return VK_SUCCESS; |
| |
| bool dirty_lrz = |
| (dirty & TU_CMD_DIRTY_LRZ) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_STENCIL_OP) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE); |
| |
| if (dirty_lrz) { |
| struct tu_cs cs; |
| uint32_t size = 8 + |
| (cmd->device->physical_device->info->a6xx.lrz_track_quirk ? 2 : 0) + |
| (CHIP >= A7XX ? 2 : 0); // A7XX has extra packets from LRZ_CNTL2. |
| |
| cmd->state.lrz_and_depth_plane_state = |
| tu_cs_draw_state(&cmd->sub_cs, &cs, size); |
| tu6_update_simplified_stencil_state(cmd); |
| tu6_emit_lrz<CHIP>(cmd, &cs); |
| tu6_build_depth_plane_z_mode(cmd, &cs); |
| } |
| |
| if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE)) { |
| if (cmd->vk.dynamic_graphics_state.feedback_loops && |
| !cmd->state.rp.disable_gmem) { |
| perf_debug( |
| cmd->device, |
| "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout"); |
| cmd->state.rp.disable_gmem = true; |
| } |
| } |
| |
| if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) { |
| cmd->state.vertex_buffers.size = |
| util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4; |
| dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS; |
| } |
| |
| if (dirty & TU_CMD_DIRTY_SHADER_CONSTS) |
| cmd->state.shader_const = tu_emit_consts(cmd, false); |
| |
| if (dirty & TU_CMD_DIRTY_DESC_SETS) |
| tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) || |
| BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_RS_LINE_MODE) || |
| (cmd->state.dirty & TU_CMD_DIRTY_TES) || |
| (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) { |
| tu6_update_msaa_disable(cmd); |
| } |
| |
| if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) || |
| (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) { |
| tu6_update_msaa(cmd); |
| } |
| |
| bool dirty_fs_params = false; |
| if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty, |
| MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) || |
| (cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) { |
| tu_emit_fs_params(cmd); |
| dirty_fs_params = true; |
| } |
| |
| /* for the first draw in a renderpass, re-emit all the draw states |
| * |
| * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was |
| * used, then draw states must be re-emitted. note however this only happens |
| * in the sysmem path, so this can be skipped this for the gmem path (TODO) |
| * |
| * the two input attachment states are excluded because secondary command |
| * buffer doesn't have a state ib to restore it, and not re-emitting them |
| * is OK since CmdClearAttachments won't disable/overwrite them |
| */ |
| if (dirty & TU_CMD_DIRTY_DRAW_STATE) { |
| tu_pipeline_update_rp_state(&cmd->state); |
| |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2)); |
| |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state); |
| |
| for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) { |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, |
| cmd->state.dynamic_state[i]); |
| } |
| } else { |
| /* emit draw states that were just updated */ |
| uint32_t draw_state_count = |
| util_bitcount(dynamic_draw_state_dirty) + |
| ((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) + |
| ((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) + |
| ((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) + |
| ((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) + |
| (dirty_fs_params ? 1 : 0) + |
| (dirty_lrz ? 1 : 0); |
| |
| if (draw_state_count > 0) |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count); |
| |
| if (dirty & TU_CMD_DIRTY_SHADER_CONSTS) |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const); |
| if (dirty & TU_CMD_DIRTY_DESC_SETS) { |
| /* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */ |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state); |
| } |
| if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers); |
| u_foreach_bit (i, dynamic_draw_state_dirty) { |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, |
| cmd->state.dynamic_state[i]); |
| } |
| if (dirty & TU_CMD_DIRTY_VS_PARAMS) |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params); |
| if (dirty_fs_params) |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params); |
| if (dirty_lrz) { |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state); |
| } |
| } |
| |
| tu_cs_sanity_check(cs); |
| |
| /* There are too many graphics dirty bits to list here, so just list the |
| * bits to preserve instead. The only things not emitted here are |
| * compute-related state. |
| */ |
| cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS; |
| BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty); |
| return VK_SUCCESS; |
| } |
| |
| static uint32_t |
| tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel) |
| { |
| enum pc_di_primtype primtype = |
| tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology); |
| |
| if (primtype == DI_PT_PATCHES0) |
| primtype = (enum pc_di_primtype) (primtype + |
| cmd->vk.dynamic_graphics_state.ts.patch_control_points); |
| |
| uint32_t initiator = |
| CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) | |
| CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) | |
| CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) | |
| CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY); |
| |
| if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant) |
| initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE; |
| |
| const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL]; |
| if (tes->variant) { |
| switch (tes->variant->key.tessellation) { |
| case IR3_TESS_TRIANGLES: |
| initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) | |
| CP_DRAW_INDX_OFFSET_0_TESS_ENABLE; |
| break; |
