blob: c79268f71b30f7dc0bd6818cda7fdc81e2911071 [file] [log] [blame]
/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <errno.h>
#include <time.h>
#include <unistd.h>
#include "main/context.h"
#include "main/framebuffer.h"
#include "main/renderbuffer.h"
#include "main/texobj.h"
#include "main/hash.h"
#include "main/fbobject.h"
#include "main/version.h"
#include "swrast/s_renderbuffer.h"
#include "util/ralloc.h"
#include "brw_shader.h"
#include "compiler/nir/nir.h"
#include "utils.h"
#include "xmlpool.h"
static const __DRIconfigOptionsExtension brw_config_options = {
.base = { __DRI_CONFIG_OPTIONS, 1 },
.xml =
DRI_CONF_BEGIN
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
/* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
* DRI_CONF_BO_REUSE_ALL
*/
DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
DRI_CONF_ENUM(0, "Disable buffer object reuse")
DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
DRI_CONF_DESC_END
DRI_CONF_OPT_END
DRI_CONF_OPT_BEGIN_B(hiz, "true")
DRI_CONF_DESC(en, "Enable Hierarchical Z on gen6+")
DRI_CONF_OPT_END
DRI_CONF_SECTION_END
DRI_CONF_SECTION_QUALITY
DRI_CONF_FORCE_S3TC_ENABLE("false")
DRI_CONF_PRECISE_TRIG("false")
DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
"given integer. If negative, then do not clamp.")
DRI_CONF_OPT_END
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_NO_RAST("false")
DRI_CONF_ALWAYS_FLUSH_BATCH("false")
DRI_CONF_ALWAYS_FLUSH_CACHE("false")
DRI_CONF_DISABLE_THROTTLING("false")
DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
DRI_CONF_DESC(en, "Perform code generation at shader link time.")
DRI_CONF_OPT_END
DRI_CONF_SECTION_END
DRI_CONF_SECTION_MISCELLANEOUS
DRI_CONF_GLSL_ZERO_INIT("false")
DRI_CONF_SECTION_END
DRI_CONF_END
};
#include "intel_batchbuffer.h"
#include "intel_buffers.h"
#include "intel_bufmgr.h"
#include "intel_fbo.h"
#include "intel_mipmap_tree.h"
#include "intel_screen.h"
#include "intel_tex.h"
#include "intel_image.h"
#include "brw_context.h"
#include "i915_drm.h"
/**
* For debugging purposes, this returns a time in seconds.
*/
double
get_time(void)
{
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return tp.tv_sec + tp.tv_nsec / 1000000000.0;
}
void
aub_dump_bmp(struct gl_context *ctx)
{
struct gl_framebuffer *fb = ctx->DrawBuffer;
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (irb && irb->mt) {
enum aub_dump_bmp_format format;
switch (irb->Base.Base.Format) {
case MESA_FORMAT_B8G8R8A8_UNORM:
case MESA_FORMAT_B8G8R8X8_UNORM:
format = AUB_DUMP_BMP_FORMAT_ARGB_8888;
break;
default:
continue;
}
drm_intel_gem_bo_aub_dump_bmp(irb->mt->bo,
irb->draw_x,
irb->draw_y,
irb->Base.Base.Width,
irb->Base.Base.Height,
format,
irb->mt->pitch,
0);
}
}
}
static const __DRItexBufferExtension intelTexBufferExtension = {
.base = { __DRI_TEX_BUFFER, 3 },
.setTexBuffer = intelSetTexBuffer,
.setTexBuffer2 = intelSetTexBuffer2,
.releaseTexBuffer = NULL,
};
static void
intel_dri2_flush_with_flags(__DRIcontext *cPriv,
__DRIdrawable *dPriv,
unsigned flags,
enum __DRI2throttleReason reason)
{
struct brw_context *brw = cPriv->driverPrivate;
if (!brw)
return;
struct gl_context *ctx = &brw->ctx;
FLUSH_VERTICES(ctx, 0);
if (flags & __DRI2_FLUSH_DRAWABLE)
intel_resolve_for_dri2_flush(brw, dPriv);
if (reason == __DRI2_THROTTLE_SWAPBUFFER)
brw->need_swap_throttle = true;
if (reason == __DRI2_THROTTLE_FLUSHFRONT)
brw->need_flush_throttle = true;
intel_batchbuffer_flush(brw);
if (INTEL_DEBUG & DEBUG_AUB) {
aub_dump_bmp(ctx);
}
}
/**
* Provides compatibility with loaders that only support the older (version
* 1-3) flush interface.
*
* That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
*/
static void
intel_dri2_flush(__DRIdrawable *drawable)
{
intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
__DRI2_FLUSH_DRAWABLE,
__DRI2_THROTTLE_SWAPBUFFER);
}
static const struct __DRI2flushExtensionRec intelFlushExtension = {
.base = { __DRI2_FLUSH, 4 },
.flush = intel_dri2_flush,
.invalidate = dri2InvalidateDrawable,
.flush_with_flags = intel_dri2_flush_with_flags,
};
static struct intel_image_format intel_image_formats[] = {
{ __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
{ __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
{ __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
{ __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
{ __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
{ __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
{ __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
{ __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
{ __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
{ __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
{ __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
/* For YUYV buffers, we set up two overlapping DRI images and treat
* them as planar buffers in the compositors. Plane 0 is GR88 and
* samples YU or YV pairs and places Y into the R component, while
* plane 1 is ARGB and samples YUYV clusters and places pairs and
* places U into the G component and V into A. This lets the
* texture sampler interpolate the Y components correctly when
* sampling from plane 0, and interpolate U and V correctly when
* sampling from plane 1. */
{ __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
{ 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
};
static void
intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
{
uint32_t tiling, swizzle;
drm_intel_bo_get_tiling(image->bo, &tiling, &swizzle);
if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
_mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
func, image->offset);
}
}
static struct intel_image_format *
intel_image_format_lookup(int fourcc)
{
struct intel_image_format *f = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
if (intel_image_formats[i].fourcc == fourcc) {
f = &intel_image_formats[i];
break;
}
}
return f;
}
static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
{
for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
if (intel_image_formats[i].planes[0].dri_format == dri_format) {
*fourcc = intel_image_formats[i].fourcc;
return true;
}
}
return false;
}
static __DRIimage *
intel_allocate_image(int dri_format, void *loaderPrivate)
{
__DRIimage *image;
image = calloc(1, sizeof *image);
if (image == NULL)
return NULL;
image->dri_format = dri_format;
image->offset = 0;
image->format = driImageFormatToGLFormat(dri_format);
if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
image->format == MESA_FORMAT_NONE) {
free(image);
return NULL;
}
image->internal_format = _mesa_get_format_base_format(image->format);
image->data = loaderPrivate;
return image;
}
/**
* Sets up a DRIImage structure to point to a slice out of a miptree.
