blob: 9c0bba2165b94f4cdfbca493c6704abb4cb1d0e2 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_private.h"
#include "vk_format.h"
#include "radv_radeon_winsys.h"
#include "sid.h"
#include "util/debug.h"
static unsigned
radv_choose_tiling(struct radv_device *Device,
const struct radv_image_create_info *create_info)
{
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
assert(pCreateInfo->samples <= 1);
return RADEON_SURF_MODE_LINEAR_ALIGNED;
}
/* MSAA resources must be 2D tiled. */
if (pCreateInfo->samples > 1)
return RADEON_SURF_MODE_2D;
return RADEON_SURF_MODE_2D;
}
static int
radv_init_surface(struct radv_device *device,
struct radeon_surf *surface,
const struct radv_image_create_info *create_info)
{
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
unsigned array_mode = radv_choose_tiling(device, create_info);
const struct vk_format_description *desc =
vk_format_description(pCreateInfo->format);
bool is_depth, is_stencil, blendable;
is_depth = vk_format_has_depth(desc);
is_stencil = vk_format_has_stencil(desc);
surface->npix_x = pCreateInfo->extent.width;
surface->npix_y = pCreateInfo->extent.height;
surface->npix_z = pCreateInfo->extent.depth;
surface->blk_w = vk_format_get_blockwidth(pCreateInfo->format);
surface->blk_h = vk_format_get_blockheight(pCreateInfo->format);
surface->blk_d = 1;
surface->array_size = pCreateInfo->arrayLayers;
surface->last_level = pCreateInfo->mipLevels - 1;
surface->bpe = vk_format_get_blocksize(pCreateInfo->format);
/* align byte per element on dword */
if (surface->bpe == 3) {
surface->bpe = 4;
}
surface->nsamples = pCreateInfo->samples ? pCreateInfo->samples : 1;
surface->flags = RADEON_SURF_SET(array_mode, MODE);
switch (pCreateInfo->imageType){
case VK_IMAGE_TYPE_1D:
if (pCreateInfo->arrayLayers > 1)
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE);
else
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE);
break;
case VK_IMAGE_TYPE_2D:
if (pCreateInfo->arrayLayers > 1)
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE);
else
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE);
break;
case VK_IMAGE_TYPE_3D:
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE);
break;
default:
unreachable("unhandled image type");
}
if (is_depth) {
surface->flags |= RADEON_SURF_ZBUFFER;
}
if (is_stencil)
surface->flags |= RADEON_SURF_SBUFFER |
RADEON_SURF_HAS_SBUFFER_MIPTREE;
surface->flags |= RADEON_SURF_HAS_TILE_MODE_INDEX;
if ((pCreateInfo->usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_STORAGE_BIT)) ||
(pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) ||
(pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) ||
device->instance->physicalDevice.rad_info.chip_class < VI ||
create_info->scanout || !device->allow_dcc ||
!radv_is_colorbuffer_format_supported(pCreateInfo->format, &blendable))
surface->flags |= RADEON_SURF_DISABLE_DCC;
if (create_info->scanout)
surface->flags |= RADEON_SURF_SCANOUT;
return 0;
}
#define ATI_VENDOR_ID 0x1002
static uint32_t si_get_bo_metadata_word1(struct radv_device *device)
{
return (ATI_VENDOR_ID << 16) | device->instance->physicalDevice.rad_info.pci_id;
}
static inline unsigned
si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
{
if (stencil)
return image->surface.stencil_tiling_index[level];
else
return image->surface.tiling_index[level];
}
static unsigned radv_map_swizzle(unsigned swizzle)
{
switch (swizzle) {
case VK_SWIZZLE_Y:
return V_008F0C_SQ_SEL_Y;
case VK_SWIZZLE_Z:
return V_008F0C_SQ_SEL_Z;
case VK_SWIZZLE_W:
return V_008F0C_SQ_SEL_W;
case VK_SWIZZLE_0:
return V_008F0C_SQ_SEL_0;
case VK_SWIZZLE_1:
return V_008F0C_SQ_SEL_1;
default: /* VK_SWIZZLE_X */
return V_008F0C_SQ_SEL_X;
}
}
static void
radv_make_buffer_descriptor(struct radv_device *device,
struct radv_buffer *buffer,
VkFormat vk_format,
unsigned offset,
unsigned range,
uint32_t *state)
{
const struct vk_format_description *desc;
unsigned stride;
uint64_t gpu_address = device->ws->buffer_get_va(buffer->bo);
uint64_t va = gpu_address + buffer->offset;
unsigned num_format, data_format;
int first_non_void;
desc = vk_format_description(vk_format);
first_non_void = vk_format_get_first_non_void_channel(vk_format);