| case IR3_TESS_ISOLINES: |
| initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) | |
| CP_DRAW_INDX_OFFSET_0_TESS_ENABLE; |
| break; |
| case IR3_TESS_QUADS: |
| initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) | |
| CP_DRAW_INDX_OFFSET_0_TESS_ENABLE; |
| break; |
| } |
| } |
| return initiator; |
| } |
| |
| |
| static uint32_t |
| vs_params_offset(struct tu_cmd_buffer *cmd) |
| { |
| const struct tu_program_descriptor_linkage *link = |
| &cmd->state.program.link[MESA_SHADER_VERTEX]; |
| const struct ir3_const_state *const_state = &link->const_state; |
| |
| if (const_state->offsets.driver_param >= link->constlen) |
| return 0; |
| |
| /* this layout is required by CP_DRAW_INDIRECT_MULTI */ |
| STATIC_ASSERT(IR3_DP_VS(draw_id) == 0); |
| STATIC_ASSERT(IR3_DP_VS(vtxid_base) == 1); |
| STATIC_ASSERT(IR3_DP_VS(instid_base) == 2); |
| |
| /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */ |
| assert(const_state->offsets.driver_param != 0); |
| |
| return const_state->offsets.driver_param; |
| } |
| |
| static void |
| tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd) |
| { |
| if (cmd->state.vs_params.iova) { |
| cmd->state.vs_params = (struct tu_draw_state) {}; |
| cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS; |
| } |
| } |
| |
| static void |
| tu6_emit_vs_params(struct tu_cmd_buffer *cmd, |
| uint32_t draw_id, |
| uint32_t vertex_offset, |
| uint32_t first_instance) |
| { |
| uint32_t offset = vs_params_offset(cmd); |
| |
| /* Beside re-emitting params when they are changed, we should re-emit |
| * them after constants are invalidated via HLSQ_INVALIDATE_CMD or after we |
| * emit an empty vs params. |
| */ |
| if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS | |
| TU_CMD_DIRTY_PROGRAM)) && |
| cmd->state.vs_params.iova && |
| (offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) && |
| vertex_offset == cmd->state.last_vs_params.vertex_offset && |
| first_instance == cmd->state.last_vs_params.first_instance) { |
| return; |
| } |
| |
| uint64_t consts_iova = 0; |
| if (offset) { |
| struct tu_cs_memory consts; |
| VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| consts.map[0] = draw_id; |
| consts.map[1] = vertex_offset; |
| consts.map[2] = first_instance; |
| consts.map[3] = 0; |
| |
| consts_iova = consts.iova; |
| } |
| |
| struct tu_cs cs; |
| VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| |
| tu_cs_emit_regs(&cs, |
| A6XX_VFD_INDEX_OFFSET(vertex_offset), |
| A6XX_VFD_INSTANCE_START_OFFSET(first_instance)); |
| |
| /* It is implemented as INDIRECT load even on a750+ because with UBO |
| * lowering it would be tricky to get const offset for to use in multidraw, |
| * also we would need to ensure the offset is not 0. |
| * TODO/A7XX: Rework vs params to use UBO lowering. |
| */ |
| if (offset) { |
| tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3); |
| tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) | |
| CP_LOAD_STATE6_0_NUM_UNIT(1)); |
| tu_cs_emit_qw(&cs, consts_iova); |
| } |
| |
| cmd->state.last_vs_params.vertex_offset = vertex_offset; |
| cmd->state.last_vs_params.first_instance = first_instance; |
| cmd->state.last_vs_params.draw_id = draw_id; |
| |
| struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs); |
| cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4}; |
| |
| cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS; |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDraw(VkCommandBuffer commandBuffer, |
| uint32_t vertexCount, |
| uint32_t instanceCount, |
| uint32_t firstVertex, |
| uint32_t firstInstance) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance); |
| |
| tu6_draw_common<CHIP>(cmd, cs, false, vertexCount); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX)); |
| tu_cs_emit(cs, instanceCount); |
| tu_cs_emit(cs, vertexCount); |
| } |
| TU_GENX(tu_CmdDraw); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer, |
| uint32_t drawCount, |
| const VkMultiDrawInfoEXT *pVertexInfo, |
| uint32_t instanceCount, |
| uint32_t firstInstance, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| if (!drawCount) |
| return; |
| |
| bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant; |
| |
| uint32_t max_vertex_count = 0; |
| if (has_tess) { |
| uint32_t i = 0; |
| vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) { |
| max_vertex_count = MAX2(max_vertex_count, draw->vertexCount); |
| } |
| } |
| |
| uint32_t i = 0; |
| vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) { |
| tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance); |
| |
| if (i == 0) |
| tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count); |
| |
| if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) { |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params); |
| cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS; |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX)); |
| tu_cs_emit(cs, instanceCount); |
| tu_cs_emit(cs, draw->vertexCount); |
| } |
| } |
| TU_GENX(tu_CmdDrawMultiEXT); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawIndexed(VkCommandBuffer commandBuffer, |
| uint32_t indexCount, |
| uint32_t instanceCount, |
| uint32_t firstIndex, |
| int32_t vertexOffset, |
| uint32_t firstInstance) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance); |
| |
| tu6_draw_common<CHIP>(cmd, cs, true, indexCount); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA)); |
| tu_cs_emit(cs, instanceCount); |
| tu_cs_emit(cs, indexCount); |
| tu_cs_emit(cs, firstIndex); |
| tu_cs_emit_qw(cs, cmd->state.index_va); |
| tu_cs_emit(cs, cmd->state.max_index_count); |
| } |
| TU_GENX(tu_CmdDrawIndexed); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, |
| uint32_t drawCount, |