*/
static void
intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
struct intel_mipmap_tree *mt, GLuint level,
GLuint zoffset)
{
intel_miptree_make_shareable(brw, mt);
intel_miptree_check_level_layer(mt, level, zoffset);
image->width = minify(mt->physical_width0, level - mt->first_level);
image->height = minify(mt->physical_height0, level - mt->first_level);
image->pitch = mt->pitch;
image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
&image->tile_x,
&image->tile_y);
drm_intel_bo_unreference(image->bo);
image->bo = mt->bo;
drm_intel_bo_reference(mt->bo);
}
static __DRIimage *
intel_create_image_from_name(__DRIscreen *dri_screen,
int width, int height, int format,
int name, int pitch, void *loaderPrivate)
{
struct intel_screen *screen = dri_screen->driverPrivate;
__DRIimage *image;
int cpp;
image = intel_allocate_image(format, loaderPrivate);
if (image == NULL)
return NULL;
if (image->format == MESA_FORMAT_NONE)
cpp = 1;
else
cpp = _mesa_get_format_bytes(image->format);
image->width = width;
image->height = height;
image->pitch = pitch * cpp;
image->bo = drm_intel_bo_gem_create_from_name(screen->bufmgr, "image",
name);
if (!image->bo) {
free(image);
return NULL;
}
return image;
}
static __DRIimage *
intel_create_image_from_renderbuffer(__DRIcontext *context,
int renderbuffer, void *loaderPrivate)
{
__DRIimage *image;
struct brw_context *brw = context->driverPrivate;
struct gl_context *ctx = &brw->ctx;
struct gl_renderbuffer *rb;
struct intel_renderbuffer *irb;
rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
if (!rb) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
return NULL;
}
irb = intel_renderbuffer(rb);
intel_miptree_make_shareable(brw, irb->mt);
image = calloc(1, sizeof *image);
if (image == NULL)
return NULL;
image->internal_format = rb->InternalFormat;
image->format = rb->Format;
image->offset = 0;
image->data = loaderPrivate;
drm_intel_bo_unreference(image->bo);
image->bo = irb->mt->bo;
drm_intel_bo_reference(irb->mt->bo);
image->width = rb->Width;
image->height = rb->Height;
image->pitch = irb->mt->pitch;
image->dri_format = driGLFormatToImageFormat(image->format);
image->has_depthstencil = irb->mt->stencil_mt? true : false;
rb->NeedsFinishRenderTexture = true;
return image;
}
static __DRIimage *
intel_create_image_from_texture(__DRIcontext *context, int target,
unsigned texture, int zoffset,
int level,
unsigned *error,
void *loaderPrivate)
{
__DRIimage *image;
struct brw_context *brw = context->driverPrivate;
struct gl_texture_object *obj;
struct intel_texture_object *iobj;
GLuint face = 0;
obj = _mesa_lookup_texture(&brw->ctx, texture);
if (!obj || obj->Target != target) {
*error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
return NULL;
}
if (target == GL_TEXTURE_CUBE_MAP)
face = zoffset;
_mesa_test_texobj_completeness(&brw->ctx, obj);
iobj = intel_texture_object(obj);
if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
*error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
return NULL;
}
if (level < obj->BaseLevel || level > obj->_MaxLevel) {
*error = __DRI_IMAGE_ERROR_BAD_MATCH;
return NULL;
}
if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
*error = __DRI_IMAGE_ERROR_BAD_MATCH;
return NULL;
}
image = calloc(1, sizeof *image);
if (image == NULL) {
*error = __DRI_IMAGE_ERROR_BAD_ALLOC;
return NULL;
}
image->internal_format = obj->Image[face][level]->InternalFormat;
image->format = obj->Image[face][level]->TexFormat;
image->data = loaderPrivate;
intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
image->dri_format = driGLFormatToImageFormat(image->format);
image->has_depthstencil = iobj->mt->stencil_mt? true : false;
if (image->dri_format == MESA_FORMAT_NONE) {
*error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
free(image);
return NULL;
}
*error = __DRI_IMAGE_ERROR_SUCCESS;
return image;
}
static void
intel_destroy_image(__DRIimage *image)
{
drm_intel_bo_unreference(image->bo);
free(image);
}
static __DRIimage *
intel_create_image(__DRIscreen *dri_screen,
int width, int height, int format,
unsigned int use,
void *loaderPrivate)
{
__DRIimage *image;
struct intel_screen *screen = dri_screen->driverPrivate;
uint32_t tiling;
int cpp;
unsigned long pitch;
tiling = I915_TILING_X;
if (use & __DRI_IMAGE_USE_CURSOR) {
if (width != 64 || height != 64)
return NULL;
tiling = I915_TILING_NONE;
}
if (use & __DRI_IMAGE_USE_LINEAR)
tiling = I915_TILING_NONE;
image = intel_allocate_image(format, loaderPrivate);
if (image == NULL)
return NULL;
cpp = _mesa_get_format_bytes(image->format);
image->bo = drm_intel_bo_alloc_tiled(screen->bufmgr, "image",
width, height, cpp, &tiling,
&pitch, 0);
if (image->bo == NULL) {
free(image);
return NULL;
}
image->width = width;
image->height = height;
image->pitch = pitch;
return image;
}
static GLboolean
intel_query_image(__DRIimage *image, int attrib, int *value)
{
switch (attrib) {
case __DRI_IMAGE_ATTRIB_STRIDE:
*value = image->pitch;
return true;
case __DRI_IMAGE_ATTRIB_HANDLE:
*value = image->bo->handle;
return true;
case __DRI_IMAGE_ATTRIB_NAME:
return !drm_intel_bo_flink(image->bo, (uint32_t *) value);
case __DRI_IMAGE_ATTRIB_FORMAT:
*value = image->dri_format;
return true;
case __DRI_IMAGE_ATTRIB_WIDTH:
*value = image->width;
return true;
case __DRI_IMAGE_ATTRIB_HEIGHT:
*value = image->height;
return true;
case __DRI_IMAGE_ATTRIB_COMPONENTS:
if (image->planar_format == NULL)
return false;
*value = image->planar_format->components;
return true;
case __DRI_IMAGE_ATTRIB_FD:
return !drm_intel_bo_gem_export_to_prime(image->bo, value);
case __DRI_IMAGE_ATTRIB_FOURCC:
return intel_lookup_fourcc(image->dri_format, value);
case __DRI_IMAGE_ATTRIB_NUM_PLANES:
*value = 1;
return true;
case __DRI_IMAGE_ATTRIB_OFFSET:
*value = image->offset;
return true;
default:
return false;
}
}
static __DRIimage *
intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
{
__DRIimage *image;
image = calloc(1, sizeof *image);
if (image == NULL)
return NULL;
drm_intel_bo_reference(orig_image->bo);
image->bo = orig_image->bo;
image->internal_format = orig_image->internal_format;
image->planar_format = orig_image->planar_format;
image->dri_format = orig_image->dri_format;
image->format = orig_image->format;
image->offset = orig_image->offset;
image->width = orig_image->width;
image->height = orig_image->height;
image->pitch = orig_image->pitch;
image->tile_x = orig_image->tile_x;
image->tile_y = orig_image->tile_y;
image->has_depthstencil = orig_image->has_depthstencil;
image->data = loaderPrivate;
memcpy(image->strides, orig_image->strides, sizeof(image->strides));
memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
return image;
}
static GLboolean
intel_validate_usage(__DRIimage *image, unsigned int use)
{
if (use & __DRI_IMAGE_USE_CURSOR) {
if (image->width != 64 || image->height != 64)
return GL_FALSE;
}
return GL_TRUE;
}
static __DRIimage *
intel_create_image_from_names(__DRIscreen *dri_screen,
int width, int height, int fourcc,
int *names, int num_names,
int *strides, int *offsets,
void *loaderPrivate)
{
struct intel_image_format *f = NULL;
__DRIimage *image;
int i, index;
if (dri_screen == NULL || names == NULL || num_names != 1)
return NULL;
f = intel_image_format_lookup(fourcc);
if (f == NULL)
return NULL;
image = intel_create_image_from_name(dri_screen, width, height,
__DRI_IMAGE_FORMAT_NONE,
names[0], strides[0],
loaderPrivate);
if (image == NULL)
return NULL;
image->planar_format = f;
for (i = 0; i < f->nplanes; i++) {
index = f->planes[i].buffer_index;
image->offsets[index] = offsets[index];
image->strides[index] = strides[index];
}
return image;
}
static __DRIimage *
intel_create_image_from_fds(__DRIscreen *dri_screen,
int width, int height, int fourcc,
int *fds, int num_fds, int *strides, int *offsets,
void *loaderPrivate)
{
struct intel_screen *screen = dri_screen->driverPrivate;
struct intel_image_format *f;
__DRIimage *image;
int i, index;
if (fds == NULL || num_fds < 1)
return NULL;
/* We only support all planes from the same bo */
for (i = 0; i < num_fds; i++)
if (fds[0] != fds[i])
return NULL;
f = intel_image_format_lookup(fourcc);
if (f == NULL)
return NULL;
if (f->nplanes == 1)
image = intel_allocate_image(f->planes[0].dri_format, loaderPrivate);
else
image = intel_allocate_image(__DRI_IMAGE_FORMAT_NONE, loaderPrivate);
if (image == NULL)
return NULL;
image->width = width;
image->height = height;
image->pitch = strides[0];
image->planar_format = f;
int size = 0;
for (i = 0; i < f->nplanes; i++) {
index = f->planes[i].buffer_index;
image->offsets[index] = offsets[index];
image->strides[index] = strides[index];
const int plane_height = height >> f->planes[i].height_shift;
const int end = offsets[index] + plane_height * strides[index];
if (size < end)
size = end;
}
image->bo = drm_intel_bo_gem_create_from_prime(screen->bufmgr,
fds[0], size);
if (image->bo == NULL) {
free(image);
return NULL;
}
if (f->nplanes == 1) {
image->offset = image->offsets[0];
intel_image_warn_if_unaligned(image, __func__);
}
return image;
}
static __DRIimage *
intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
int width, int height, int fourcc,
int *fds, int num_fds,
int *strides, int *offsets,
enum __DRIYUVColorSpace yuv_color_space,
enum __DRISampleRange sample_range,
enum __DRIChromaSiting horizontal_siting,
enum __DRIChromaSiting vertical_siting,
unsigned *error,
void *loaderPrivate)
{
__DRIimage *image;
struct intel_image_format *f = intel_image_format_lookup(fourcc);
if (!f) {
*error = __DRI_IMAGE_ERROR_BAD_MATCH;
return NULL;
}
image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
num_fds, strides, offsets,
loaderPrivate);
/*
* Invalid parameters and any inconsistencies between are assumed to be
* checked by the caller. Therefore besides unsupported formats one can fail
* only in allocation.