stride = desc->block.bits / 8;
num_format = radv_translate_buffer_numformat(desc, first_non_void);
data_format = radv_translate_buffer_dataformat(desc, first_non_void);
va += offset;
state[0] = va;
state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(stride);
state[2] = range;
state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) |
S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) |
S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) |
S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) |
S_008F0C_NUM_FORMAT(num_format) |
S_008F0C_DATA_FORMAT(data_format);
}
static void
si_set_mutable_tex_desc_fields(struct radv_device *device,
struct radv_image *image,
const struct radeon_surf_level *base_level_info,
unsigned base_level, unsigned first_level,
unsigned block_width, bool is_stencil,
uint32_t *state)
{
uint64_t gpu_address = device->ws->buffer_get_va(image->bo) + image->offset;
uint64_t va = gpu_address + base_level_info->offset;
unsigned pitch = base_level_info->nblk_x * block_width;
state[1] &= C_008F14_BASE_ADDRESS_HI;
state[3] &= C_008F1C_TILING_INDEX;
state[4] &= C_008F20_PITCH;
state[6] &= C_008F28_COMPRESSION_EN;
assert(!(va & 255));
state[0] = va >> 8;
state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
state[3] |= S_008F1C_TILING_INDEX(si_tile_mode_index(image, base_level,
is_stencil));
state[4] |= S_008F20_PITCH(pitch - 1);
if (image->surface.dcc_size && image->surface.level[first_level].dcc_enabled) {
state[6] |= S_008F28_COMPRESSION_EN(1);
state[7] = (gpu_address +
image->dcc_offset +
base_level_info->dcc_offset) >> 8;
}
}
static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type,
unsigned nr_layers, unsigned nr_samples, bool is_storage_image)
{
if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE;
switch (image_type) {
case VK_IMAGE_TYPE_1D:
return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D;
case VK_IMAGE_TYPE_2D:
if (nr_samples > 1)
return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA;
else
return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D;
case VK_IMAGE_TYPE_3D:
if (view_type == VK_IMAGE_VIEW_TYPE_3D)
return V_008F1C_SQ_RSRC_IMG_3D;
else
return V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
default:
unreachable("illegale image type");
}
}
/**
* Build the sampler view descriptor for a texture.
*/
static void
si_make_texture_descriptor(struct radv_device *device,
struct radv_image *image,
bool sampler,
VkImageViewType view_type,
VkFormat vk_format,
const VkComponentMapping *mapping,
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer,
unsigned width, unsigned height, unsigned depth,
uint32_t *state,
uint32_t *fmask_state)
{
const struct vk_format_description *desc;
enum vk_swizzle swizzle[4];
int first_non_void;
unsigned num_format, data_format, type;
desc = vk_format_description(vk_format);
if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) {
const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle);
} else {
vk_format_compose_swizzles(mapping, desc->swizzle, swizzle);
}
first_non_void = vk_format_get_first_non_void_channel(vk_format);
num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void);
if (num_format == ~0) {
num_format = 0;
}
data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void);
if (data_format == ~0) {
data_format = 0;
}
type = radv_tex_dim(image->type, view_type, image->array_size, image->samples,
(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
height = 1;
depth = image->array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
if (view_type != VK_IMAGE_VIEW_TYPE_3D)
depth = image->array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
depth = image->array_size / 6;
state[0] = 0;
state[1] = (S_008F14_DATA_FORMAT(data_format) |
S_008F14_NUM_FORMAT(num_format));
state[2] = (S_008F18_WIDTH(width - 1) |
S_008F18_HEIGHT(height - 1));
state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) |
S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) |
S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) |
S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) |
S_008F1C_BASE_LEVEL(image->samples > 1 ?