| const VkMultiDrawIndexedInfoEXT *pIndexInfo, |
| uint32_t instanceCount, |
| uint32_t firstInstance, |
| uint32_t stride, |
| const int32_t *pVertexOffset) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| if (!drawCount) |
| return; |
| |
| bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant; |
| |
| uint32_t max_index_count = 0; |
| if (has_tess) { |
| uint32_t i = 0; |
| vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) { |
| max_index_count = MAX2(max_index_count, draw->indexCount); |
| } |
| } |
| |
| uint32_t i = 0; |
| vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) { |
| int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset; |
| tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance); |
| |
| if (i == 0) |
| tu6_draw_common<CHIP>(cmd, cs, true, max_index_count); |
| |
| if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) { |
| tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3); |
| tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params); |
| cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS; |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA)); |
| tu_cs_emit(cs, instanceCount); |
| tu_cs_emit(cs, draw->indexCount); |
| tu_cs_emit(cs, draw->firstIndex); |
| tu_cs_emit_qw(cs, cmd->state.index_va); |
| tu_cs_emit(cs, cmd->state.max_index_count); |
| } |
| } |
| TU_GENX(tu_CmdDrawMultiIndexedEXT); |
| |
| /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes |
| * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if |
| * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's |
| * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's |
| * before draw opcodes that don't need it. |
| */ |
| static void |
| draw_wfm(struct tu_cmd_buffer *cmd) |
| { |
| cmd->state.renderpass_cache.flush_bits |= |
| cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME; |
| cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME; |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawIndirect(VkCommandBuffer commandBuffer, |
| VkBuffer _buffer, |
| VkDeviceSize offset, |
| uint32_t drawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buf, _buffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu6_emit_empty_vs_params(cmd); |
| |
| if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk) |
| draw_wfm(cmd); |
| |
| tu6_draw_common<CHIP>(cmd, cs, false, 0); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX)); |
| tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) | |
| A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd))); |
| tu_cs_emit(cs, drawCount); |
| tu_cs_emit_qw(cs, buf->iova + offset); |
| tu_cs_emit(cs, stride); |
| } |
| TU_GENX(tu_CmdDrawIndirect); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, |
| VkBuffer _buffer, |
| VkDeviceSize offset, |
| uint32_t drawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buf, _buffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu6_emit_empty_vs_params(cmd); |
| |
| if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk) |
| draw_wfm(cmd); |
| |
| tu6_draw_common<CHIP>(cmd, cs, true, 0); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA)); |
| tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) | |
| A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd))); |
| tu_cs_emit(cs, drawCount); |
| tu_cs_emit_qw(cs, cmd->state.index_va); |
| tu_cs_emit(cs, cmd->state.max_index_count); |
| tu_cs_emit_qw(cs, buf->iova + offset); |
| tu_cs_emit(cs, stride); |
| } |
| TU_GENX(tu_CmdDrawIndexedIndirect); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, |
| VkBuffer _buffer, |
| VkDeviceSize offset, |
| VkBuffer countBuffer, |
| VkDeviceSize countBufferOffset, |
| uint32_t drawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buf, _buffer); |
| VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu6_emit_empty_vs_params(cmd); |
| |
| /* It turns out that the firmware we have for a650 only partially fixed the |
| * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete |
| * before reading indirect parameters. It waits for WFI's before reading |
| * the draw parameters, but after reading the indirect count :(. |
| */ |
| draw_wfm(cmd); |
| |
| tu6_draw_common<CHIP>(cmd, cs, false, 0); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX)); |
| tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) | |
| A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd))); |
| tu_cs_emit(cs, drawCount); |
| tu_cs_emit_qw(cs, buf->iova + offset); |
| tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset); |
| tu_cs_emit(cs, stride); |
| } |
| TU_GENX(tu_CmdDrawIndirectCount); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, |
| VkBuffer _buffer, |
| VkDeviceSize offset, |
| VkBuffer countBuffer, |
| VkDeviceSize countBufferOffset, |
| uint32_t drawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buf, _buffer); |
| VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| tu6_emit_empty_vs_params(cmd); |
| |
| draw_wfm(cmd); |
| |
| tu6_draw_common<CHIP>(cmd, cs, true, 0); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11); |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA)); |
| tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) | |
| A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd))); |
| tu_cs_emit(cs, drawCount); |
| tu_cs_emit_qw(cs, cmd->state.index_va); |
| tu_cs_emit(cs, cmd->state.max_index_count); |
| tu_cs_emit_qw(cs, buf->iova + offset); |
| tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset); |
| tu_cs_emit(cs, stride); |
| } |
| TU_GENX(tu_CmdDrawIndexedIndirectCount); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, |
| uint32_t instanceCount, |
| uint32_t firstInstance, |
| VkBuffer _counterBuffer, |