*/
if (!image) {
*error = __DRI_IMAGE_ERROR_BAD_ALLOC;
return NULL;
}
image->dma_buf_imported = true;
image->yuv_color_space = yuv_color_space;
image->sample_range = sample_range;
image->horizontal_siting = horizontal_siting;
image->vertical_siting = vertical_siting;
*error = __DRI_IMAGE_ERROR_SUCCESS;
return image;
}
static __DRIimage *
intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
{
int width, height, offset, stride, dri_format, index;
struct intel_image_format *f;
__DRIimage *image;
if (parent == NULL || parent->planar_format == NULL)
return NULL;
f = parent->planar_format;
if (plane >= f->nplanes)
return NULL;
width = parent->width >> f->planes[plane].width_shift;
height = parent->height >> f->planes[plane].height_shift;
dri_format = f->planes[plane].dri_format;
index = f->planes[plane].buffer_index;
offset = parent->offsets[index];
stride = parent->strides[index];
image = intel_allocate_image(dri_format, loaderPrivate);
if (image == NULL)
return NULL;
if (offset + height * stride > parent->bo->size) {
_mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
free(image);
return NULL;
}
image->bo = parent->bo;
drm_intel_bo_reference(parent->bo);
image->width = width;
image->height = height;
image->pitch = stride;
image->offset = offset;
intel_image_warn_if_unaligned(image, __func__);
return image;
}
static const __DRIimageExtension intelImageExtension = {
.base = { __DRI_IMAGE, 13 },
.createImageFromName = intel_create_image_from_name,
.createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
.destroyImage = intel_destroy_image,
.createImage = intel_create_image,
.queryImage = intel_query_image,
.dupImage = intel_dup_image,
.validateUsage = intel_validate_usage,
.createImageFromNames = intel_create_image_from_names,
.fromPlanar = intel_from_planar,
.createImageFromTexture = intel_create_image_from_texture,
.createImageFromFds = intel_create_image_from_fds,
.createImageFromDmaBufs = intel_create_image_from_dma_bufs,
.blitImage = NULL,
.getCapabilities = NULL,
.mapImage = NULL,
.unmapImage = NULL,
};
static int
brw_query_renderer_integer(__DRIscreen *dri_screen,
int param, unsigned int *value)
{
const struct intel_screen *const screen =
(struct intel_screen *) dri_screen->driverPrivate;
switch (param) {
case __DRI2_RENDERER_VENDOR_ID:
value[0] = 0x8086;
return 0;
case __DRI2_RENDERER_DEVICE_ID:
value[0] = screen->deviceID;
return 0;
case __DRI2_RENDERER_ACCELERATED:
value[0] = 1;
return 0;
case __DRI2_RENDERER_VIDEO_MEMORY: {
/* Once a batch uses more than 75% of the maximum mappable size, we
* assume that there's some fragmentation, and we start doing extra
* flushing, etc. That's the big cliff apps will care about.
*/
size_t aper_size;
size_t mappable_size;
drm_intel_get_aperture_sizes(dri_screen->fd, &mappable_size, &aper_size);
const unsigned gpu_mappable_megabytes =
(aper_size / (1024 * 1024)) * 3 / 4;
const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
const long system_page_size = sysconf(_SC_PAGE_SIZE);
if (system_memory_pages <= 0 || system_page_size <= 0)
return -1;
const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
* (uint64_t) system_page_size;
const unsigned system_memory_megabytes =
(unsigned) (system_memory_bytes / (1024 * 1024));
value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
return 0;
}
case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
value[0] = 1;
return 0;
case __DRI2_RENDERER_HAS_TEXTURE_3D:
value[0] = 1;
return 0;
default:
return driQueryRendererIntegerCommon(dri_screen, param, value);
}
return -1;
}
static int
brw_query_renderer_string(__DRIscreen *dri_screen,
int param, const char **value)
{
const struct intel_screen *screen =
(struct intel_screen *) dri_screen->driverPrivate;
switch (param) {
case __DRI2_RENDERER_VENDOR_ID:
value[0] = brw_vendor_string;
return 0;
case __DRI2_RENDERER_DEVICE_ID:
value[0] = brw_get_renderer_string(screen);
return 0;
default:
break;
}
return -1;
}
static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
.base = { __DRI2_RENDERER_QUERY, 1 },
.queryInteger = brw_query_renderer_integer,
.queryString = brw_query_renderer_string
};
static const __DRIrobustnessExtension dri2Robustness = {
.base = { __DRI2_ROBUSTNESS, 1 }
};
static const __DRIextension *screenExtensions[] = {
&intelTexBufferExtension.base,
&intelFenceExtension.base,
&intelFlushExtension.base,
&intelImageExtension.base,
&intelRendererQueryExtension.base,
&dri2ConfigQueryExtension.base,
NULL
};
static const __DRIextension *intelRobustScreenExtensions[] = {
&intelTexBufferExtension.base,
&intelFenceExtension.base,
&intelFlushExtension.base,
&intelImageExtension.base,
&intelRendererQueryExtension.base,
&dri2ConfigQueryExtension.base,
&dri2Robustness.base,
NULL
};
static int
intel_get_param(struct intel_screen *screen, int param, int *value)
{
int ret = 0;
struct drm_i915_getparam gp;
memset(&gp, 0, sizeof(gp));
gp.param = param;
gp.value = value;
if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
ret = -errno;
if (ret != -EINVAL)
_mesa_warning(NULL, "drm_i915_getparam: %d", ret);
}
return ret;
}
static bool
intel_get_boolean(struct intel_screen *screen, int param)
{
int value = 0;
return (intel_get_param(screen, param, &value) == 0) && value;
}
static int
intel_get_integer(struct intel_screen *screen, int param)
{
int value = -1;
if (intel_get_param(screen, param, &value) == 0)
return value;
return -1;
}
static void
intelDestroyScreen(__DRIscreen * sPriv)
{
struct intel_screen *screen = sPriv->driverPrivate;
dri_bufmgr_destroy(screen->bufmgr);
driDestroyOptionInfo(&screen->optionCache);
ralloc_free(screen);
sPriv->driverPrivate = NULL;
}
/**
* This is called when we need to set up GL rendering to a new X window.