0 : first_level) |
S_008F1C_LAST_LEVEL(image->samples > 1 ?
util_logbase2(image->samples) :
last_level) |
S_008F1C_POW2_PAD(image->levels > 1) |
S_008F1C_TYPE(type));
state[4] = S_008F20_DEPTH(depth - 1);
state[5] = (S_008F24_BASE_ARRAY(first_layer) |
S_008F24_LAST_ARRAY(last_layer));
state[6] = 0;
state[7] = 0;
if (image->dcc_offset) {
unsigned swap = radv_translate_colorswap(vk_format, FALSE);
state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1);
} else {
/* The last dword is unused by hw. The shader uses it to clear
* bits in the first dword of sampler state.
*/
if (device->instance->physicalDevice.rad_info.chip_class <= CIK && image->samples <= 1) {
if (first_level == last_level)
state[7] = C_008F30_MAX_ANISO_RATIO;
else
state[7] = 0xffffffff;
}
}
/* Initialize the sampler view for FMASK. */
if (image->fmask.size) {
uint32_t fmask_format;
uint64_t gpu_address = device->ws->buffer_get_va(image->bo);
uint64_t va;
va = gpu_address + image->offset + image->fmask.offset;
switch (image->samples) {
case 2:
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2;
break;
case 4:
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4;
break;
case 8:
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8;
break;
default:
assert(0);
fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID;
}
fmask_state[0] = va >> 8;
fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) |
S_008F14_DATA_FORMAT(fmask_format) |
S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_UINT);
fmask_state[2] = S_008F18_WIDTH(width - 1) |
S_008F18_HEIGHT(height - 1);
fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
S_008F1C_TILING_INDEX(image->fmask.tile_mode_index) |
S_008F1C_TYPE(radv_tex_dim(image->type, view_type, 1, 0, false));
fmask_state[4] = S_008F20_DEPTH(depth - 1) |
S_008F20_PITCH(image->fmask.pitch_in_pixels - 1);
fmask_state[5] = S_008F24_BASE_ARRAY(first_layer) |
S_008F24_LAST_ARRAY(last_layer);
fmask_state[6] = 0;
fmask_state[7] = 0;
}
}
static void
radv_query_opaque_metadata(struct radv_device *device,
struct radv_image *image,
struct radeon_bo_metadata *md)
{
static const VkComponentMapping fixedmapping;
uint32_t desc[8], i;
/* Metadata image format format version 1:
* [0] = 1 (metadata format identifier)
* [1] = (VENDOR_ID << 16) | PCI_ID
* [2:9] = image descriptor for the whole resource
* [2] is always 0, because the base address is cleared
* [9] is the DCC offset bits [39:8] from the beginning of
* the buffer
* [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
*/
md->metadata[0] = 1; /* metadata image format version 1 */
/* TILE_MODE_INDEX is ambiguous without a PCI ID. */
md->metadata[1] = si_get_bo_metadata_word1(device);
si_make_texture_descriptor(device, image, true,
(VkImageViewType)image->type, image->vk_format,
&fixedmapping, 0, image->levels - 1, 0,
image->array_size,
image->extent.width, image->extent.height,
image->extent.depth,
desc, NULL);
si_set_mutable_tex_desc_fields(device, image, &image->surface.level[0], 0, 0,
image->surface.blk_w, false, desc);
/* Clear the base address and set the relative DCC offset. */
desc[0] = 0;
desc[1] &= C_008F14_BASE_ADDRESS_HI;
desc[7] = image->dcc_offset >> 8;
/* Dwords [2:9] contain the image descriptor. */
memcpy(&md->metadata[2], desc, sizeof(desc));
/* Dwords [10:..] contain the mipmap level offsets. */
for (i = 0; i <= image->levels - 1; i++)
md->metadata[10+i] = image->surface.level[i].offset >> 8;
md->size_metadata = (11 + image->levels - 1) * 4;
}
void
radv_init_metadata(struct radv_device *device,
struct radv_image *image,
struct radeon_bo_metadata *metadata)
{
struct radeon_surf *surface = &image->surface;
memset(metadata, 0, sizeof(*metadata));
metadata->microtile = surface->level[0].mode >= RADEON_SURF_MODE_1D ?
RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
metadata->macrotile = surface->level[0].mode >= RADEON_SURF_MODE_2D ?
RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
metadata->pipe_config = surface->pipe_config;
metadata->bankw = surface->bankw;
metadata->bankh = surface->bankh;
metadata->tile_split = surface->tile_split;
metadata->mtilea = surface->mtilea;
metadata->num_banks = surface->num_banks;
metadata->stride = surface->level[0].pitch_bytes;
metadata->scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
radv_query_opaque_metadata(device, image, metadata);
}
/* The number of samples can be specified independently of the texture. */
static void
radv_image_get_fmask_info(struct radv_device *device,
struct radv_image *image,
unsigned nr_samples,
struct radv_fmask_info *out)
{
/* FMASK is allocated like an ordinary texture. */
struct radeon_surf fmask = image->surface;
memset(out, 0, sizeof(*out));
fmask.bo_alignment = 0;
fmask.bo_size = 0;
fmask.nsamples = 1;
fmask.flags |= RADEON_SURF_FMASK;
/* Force 2D tiling if it wasn't set. This may occur when creating
* FMASK for MSAA resolve on R6xx. On R6xx, the single-sample
* destination buffer must have an FMASK too. */
fmask.flags = RADEON_SURF_CLR(fmask.flags, MODE);
fmask.flags |= RADEON_SURF_SET(RADEON_SURF_MODE_2D, MODE);
fmask.flags |= RADEON_SURF_HAS_TILE_MODE_INDEX;
switch (nr_samples) {
case 2:
case 4:
fmask.bpe = 1;
break;
case 8:
fmask.bpe = 4;
break;
default:
return;
}
device->ws->surface_init(device->ws, &fmask);
assert(fmask.level[0].mode == RADEON_SURF_MODE_2D);
out->slice_tile_max = (fmask.level[0].nblk_x * fmask.level[0].nblk_y) / 64;
if (out->slice_tile_max)
out->slice_tile_max -= 1;
out->tile_mode_index = fmask.tiling_index[0];
out->pitch_in_pixels = fmask.level[0].nblk_x;
out->bank_height = fmask.bankh;
out->alignment = MAX2(256, fmask.bo_alignment);
out->size = fmask.bo_size;
}
static void
radv_image_alloc_fmask(struct radv_device *device,
struct radv_image *image)
{
radv_image_get_fmask_info(device, image, image->samples, &image->fmask);
image->fmask.offset = align64(image->size, image->fmask.alignment);
image->size = image->fmask.offset + image->fmask.size;
}
static void
radv_image_get_cmask_info(struct radv_device *device,
struct radv_image *image,
struct radv_cmask_info *out)
{
unsigned pipe_interleave_bytes = device->instance->physicalDevice.rad_info.pipe_interleave_bytes;
unsigned num_pipes = device->instance->physicalDevice.rad_info.num_tile_pipes;
unsigned cl_width, cl_height;
switch (num_pipes) {
case 2:
cl_width = 32;
cl_height = 16;
break;
case 4:
cl_width = 32;
cl_height = 32;
break;
case 8:
cl_width = 64;
cl_height = 32;
break;
case 16: /* Hawaii */
cl_width = 64;
cl_height = 64;
break;
default:
assert(0);
return;
}
unsigned base_align = num_pipes * pipe_interleave_bytes;
unsigned width = align(image->surface.npix_x, cl_width*8);
unsigned height = align(image->surface.npix_y, cl_height*8);
unsigned slice_elements = (width * height) / (8*8);
/* Each element of CMASK is a nibble. */
unsigned slice_bytes = slice_elements / 2;
out->slice_tile_max = (width * height) / (128*128);
if (out->slice_tile_max)
out->slice_tile_max -= 1;
out->alignment = MAX2(256, base_align);
out->size = (image->type == VK_IMAGE_TYPE_3D ? image->extent.depth : image->array_size) *
align(slice_bytes, base_align);
}
static void