| VkDeviceSize counterBufferOffset, |
| uint32_t counterOffset, |
| uint32_t vertexStride) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buf, _counterBuffer); |
| struct tu_cs *cs = &cmd->draw_cs; |
| |
| /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO. |
| * Plus, for the common case where the counter buffer is written by |
| * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to |
| * complete which means we need a WAIT_FOR_ME anyway. |
| */ |
| draw_wfm(cmd); |
| |
| tu6_emit_vs_params(cmd, 0, 0, firstInstance); |
| |
| tu6_draw_common<CHIP>(cmd, cs, false, 0); |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6); |
| if (CHIP == A6XX) { |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB)); |
| } else { |
| tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX)); |
| /* On a7xx the counter value and offset are shifted right by 2, so |
| * the vertexStride should also be in units of dwords. |
| */ |
| vertexStride = vertexStride >> 2; |
| } |
| tu_cs_emit(cs, instanceCount); |
| tu_cs_emit_qw(cs, buf->iova + counterBufferOffset); |
| tu_cs_emit(cs, counterOffset); |
| tu_cs_emit(cs, vertexStride); |
| } |
| TU_GENX(tu_CmdDrawIndirectByteCountEXT); |
| |
| struct tu_dispatch_info |
| { |
| /** |
| * Determine the layout of the grid (in block units) to be used. |
| */ |
| uint32_t blocks[3]; |
| |
| /** |
| * A starting offset for the grid. If unaligned is set, the offset |
| * must still be aligned. |
| */ |
| uint32_t offsets[3]; |
| /** |
| * Whether it's an unaligned compute dispatch. |
| */ |
| bool unaligned; |
| |
| /** |
| * Indirect compute parameters resource. |
| */ |
| struct tu_buffer *indirect; |
| uint64_t indirect_offset; |
| }; |
| |
| static inline struct ir3_driver_params_cs |
| build_driver_params_cs(const struct ir3_shader_variant *variant, |
| const struct tu_dispatch_info *info) |
| { |
| unsigned subgroup_size = variant->info.subgroup_size; |
| unsigned subgroup_shift = util_logbase2(subgroup_size); |
| |
| return (struct ir3_driver_params_cs) { |
| .num_work_groups_x = info->blocks[0], |
| .num_work_groups_y = info->blocks[1], |
| .num_work_groups_z = info->blocks[2], |
| .work_dim = 0, |
| .base_group_x = info->offsets[0], |
| .base_group_y = info->offsets[1], |
| .base_group_z = info->offsets[2], |
| .subgroup_size = subgroup_size, |
| .local_group_size_x = 0, |
| .local_group_size_y = 0, |
| .local_group_size_z = 0, |
| .subgroup_id_shift = subgroup_shift, |
| }; |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd, |
| struct tu_cs *cs, |
| const struct tu_dispatch_info *info) |
| { |
| gl_shader_stage type = MESA_SHADER_COMPUTE; |
| const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE]; |
| const struct ir3_shader_variant *variant = shader->variant; |
| const struct ir3_const_state *const_state = variant->const_state; |
| unsigned subgroup_size = variant->info.subgroup_size; |
| unsigned subgroup_shift = util_logbase2(subgroup_size); |
| |
| if (cmd->device->physical_device->info->a7xx.load_shader_consts_via_preamble) { |
| uint32_t num_consts = const_state->driver_params_ubo.size; |
| if (num_consts == 0) |
| return; |
| |
| bool direct_indirect_load = |
| !(info->indirect_offset & 0xf) && |
| !(info->indirect && num_consts > IR3_DP_CS(base_group_x)); |
| |
| uint64_t iova = 0; |
| |
| if (!info->indirect) { |
| struct ir3_driver_params_cs driver_params = |
| build_driver_params_cs(variant, info); |
| |
| assert(num_consts <= dword_sizeof(driver_params)); |
| |
| struct tu_cs_memory consts; |
| uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4); |
| VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd->vk, result); |
| return; |
| } |
| memcpy(consts.map, &driver_params, num_consts * sizeof(uint32_t)); |
| iova = consts.iova; |
| } else if (direct_indirect_load) { |
| iova = info->indirect->iova + info->indirect_offset; |
| } else { |
| /* Vulkan guarantees only 4 byte alignment for indirect_offset. |
| * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment. |
| */ |
| |
| uint64_t indirect_iova = info->indirect->iova + info->indirect_offset; |
| |
| /* Wait for any previous uses to finish. */ |
| tu_cs_emit_wfi(cs); |
| |
| for (uint32_t i = 0; i < 3; i++) { |
| tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i)); |
| tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t)); |
| } |
| |
| /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for |
| * indirect dispatch. |
| */ |
| if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) { |
| uint32_t indirect_driver_params[8] = { |
| 0, 0, 0, subgroup_size, |
| 0, 0, 0, subgroup_shift, |
| }; |
| bool emit_local = num_consts > IR3_DP_CS(local_group_size_x); |
| uint32_t emit_size = emit_local ? 8 : 4; |
| |
| tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size); |
| tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t)); |
| for (uint32_t i = 0; i < emit_size; i++) { |
| tu_cs_emit(cs, indirect_driver_params[i]); |
| } |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE); |
| tu_cs_emit_wfi(cs); |
| |
| iova = global_iova(cmd, cs_indirect_xyz[0]); |
| } |
| |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(1)); |
| tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0)); |
| tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0)); |
| int size_vec4s = DIV_ROUND_UP(num_consts, 4); |
| tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32)); |
| |
| } else { |
| uint32_t offset = const_state->offsets.driver_param; |
| if (variant->constlen <= offset) |
| return; |
| |
| uint32_t num_consts = MIN2(const_state->num_driver_params, |
| (variant->constlen - offset) * 4); |
| |
| if (!info->indirect) { |
| struct ir3_driver_params_cs driver_params = |