*/
static GLboolean
intelCreateBuffer(__DRIscreen *dri_screen,
__DRIdrawable * driDrawPriv,
const struct gl_config * mesaVis, GLboolean isPixmap)
{
struct intel_renderbuffer *rb;
struct intel_screen *screen = (struct intel_screen *)
dri_screen->driverPrivate;
mesa_format rgbFormat;
unsigned num_samples =
intel_quantize_num_samples(screen, mesaVis->samples);
struct gl_framebuffer *fb;
if (isPixmap)
return false;
fb = CALLOC_STRUCT(gl_framebuffer);
if (!fb)
return false;
_mesa_initialize_window_framebuffer(fb, mesaVis);
if (screen->winsys_msaa_samples_override != -1) {
num_samples = screen->winsys_msaa_samples_override;
fb->Visual.samples = num_samples;
}
if (mesaVis->redBits == 5) {
rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
: MESA_FORMAT_B5G6R5_UNORM;
} else if (mesaVis->sRGBCapable) {
rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
: MESA_FORMAT_B8G8R8A8_SRGB;
} else if (mesaVis->alphaBits == 0) {
rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
: MESA_FORMAT_B8G8R8X8_UNORM;
} else {
rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
: MESA_FORMAT_B8G8R8A8_SRGB;
fb->Visual.sRGBCapable = true;
}
/* setup the hardware-based renderbuffers */
rb = intel_create_renderbuffer(rgbFormat, num_samples);
_mesa_add_renderbuffer(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
if (mesaVis->doubleBufferMode) {
rb = intel_create_renderbuffer(rgbFormat, num_samples);
_mesa_add_renderbuffer(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
}
/*
* Assert here that the gl_config has an expected depth/stencil bit
* combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
* which constructs the advertised configs.)
*/
if (mesaVis->depthBits == 24) {
assert(mesaVis->stencilBits == 8);
if (screen->devinfo.has_hiz_and_separate_stencil) {
rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
num_samples);
_mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
num_samples);
_mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
} else {
/*
* Use combined depth/stencil. Note that the renderbuffer is
* attached to two attachment points.
*/
rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
num_samples);
_mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
_mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
}
}
else if (mesaVis->depthBits == 16) {
assert(mesaVis->stencilBits == 0);
rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
num_samples);
_mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
}
else {
assert(mesaVis->depthBits == 0);
assert(mesaVis->stencilBits == 0);
}
/* now add any/all software-based renderbuffers we may need */
_swrast_add_soft_renderbuffers(fb,
false, /* never sw color */
false, /* never sw depth */
false, /* never sw stencil */
mesaVis->accumRedBits > 0,
false, /* never sw alpha */
false /* never sw aux */ );
driDrawPriv->driverPrivate = fb;
return true;
}
static void
intelDestroyBuffer(__DRIdrawable * driDrawPriv)
{
struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
_mesa_reference_framebuffer(&fb, NULL);
}
static void
intel_detect_sseu(struct intel_screen *screen)
{
assert(screen->devinfo.gen >= 8);
int ret;
screen->subslice_total = -1;
screen->eu_total = -1;
ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
&screen->subslice_total);
if (ret < 0 && ret != -EINVAL)
goto err_out;
ret = intel_get_param(screen,
I915_PARAM_EU_TOTAL, &screen->eu_total);
if (ret < 0 && ret != -EINVAL)
goto err_out;
/* Without this information, we cannot get the right Braswell brandstrings,
* and we have to use conservative numbers for GPGPU on many platforms, but
* otherwise, things will just work.
*/
if (screen->subslice_total < 1 || screen->eu_total < 1)
_mesa_warning(NULL,
"Kernel 4.1 required to properly query GPU properties.\n");
return;
err_out:
screen->subslice_total = -1;
screen->eu_total = -1;
_mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
}
static bool
intel_init_bufmgr(struct intel_screen *screen)
{
__DRIscreen *dri_screen = screen->driScrnPriv;
screen->no_hw = getenv("INTEL_NO_HW") != NULL;
screen->bufmgr = intel_bufmgr_gem_init(dri_screen->fd, BATCH_SZ);
if (screen->bufmgr == NULL) {
fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
__func__, __LINE__);
return false;
}
drm_intel_bufmgr_gem_enable_fenced_relocs(screen->bufmgr);
if (!intel_get_boolean(screen, I915_PARAM_HAS_RELAXED_DELTA)) {
fprintf(stderr, "[%s: %u] Kernel 2.6.39 required.\n", __func__, __LINE__);
return false;
}
return true;
}
static bool
intel_detect_swizzling(struct intel_screen *screen)
{
drm_intel_bo *buffer;
unsigned long flags = 0;
unsigned long aligned_pitch;
uint32_t tiling = I915_TILING_X;
uint32_t swizzle_mode = 0;
buffer = drm_intel_bo_alloc_tiled(screen->bufmgr, "swizzle test",
64, 64, 4,
&tiling, &aligned_pitch, flags);
if (buffer == NULL)
return false;
drm_intel_bo_get_tiling(buffer, &tiling, &swizzle_mode);
drm_intel_bo_unreference(buffer);
if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
return false;
else
return true;
}
static int
intel_detect_timestamp(struct intel_screen *screen)
{
uint64_t dummy = 0, last = 0;
int upper, lower, loops;
/* On 64bit systems, some old kernels trigger a hw bug resulting in the
* TIMESTAMP register being shifted and the low 32bits always zero.
*
* More recent kernels offer an interface to read the full 36bits
* everywhere.
*/
if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
return 3;
/* Determine if we have a 32bit or 64bit kernel by inspecting the
* upper 32bits for a rapidly changing timestamp.
*/
if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &last))
return 0;
upper = lower = 0;
for (loops = 0; loops < 10; loops++) {
/* The TIMESTAMP should change every 80ns, so several round trips
* through the kernel should be enough to advance it.