| build_driver_params_cs(variant, info); |
| |
| assert(num_consts <= dword_sizeof(driver_params)); |
| |
| /* push constants */ |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4)); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit_array(cs, (uint32_t *)&driver_params, num_consts); |
| } else if (!(info->indirect_offset & 0xf)) { |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(1)); |
| tu_cs_emit_qw(cs, info->indirect->iova + info->indirect_offset); |
| } else { |
| /* Vulkan guarantees only 4 byte alignment for indirect_offset. |
| * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment. |
| */ |
| |
| uint64_t indirect_iova = info->indirect->iova + info->indirect_offset; |
| |
| /* Wait for any previous uses to finish. */ |
| tu_cs_emit_wfi(cs); |
| |
| for (uint32_t i = 0; i < 3; i++) { |
| tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i)); |
| tu_cs_emit_qw(cs, indirect_iova + i * 4); |
| } |
| |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE); |
| tu_cs_emit_wfi(cs); |
| |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT(1)); |
| tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0])); |
| } |
| |
| /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for |
| * indirect dispatch. |
| */ |
| if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) { |
| bool emit_local = num_consts > IR3_DP_CS(local_group_size_x); |
| tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0)); |
| tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_CS(base_group_x) / 4)) | |
| CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | |
| CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) | |
| CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) | |
| CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_CS(base_group_x)) / 4)); |
| tu_cs_emit_qw(cs, 0); |
| tu_cs_emit(cs, 0); /* BASE_GROUP_X */ |
| tu_cs_emit(cs, 0); /* BASE_GROUP_Y */ |
| tu_cs_emit(cs, 0); /* BASE_GROUP_Z */ |
| tu_cs_emit(cs, subgroup_size); |
| if (emit_local) { |
| assert(num_consts == align(IR3_DP_CS(subgroup_id_shift), 4)); |
| tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */ |
| tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */ |
| tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */ |
| tu_cs_emit(cs, subgroup_shift); |
| } |
| } |
| } |
| } |
| |
| template <chip CHIP> |
| static void |
| tu_dispatch(struct tu_cmd_buffer *cmd, |
| const struct tu_dispatch_info *info) |
| { |
| if (!info->indirect && |
| (info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0)) |
| return; |
| |
| struct tu_cs *cs = &cmd->cs; |
| struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE]; |
| |
| bool emit_instrlen_workaround = |
| shader->variant->instrlen > |
| cmd->device->physical_device->info->a6xx.instr_cache_size; |
| |
| /* We don't use draw states for dispatches, so the bound pipeline |
| * could be overwritten by reg stomping in a renderpass or blit. |
| */ |
| if (cmd->device->dbg_renderpass_stomp_cs) { |
| tu_cs_emit_state_ib(&cmd->cs, shader->state); |
| } |
| |
| /* There appears to be a HW bug where in some rare circumstances it appears |
| * to accidentally use the FS instrlen instead of the CS instrlen, which |
| * affects all known gens. Based on various experiments it appears that the |
| * issue is that when prefetching a branch destination and there is a cache |
| * miss, when fetching from memory the HW bounds-checks the fetch against |
| * SP_CS_INSTRLEN, except when one of the two register contexts is active |
| * it accidentally fetches SP_FS_INSTRLEN from the other (inactive) |
| * context. To workaround it we set the FS instrlen here and do a dummy |
| * event to roll the context (because it fetches SP_FS_INSTRLEN from the |
| * "wrong" context). Because the bug seems to involve cache misses, we |
| * don't emit this if the entire CS program fits in cache, which will |
| * hopefully be the majority of cases. |
| * |
| * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892 |
| */ |
| if (emit_instrlen_workaround) { |
| tu_cs_emit_regs(cs, A6XX_SP_FS_INSTRLEN(shader->variant->instrlen)); |
| tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL); |
| } |
| |
| /* TODO: We could probably flush less if we add a compute_flush_bits |
| * bitfield. |
| */ |
| tu_emit_cache_flush<CHIP>(cmd); |
| |
| /* note: no reason to have this in a separate IB */ |
| tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true)); |
| |
| tu_emit_compute_driver_params<CHIP>(cmd, cs, info); |
| |
| if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) { |
| tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE); |
| tu_cs_emit_state_ib(cs, cmd->state.compute_load_state); |
| } |
| |
| cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS; |
| |
| tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1); |
| tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE)); |
| |
| const uint16_t *local_size = shader->variant->local_size; |
| const uint32_t *num_groups = info->blocks; |
| tu_cs_emit_regs(cs, |
| HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 3, |
| .localsizex = local_size[0] - 1, |
| .localsizey = local_size[1] - 1, |
| .localsizez = local_size[2] - 1), |
| HLSQ_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]), |
| HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0), |
| HLSQ_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]), |
| HLSQ_CS_NDRANGE_4(CHIP, .globaloff_y = 0), |
| HLSQ_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]), |
| HLSQ_CS_NDRANGE_6(CHIP, .globaloff_z = 0)); |
| |
| tu_cs_emit_regs(cs, |
| HLSQ_CS_KERNEL_GROUP_X(CHIP, 1), |
| HLSQ_CS_KERNEL_GROUP_Y(CHIP, 1), |
| HLSQ_CS_KERNEL_GROUP_Z(CHIP, 1)); |
| |
| if (info->indirect) { |
| uint64_t iova = info->indirect->iova + info->indirect_offset; |
| |
| trace_start_compute_indirect(&cmd->trace, cs); |
| |
| tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4); |
| tu_cs_emit(cs, 0x00000000); |
| tu_cs_emit_qw(cs, iova); |
| tu_cs_emit(cs, |
| A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) | |
| A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) | |
| A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1)); |
| |
| trace_end_compute_indirect(&cmd->trace, cs, |
| (struct u_trace_address) { |
| .bo = info->indirect->bo, |
| .offset = info->indirect_offset, |
| }); |
| } else { |
| trace_start_compute(&cmd->trace, cs, info->indirect != NULL, |
| local_size[0], local_size[1], local_size[2], |
| info->blocks[0], info->blocks[1], info->blocks[2]); |
| |
| tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4); |
| tu_cs_emit(cs, 0x00000000); |
| tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0])); |
| tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1])); |
| tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2])); |
| |
| trace_end_compute(&cmd->trace, cs); |
| } |
| |
| /* For the workaround above, because it's using the "wrong" context for |
| * SP_FS_INSTRLEN we should emit another dummy event write to avoid a |
| * potential race between writing the register and the CP_EXEC_CS we just |
| * did. We don't need to reset the register because it will be re-emitted |
| * anyway when the next renderpass starts. |
| */ |
| if (emit_instrlen_workaround) { |
| tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL); |
| } |
| } |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDispatchBase(VkCommandBuffer commandBuffer, |
| uint32_t base_x, |
| uint32_t base_y, |
| uint32_t base_z, |
| uint32_t x, |
| uint32_t y, |
| uint32_t z) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| struct tu_dispatch_info info = {}; |
| |
| info.blocks[0] = x; |
| info.blocks[1] = y; |
| info.blocks[2] = z; |
| |
| info.offsets[0] = base_x; |
| info.offsets[1] = base_y; |
| info.offsets[2] = base_z; |
| tu_dispatch<CHIP>(cmd_buffer, &info); |
| } |
| TU_GENX(tu_CmdDispatchBase); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer, |
| VkBuffer _buffer, |
| VkDeviceSize offset) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buffer, _buffer); |
| struct tu_dispatch_info info = {}; |
| |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| |
| tu_dispatch<CHIP>(cmd_buffer, &info); |
| } |
| TU_GENX(tu_CmdDispatchIndirect); |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer, |
| const VkSubpassEndInfo *pSubpassEndInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| if (TU_DEBUG(DYNAMIC)) { |
| vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo); |
| return; |
| } |
| |
| tu_cs_end(&cmd_buffer->draw_cs); |
| tu_cs_end(&cmd_buffer->draw_epilogue_cs); |
| TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer); |
| |
| cmd_buffer->state.cache.pending_flush_bits |= |
| cmd_buffer->state.renderpass_cache.pending_flush_bits; |
| tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true); |
| |
| vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments); |
| |
| tu_reset_render_pass(cmd_buffer); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdEndRendering(VkCommandBuffer commandBuffer) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| if (cmd_buffer->state.suspending) |
| cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz; |
| |
| if (!cmd_buffer->state.suspending) { |
| tu_cs_end(&cmd_buffer->draw_cs); |
| tu_cs_end(&cmd_buffer->draw_epilogue_cs); |
| |
| if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) { |
| cmd_buffer->trace_renderpass_end = u_trace_end_iterator(&cmd_buffer->trace); |
| tu_save_pre_chain(cmd_buffer); |
| |
| /* Even we don't call tu_cmd_render here, renderpass is finished |
| * and draw states should be disabled. |
| */ |
| tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs); |
| } else { |
| TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer); |
| } |
| |
| tu_reset_render_pass(cmd_buffer); |
| } |
| |
| if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) { |
| /* exiting suspend/resume chain */ |
| switch (cmd_buffer->state.suspend_resume) { |
| case SR_IN_CHAIN: |
| cmd_buffer->state.suspend_resume = SR_NONE; |
| break; |
| case SR_IN_PRE_CHAIN: |
| case SR_IN_CHAIN_AFTER_PRE_CHAIN: |
| cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN; |
| break; |
| default: |
| unreachable("suspending render pass not followed by resuming pass"); |
| } |
| } |
| } |
| |
| void |
| tu_barrier(struct tu_cmd_buffer *cmd, |
| uint32_t dep_count, |
| const VkDependencyInfo *dep_infos) |
| { |
| VkPipelineStageFlags2 srcStage = 0; |
| VkPipelineStageFlags2 dstStage = 0; |
| BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0; |
| BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0; |
| |
| /* Inside a renderpass, we don't know yet whether we'll be using sysmem |
| * so we have to use the sysmem flushes. |
| */ |
| bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM && |
| !cmd->state.pass; |
| |
| for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) { |
| const VkDependencyInfo *dep_info = &dep_infos[dep_idx]; |
| |
| for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) { |
| VkPipelineStageFlags2 sanitized_src_stage = |
| sanitize_src_stage(dep_info->pMemoryBarriers[i].srcStageMask); |
| VkPipelineStageFlags2 sanitized_dst_stage = |
| sanitize_dst_stage(dep_info->pMemoryBarriers[i].dstStageMask); |
| src_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].srcAccessMask, |
| sanitized_src_stage, false, gmem); |
| dst_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].dstAccessMask, |