*/
if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
return 0;
upper += (dummy >> 32) != (last >> 32);
if (upper > 1) /* beware 32bit counter overflow */
return 2; /* upper dword holds the low 32bits of the timestamp */
lower += (dummy & 0xffffffff) != (last & 0xffffffff);
if (lower > 1)
return 1; /* timestamp is unshifted */
last = dummy;
}
/* No advancement? No timestamp! */
return 0;
}
/**
* Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
*
* Some combinations of hardware and kernel versions allow this feature,
* while others don't. Instead of trying to enumerate every case, just
* try and write a register and see if works.
*/
static bool
intel_detect_pipelined_register(struct intel_screen *screen,
int reg, uint32_t expected_value, bool reset)
{
drm_intel_bo *results, *bo;
uint32_t *batch;
uint32_t offset = 0;
bool success = false;
/* Create a zero'ed temporary buffer for reading our results */
results = drm_intel_bo_alloc(screen->bufmgr, "registers", 4096, 0);
if (results == NULL)
goto err;
bo = drm_intel_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
if (bo == NULL)
goto err_results;
if (drm_intel_bo_map(bo, 1))
goto err_batch;
batch = bo->virtual;
/* Write the register. */
*batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
*batch++ = reg;
*batch++ = expected_value;
/* Save the register's value back to the buffer. */
*batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
*batch++ = reg;
drm_intel_bo_emit_reloc(bo, (char *)batch -(char *)bo->virtual,
results, offset*sizeof(uint32_t),
I915_GEM_DOMAIN_INSTRUCTION,
I915_GEM_DOMAIN_INSTRUCTION);
*batch++ = results->offset + offset*sizeof(uint32_t);
/* And afterwards clear the register */
if (reset) {
*batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
*batch++ = reg;
*batch++ = 0;
}
*batch++ = MI_BATCH_BUFFER_END;
drm_intel_bo_mrb_exec(bo, ALIGN((char *)batch - (char *)bo->virtual, 8),
NULL, 0, 0,
I915_EXEC_RENDER);
/* Check whether the value got written. */
if (drm_intel_bo_map(results, false) == 0) {
success = *((uint32_t *)results->virtual + offset) == expected_value;
drm_intel_bo_unmap(results);
}
err_batch:
drm_intel_bo_unreference(bo);
err_results:
drm_intel_bo_unreference(results);
err:
return success;
}
static bool
intel_detect_pipelined_so(struct intel_screen *screen)
{
/* Supposedly, Broadwell just works. */
if (screen->devinfo.gen >= 8)
return true;
if (screen->devinfo.gen <= 6)
return false;
/* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
* statistics registers), and we already reset it to zero before using it.
*/
return intel_detect_pipelined_register(screen,
GEN7_SO_WRITE_OFFSET(0),
0x1337d0d0,
false);
}
/**
* Return array of MSAA modes supported by the hardware. The array is
* zero-terminated and sorted in decreasing order.
*/
const int*
intel_supported_msaa_modes(const struct intel_screen *screen)
{
static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
static const int gen8_modes[] = {8, 4, 2, 0, -1};
static const int gen7_modes[] = {8, 4, 0, -1};
static const int gen6_modes[] = {4, 0, -1};
static const int gen4_modes[] = {0, -1};
if (screen->devinfo.gen >= 9) {
return gen9_modes;
} else if (screen->devinfo.gen >= 8) {
return gen8_modes;
} else if (screen->devinfo.gen >= 7) {
return gen7_modes;
} else if (screen->devinfo.gen == 6) {
return gen6_modes;
} else {
return gen4_modes;
}
}
static __DRIconfig**
intel_screen_make_configs(__DRIscreen *dri_screen)
{
static const mesa_format formats[] = {
MESA_FORMAT_B5G6R5_UNORM,
MESA_FORMAT_B8G8R8A8_UNORM,
MESA_FORMAT_B8G8R8X8_UNORM
};
/* GLX_SWAP_COPY_OML is not supported due to page flipping. */
static const GLenum back_buffer_modes[] = {
GLX_SWAP_UNDEFINED_OML, GLX_NONE,
};
static const uint8_t singlesample_samples[1] = {0};
static const uint8_t multisample_samples[2] = {4, 8};
struct intel_screen *screen = dri_screen->driverPrivate;
const struct gen_device_info *devinfo = &screen->devinfo;
uint8_t depth_bits[4], stencil_bits[4];
__DRIconfig **configs = NULL;
/* Generate singlesample configs without accumulation buffer. */
for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
__DRIconfig **new_configs;
int num_depth_stencil_bits = 2;
/* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
* buffer that has a different number of bits per pixel than the color
* buffer, gen >= 6 supports this.
*/
depth_bits[0] = 0;
stencil_bits[0] = 0;
if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
depth_bits[1] = 16;
stencil_bits[1] = 0;
if (devinfo->gen >= 6) {
depth_bits[2] = 24;
stencil_bits[2] = 8;
num_depth_stencil_bits = 3;
}
} else {
depth_bits[1] = 24;
stencil_bits[1] = 8;
}
new_configs = driCreateConfigs(formats[i],
depth_bits,
stencil_bits,
num_depth_stencil_bits,
back_buffer_modes, 2,
singlesample_samples, 1,
false, false);
configs = driConcatConfigs(configs, new_configs);
}
/* Generate the minimum possible set of configs that include an
* accumulation buffer.
*/
for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
__DRIconfig **new_configs;
if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
depth_bits[0] = 16;
stencil_bits[0] = 0;
} else {
depth_bits[0] = 24;
stencil_bits[0] = 8;
}
new_configs = driCreateConfigs(formats[i],
depth_bits, stencil_bits, 1,
back_buffer_modes, 1,
singlesample_samples, 1,
true, false);
configs = driConcatConfigs(configs, new_configs);
}
/* Generate multisample configs.
*
* This loop breaks early, and hence is a no-op, on gen < 6.
*
* Multisample configs must follow the singlesample configs in order to
* work around an X server bug present in 1.12. The X server chooses to
* associate the first listed RGBA888-Z24S8 config, regardless of its
* sample count, with the 32-bit depth visual used for compositing.
*
* Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
* supported. Singlebuffer configs are not supported because no one wants
* them.
*/
for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
if (devinfo->gen < 6)
break;
__DRIconfig **new_configs;
const int num_depth_stencil_bits = 2;
int num_msaa_modes = 0;
depth_bits[0] = 0;
stencil_bits[0] = 0;
if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
depth_bits[1] = 16;
stencil_bits[1] = 0;
} else {
depth_bits[1] = 24;
stencil_bits[1] = 8;
}
if (devinfo->gen >= 7)
num_msaa_modes = 2;
else if (devinfo->gen == 6)
num_msaa_modes = 1;
new_configs = driCreateConfigs(formats[i],
depth_bits,
stencil_bits,
num_depth_stencil_bits,
back_buffer_modes, 1,
multisample_samples,
num_msaa_modes,
false, false);
configs = driConcatConfigs(configs, new_configs);
}
if (configs == NULL) {
fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
__LINE__);
return NULL;
}
return configs;
}
static void
set_max_gl_versions(struct intel_screen *screen)
{
__DRIscreen *dri_screen = screen->driScrnPriv;
const bool has_astc = screen->devinfo.gen >= 9;
switch (screen->devinfo.gen) {
case 9:
case 8:
dri_screen->max_gl_core_version = 45;
dri_screen->max_gl_compat_version = 30;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
break;
case 7:
dri_screen->max_gl_core_version = screen->devinfo.is_haswell &&
can_do_pipelined_register_writes(screen) ? 40 : 33;
dri_screen->max_gl_compat_version = 30;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
break;
case 6:
dri_screen->max_gl_core_version = 33;
dri_screen->max_gl_compat_version = 30;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = 30;
break;
case 5:
case 4:
dri_screen->max_gl_core_version = 0;
dri_screen->max_gl_compat_version = 21;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = 20;
break;
default:
unreachable("unrecognized intel_screen::gen");
}
}
/**
* Return the revision (generally the revid field of the PCI header) of the
* graphics device.
*
* XXX: This function is useful to keep around even if it is not currently in
* use. It is necessary for new platforms and revision specific workarounds or
* features. Please don't remove it so that we know it at least continues to
* build.
*/
static __attribute__((__unused__)) int
brw_get_revision(int fd)
{
struct drm_i915_getparam gp;
int revision;
int ret;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_REVISION;
gp.value = &revision;
ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
if (ret)
revision = -1;
return revision;
}
/* Drop when RS headers get pulled to libdrm */
#ifndef I915_PARAM_HAS_RESOURCE_STREAMER
#define I915_PARAM_HAS_RESOURCE_STREAMER 36
#endif
static void
shader_debug_log_mesa(void *data, const char *fmt, ...)
{
struct brw_context *brw = (struct brw_context *)data;
va_list args;
va_start(args, fmt);
GLuint msg_id = 0;
_mesa_gl_vdebug(&brw->ctx, &msg_id,
MESA_DEBUG_SOURCE_SHADER_COMPILER,
MESA_DEBUG_TYPE_OTHER,
MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
va_end(args);
}
static void
shader_perf_log_mesa(void *data, const char *fmt, ...)
{
struct brw_context *brw = (struct brw_context *)data;
va_list args;
va_start(args, fmt);
if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
va_list args_copy;
va_copy(args_copy, args);
vfprintf(stderr, fmt, args_copy);
va_end(args_copy);
}
if (brw->perf_debug) {
GLuint msg_id = 0;
_mesa_gl_vdebug(&brw->ctx, &msg_id,
MESA_DEBUG_SOURCE_SHADER_COMPILER,
MESA_DEBUG_TYPE_PERFORMANCE,
MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
}
va_end(args);
}
/**
* This is the driver specific part of the createNewScreen entry point.
* Called when using DRI2.
*
* \return the struct gl_config supported by this driver
*/
static const
__DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
{
struct intel_screen *screen;
if (dri_screen->image.loader) {
} else if (dri_screen->dri2.loader->base.version <= 2 ||
dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
fprintf(stderr,
"\nERROR! DRI2 loader with getBuffersWithFormat() "
"support required\n");
return false;
}
/* Allocate the private area */
screen = rzalloc(NULL, struct intel_screen);
if (!screen) {
fprintf(stderr, "\nERROR! Allocating private area failed\n");
return false;
}
/* parse information in __driConfigOptions */
driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
screen->driScrnPriv = dri_screen;
dri_screen->driverPrivate = (void *) screen;
if (!intel_init_bufmgr(screen))
return false;
screen->deviceID = drm_intel_bufmgr_gem_get_devid(screen->bufmgr);
if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
return false;
brw_process_intel_debug_variable();
if (INTEL_DEBUG & DEBUG_BUFMGR)
dri_bufmgr_set_debug(screen->bufmgr, true);
if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && screen->devinfo.gen < 7) {
fprintf(stderr,
"shader_time debugging requires gen7 (Ivybridge) or better.\n");
INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
}
if (INTEL_DEBUG & DEBUG_AUB)
drm_intel_bufmgr_gem_set_aub_dump(screen->bufmgr, true);
#ifndef I915_PARAM_MMAP_GTT_VERSION
#define I915_PARAM_MMAP_GTT_VERSION 40 /* XXX delete me with new libdrm */
#endif
if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
/* Theorectically unlimited! At least for individual objects...
*
* Currently the entire (global) address space for all GTT maps is
* limited to 64bits. That is all objects on the system that are
* setup for GTT mmapping must fit within 64bits. An attempt to use
* one that exceeds the limit with fail in drm_intel_bo_map_gtt().
*
* Long before we hit that limit, we will be practically limited by
* that any single object must fit in physical memory (RAM). The upper
* limit on the CPU's address space is currently 48bits (Skylake), of
* which only 39bits can be physical memory. (The GPU itself also has
* a 48bit addressable virtual space.) We can fit over 32 million
* objects of the current maximum allocable size before running out
* of mmap space.