| sanitized_dst_stage, false, gmem); |
| srcStage |= sanitized_src_stage; |
| dstStage |= sanitized_dst_stage; |
| } |
| |
| for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) { |
| VkPipelineStageFlags2 sanitized_src_stage = |
| sanitize_src_stage(dep_info->pBufferMemoryBarriers[i].srcStageMask); |
| VkPipelineStageFlags2 sanitized_dst_stage = |
| sanitize_dst_stage(dep_info->pBufferMemoryBarriers[i].dstStageMask); |
| src_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].srcAccessMask, |
| sanitized_src_stage, false, gmem); |
| dst_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].dstAccessMask, |
| sanitized_dst_stage, false, gmem); |
| srcStage |= sanitized_src_stage; |
| dstStage |= sanitized_dst_stage; |
| } |
| |
| for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) { |
| VkImageLayout old_layout = dep_info->pImageMemoryBarriers[i].oldLayout; |
| if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED) { |
| /* The underlying memory for this image may have been used earlier |
| * within the same queue submission for a different image, which |
| * means that there may be old, stale cache entries which are in the |
| * "wrong" location, which could cause problems later after writing |
| * to the image. We don't want these entries being flushed later and |
| * overwriting the actual image, so we need to flush the CCU. |
| */ |
| VK_FROM_HANDLE(tu_image, image, dep_info->pImageMemoryBarriers[i].image); |
| |
| if (vk_format_is_depth_or_stencil(image->vk.format)) { |
| src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE; |
| } else { |
| src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE; |
| } |
| } |
| VkPipelineStageFlags2 sanitized_src_stage = |
| sanitize_src_stage(dep_info->pImageMemoryBarriers[i].srcStageMask); |
| VkPipelineStageFlags2 sanitized_dst_stage = |
| sanitize_dst_stage(dep_info->pImageMemoryBarriers[i].dstStageMask); |
| src_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].srcAccessMask, |
| sanitized_src_stage, true, gmem); |
| dst_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].dstAccessMask, |
| sanitized_dst_stage, true, gmem); |
| srcStage |= sanitized_src_stage; |
| dstStage |= sanitized_dst_stage; |
| } |
| } |
| |
| if (cmd->state.pass) { |
| const VkPipelineStageFlags framebuffer_space_stages = |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | |
| VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| |
| /* We cannot have non-by-region "fb-space to fb-space" barriers. |
| * |
| * From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency": |
| * |
| * If the source and destination stage masks both include |
| * framebuffer-space stages, then dependencyFlags must include |
| * VK_DEPENDENCY_BY_REGION_BIT. |
| * [...] |
| * Each of the synchronization scopes and access scopes of a |
| * vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside |
| * a render pass instance must be a subset of the scopes of one of |
| * the self-dependencies for the current subpass. |
| * |
| * If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or |
| * VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier. |
| * |
| * By-region barriers are ok for gmem. All other barriers would involve |
| * vtx stages which are NOT ok for gmem rendering. |
| * See dep_invalid_for_gmem(). |
| */ |
| if ((srcStage & ~framebuffer_space_stages) || |
| (dstStage & ~framebuffer_space_stages)) { |
| cmd->state.rp.disable_gmem = true; |
| } |
| } |
| |
| struct tu_cache_state *cache = |
| cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache; |
| |
| /* a750 has a HW bug where writing a UBWC compressed image with a compute |
| * shader followed by reading it as a texture (or readonly image) requires |
| * a CACHE_CLEAN event. Some notes about this bug: |
| * - It only happens after a blit happens. |
| * - It's fast-clear related, it happens when the image is fast cleared |
| * before the write and the value read is (incorrectly) the fast clear |
| * color. |
| * - CACHE_FLUSH is supposed to be the same as CACHE_CLEAN + |
| * CACHE_INVALIDATE, but it doesn't work whereas CACHE_CLEAN + |
| * CACHE_INVALIDATE does. |
| * |
| * The srcAccess can be replaced by a OpMemoryBarrier(MakeAvailable), so |
| * we can't use that to insert the flush. Instead we use the shader source |
| * stage. |
| */ |
| if (cmd->device->physical_device->info->a7xx.ubwc_coherency_quirk && |
| (srcStage & |
| (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT | |
| VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))) { |
| cache->flush_bits |= TU_CMD_FLAG_CACHE_CLEAN; |
| cache->pending_flush_bits &= ~TU_CMD_FLAG_CACHE_CLEAN; |
| } |
| |
| tu_flush_for_access(cache, src_flags, dst_flags); |
| |
| enum tu_stage src_stage = vk2tu_src_stage(srcStage); |
| enum tu_stage dst_stage = vk2tu_dst_stage(dstStage); |
| tu_flush_for_stage(cache, src_stage, dst_stage); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer, |
| const VkDependencyInfo *pDependencyInfo) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| tu_barrier(cmd_buffer, 1, pDependencyInfo); |
| } |
| |
| template <chip CHIP> |
| void |
| tu_write_event(struct tu_cmd_buffer *cmd, struct tu_event *event, |
| VkPipelineStageFlags2 stageMask, unsigned value) |
| { |
| struct tu_cs *cs = &cmd->cs; |
| |
| /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */ |
| assert(!cmd->state.pass); |
| |
| tu_emit_cache_flush<CHIP>(cmd); |
| |
| /* Flags that only require a top-of-pipe event. DrawIndirect parameters are |
| * read by the CP, so the draw indirect stage counts as top-of-pipe too. |
| */ |
| VkPipelineStageFlags2 top_of_pipe_flags = |
| VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | |
| VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT; |
| |
| if (!(stageMask & ~top_of_pipe_flags)) { |
| tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3); |
| tu_cs_emit_qw(cs, event->bo->iova); /* ADDR_LO/HI */ |
| tu_cs_emit(cs, value); |
| } else { |
| /* Use a RB_DONE_TS event to wait for everything to complete. */ |
| if (CHIP == A6XX) { |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4); |
| tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS)); |
| } else { |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4); |
| tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS, |
| .write_src = EV_WRITE_USER_32B, |
| .write_dst = EV_DST_RAM, |
| .write_enabled = true).value); |
| } |
| |
| tu_cs_emit_qw(cs, event->bo->iova); |
| tu_cs_emit(cs, value); |
| } |
| } |
| TU_GENX(tu_write_event); |
| |
| template <chip CHIP> |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer, |
| const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| cmd->state.predication_active = true; |
| |
| struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs; |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 1); |
| |
| /* Wait for any writes to the predicate to land */ |
| if (cmd->state.pass) |
| tu_emit_cache_flush_renderpass<CHIP>(cmd); |
| else |
| tu_emit_cache_flush<CHIP>(cmd); |
| |
| VK_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer); |
| uint64_t iova = buf->iova + pConditionalRenderingBegin->offset; |
| |
| /* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan |
| * mandates 32-bit comparisons. Our workaround is to copy the the reference |
| * value to the low 32-bits of a location where the high 32 bits are known |
| * to be 0 and then compare that. |
| */ |
| tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5); |
| tu_cs_emit(cs, 0); |
| tu_cs_emit_qw(cs, global_iova(cmd, predicate)); |
| tu_cs_emit_qw(cs, iova); |
| |
| tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0); |
| tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0); |
| |
| bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT; |
| tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3); |
| tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) | |
| CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS)); |
| tu_cs_emit_qw(cs, global_iova(cmd, predicate)); |
| } |
| TU_GENX(tu_CmdBeginConditionalRenderingEXT); |
| |
| VKAPI_ATTR void VKAPI_CALL |
| tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer) |
| { |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| |
| cmd->state.predication_active = false; |
| |
| struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs; |
| |
| tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1); |
| tu_cs_emit(cs, 0); |
| } |
| |
| template <chip CHIP> |
| void |
| tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, |
| VkPipelineStageFlagBits2 pipelineStage, |
| VkBuffer dstBuffer, |
| VkDeviceSize dstOffset, |
| uint32_t marker) |
| { |
| /* Almost the same as tu_write_event, but also allowed in renderpass */ |
| VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer); |
| VK_FROM_HANDLE(tu_buffer, buffer, dstBuffer); |
| |
| uint64_t va = buffer->iova + dstOffset; |
| |
| struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs; |
| struct tu_cache_state *cache = |
| cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache; |
| |
| /* From the Vulkan 1.2.203 spec: |
| * |
| * The access scope for buffer marker writes falls under |
| * the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for |
| * identifying the synchronization scope must include both pipelineStage |
| * and VK_PIPELINE_STAGE_TRANSFER_BIT. |
| * |
| * Transfer operations use CCU however here we write via CP. |
| * Flush CCU in order to make the results of previous transfer |
| * operation visible to CP. |
| */ |
| tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE); |
| |
| /* Flags that only require a top-of-pipe event. DrawIndirect parameters are |
| * read by the CP, so the draw indirect stage counts as top-of-pipe too. |
| */ |
| VkPipelineStageFlags2 top_of_pipe_flags = |
| VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | |
| VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT; |
| |
| bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags); |
| |
| /* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE. |
| * Otherwise: |
| * - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes; |
| * - There was a barrier to synchronize other writes with WriteBufferMarkerAMD |
| * and they had to include our pipelineStage which forces the WFI. |
| */ |
| if (cache->flush_bits && is_top_of_pipe) { |
| cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE; |
| } |
| |
| if (cmd->state.pass) { |
| tu_emit_cache_flush_renderpass<CHIP>(cmd); |
| } else { |
| tu_emit_cache_flush<CHIP>(cmd); |
| } |
| |
| if (is_top_of_pipe) { |
| tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3); |
| tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */ |
| tu_cs_emit(cs, marker); |
| } else { |
| /* Use a RB_DONE_TS event to wait for everything to complete. */ |
| if (CHIP == A6XX) { |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4); |
| tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS)); |
| } else { |
| tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4); |
| tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS, |
| .write_src = EV_WRITE_USER_32B, |
| .write_dst = EV_DST_RAM, |
| .write_enabled = true).value); |
| } |
| tu_cs_emit_qw(cs, va); |
| tu_cs_emit(cs, marker); |
| } |
| |
| /* Make sure the result of this write is visible to others. */ |
| tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE); |
| } |
| TU_GENX(tu_CmdWriteBufferMarker2AMD); |