*/
screen->max_gtt_map_object_size = UINT64_MAX;
} else {
/* Estimate the size of the mappable aperture into the GTT. There's an
* ioctl to get the whole GTT size, but not one to get the mappable subset.
* It turns out it's basically always 256MB, though some ancient hardware
* was smaller.
*/
uint32_t gtt_size = 256 * 1024 * 1024;
/* We don't want to map two objects such that a memcpy between them would
* just fault one mapping in and then the other over and over forever. So
* we would need to divide the GTT size by 2. Additionally, some GTT is
* taken up by things like the framebuffer and the ringbuffer and such, so
* be more conservative.
*/
screen->max_gtt_map_object_size = gtt_size / 4;
}
screen->hw_has_swizzling = intel_detect_swizzling(screen);
screen->hw_has_timestamp = intel_detect_timestamp(screen);
/* GENs prior to 8 do not support EU/Subslice info */
if (screen->devinfo.gen >= 8) {
intel_detect_sseu(screen);
} else if (screen->devinfo.gen == 7) {
screen->subslice_total = 1 << (screen->devinfo.gt - 1);
}
if (intel_detect_pipelined_so(screen))
screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
const char *force_msaa = getenv("INTEL_FORCE_MSAA");
if (force_msaa) {
screen->winsys_msaa_samples_override =
intel_quantize_num_samples(screen, atoi(force_msaa));
printf("Forcing winsys sample count to %d\n",
screen->winsys_msaa_samples_override);
} else {
screen->winsys_msaa_samples_override = -1;
}
set_max_gl_versions(screen);
/* Notification of GPU resets requires hardware contexts and a kernel new
* enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
* supported, calling it with a context of 0 will either generate EPERM or
* no error. If the ioctl is not supported, it always generate EINVAL.
* Use this to determine whether to advertise the __DRI2_ROBUSTNESS
* extension to the loader.
*
* Don't even try on pre-Gen6, since we don't attempt to use contexts there.
*/
if (screen->devinfo.gen >= 6) {
struct drm_i915_reset_stats stats;
memset(&stats, 0, sizeof(stats));
const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
screen->has_context_reset_notification =
(ret != -1 || errno != EINVAL);
}
if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
&screen->cmd_parser_version) < 0) {
screen->cmd_parser_version = 0;
}
if (screen->cmd_parser_version >= 2)
screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
/* Haswell requires command parser version 4 in order to have L3
* atomic scratch1 and chicken3 bits
*/
if (screen->devinfo.is_haswell && screen->cmd_parser_version >= 4) {
screen->kernel_features |=
KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
}
/* Haswell requires command parser version 6 in order to write to the
* MI_MATH GPR registers, and version 7 in order to use
* MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
*/
if (screen->devinfo.gen >= 8 ||
(screen->devinfo.is_haswell && screen->cmd_parser_version >= 7)) {
screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
}
/* Gen7 needs at least command parser version 5 to support compute */
if (screen->devinfo.gen >= 8 || screen->cmd_parser_version >= 5)
screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
dri_screen->extensions = !screen->has_context_reset_notification
? screenExtensions : intelRobustScreenExtensions;
screen->compiler = brw_compiler_create(screen,
&screen->devinfo);
screen->compiler->shader_debug_log = shader_debug_log_mesa;
screen->compiler->shader_perf_log = shader_perf_log_mesa;
screen->program_id = 1;
if (screen->devinfo.has_resource_streamer) {
screen->has_resource_streamer =
intel_get_boolean(screen, I915_PARAM_HAS_RESOURCE_STREAMER);
}
return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
}
struct intel_buffer {
__DRIbuffer base;
drm_intel_bo *bo;
};
static __DRIbuffer *
intelAllocateBuffer(__DRIscreen *dri_screen,
unsigned attachment, unsigned format,
int width, int height)
{
struct intel_buffer *intelBuffer;
struct intel_screen *screen = dri_screen->driverPrivate;
assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
attachment == __DRI_BUFFER_BACK_LEFT);
intelBuffer = calloc(1, sizeof *intelBuffer);
if (intelBuffer == NULL)
return NULL;
/* The front and back buffers are color buffers, which are X tiled. */
uint32_t tiling = I915_TILING_X;
unsigned long pitch;
int cpp = format / 8;
intelBuffer->bo = drm_intel_bo_alloc_tiled(screen->bufmgr,
"intelAllocateBuffer",
width,
height,
cpp,
&tiling, &pitch,
BO_ALLOC_FOR_RENDER);
if (intelBuffer->bo == NULL) {
free(intelBuffer);
return NULL;
}
drm_intel_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
intelBuffer->base.attachment = attachment;
intelBuffer->base.cpp = cpp;
intelBuffer->base.pitch = pitch;
return &intelBuffer->base;
}
static void
intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
{
struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
drm_intel_bo_unreference(intelBuffer->bo);
free(intelBuffer);
}
static const struct __DriverAPIRec brw_driver_api = {
.InitScreen = intelInitScreen2,
.DestroyScreen = intelDestroyScreen,
.CreateContext = brwCreateContext,
.DestroyContext = intelDestroyContext,
.CreateBuffer = intelCreateBuffer,
.DestroyBuffer = intelDestroyBuffer,
.MakeCurrent = intelMakeCurrent,
.UnbindContext = intelUnbindContext,
.AllocateBuffer = intelAllocateBuffer,
.ReleaseBuffer = intelReleaseBuffer
};
static const struct __DRIDriverVtableExtensionRec brw_vtable = {
.base = { __DRI_DRIVER_VTABLE, 1 },
.vtable = &brw_driver_api,
};
static const __DRIextension *brw_driver_extensions[] = {
&driCoreExtension.base,
&driImageDriverExtension.base,
&driDRI2Extension.base,
&brw_vtable.base,
&brw_config_options.base,
NULL
};
PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
{
globalDriverAPI = &brw_driver_api;
return brw_driver_extensions;
}