radv_image_alloc_cmask(struct radv_device *device,
struct radv_image *image)
{
radv_image_get_cmask_info(device, image, &image->cmask);
image->cmask.offset = align64(image->size, image->cmask.alignment);
/* + 8 for storing the clear values */
image->clear_value_offset = image->cmask.offset + image->cmask.size;
image->size = image->cmask.offset + image->cmask.size + 8;
}
static void
radv_image_alloc_dcc(struct radv_device *device,
struct radv_image *image)
{
image->dcc_offset = align64(image->size, image->surface.dcc_alignment);
/* + 8 for storing the clear values */
image->clear_value_offset = image->dcc_offset + image->surface.dcc_size;
image->size = image->dcc_offset + image->surface.dcc_size + 8;
}
static unsigned
radv_image_get_htile_size(struct radv_device *device,
struct radv_image *image)
{
unsigned cl_width, cl_height, width, height;
unsigned slice_elements, slice_bytes, base_align;
unsigned num_pipes = device->instance->physicalDevice.rad_info.num_tile_pipes;
unsigned pipe_interleave_bytes = device->instance->physicalDevice.rad_info.pipe_interleave_bytes;
/* Overalign HTILE on P2 configs to work around GPU hangs in
* piglit/depthstencil-render-miplevels 585.
*
* This has been confirmed to help Kabini & Stoney, where the hangs
* are always reproducible. I think I have seen the test hang
* on Carrizo too, though it was very rare there.
*/
if (device->instance->physicalDevice.rad_info.chip_class >= CIK && num_pipes < 4)
num_pipes = 4;
switch (num_pipes) {
case 1:
cl_width = 32;
cl_height = 16;
break;
case 2:
cl_width = 32;
cl_height = 32;
break;
case 4:
cl_width = 64;
cl_height = 32;
break;
case 8:
cl_width = 64;
cl_height = 64;
break;
case 16:
cl_width = 128;
cl_height = 64;
break;
default:
assert(0);
return 0;
}
width = align(image->surface.npix_x, cl_width * 8);
height = align(image->surface.npix_y, cl_height * 8);
slice_elements = (width * height) / (8 * 8);
slice_bytes = slice_elements * 4;
base_align = num_pipes * pipe_interleave_bytes;
image->htile.pitch = width;
image->htile.height = height;
image->htile.xalign = cl_width * 8;
image->htile.yalign = cl_height * 8;
return image->array_size *
align(slice_bytes, base_align);
}
static void
radv_image_alloc_htile(struct radv_device *device,
struct radv_image *image)
{
if (env_var_as_boolean("RADV_HIZ_DISABLE", false))
return;
image->htile.size = radv_image_get_htile_size(device, image);
if (!image->htile.size)
return;
image->htile.offset = align64(image->size, 32768);
/* + 8 for storing the clear values */
image->clear_value_offset = image->htile.offset + image->htile.size;
image->size = image->htile.offset + image->htile.size + 8;
image->alignment = align64(image->alignment, 32768);
}
VkResult
radv_image_create(VkDevice _device,
const struct radv_image_create_info *create_info,
const VkAllocationCallbacks* alloc,
VkImage *pImage)
{
RADV_FROM_HANDLE(radv_device, device, _device);
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
struct radv_image *image = NULL;
bool can_cmask_dcc = false;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
radv_assert(pCreateInfo->mipLevels > 0);
radv_assert(pCreateInfo->arrayLayers > 0);
radv_assert(pCreateInfo->samples > 0);
radv_assert(pCreateInfo->extent.width > 0);
radv_assert(pCreateInfo->extent.height > 0);
radv_assert(pCreateInfo->extent.depth > 0);
image = vk_alloc2(&device->alloc, alloc, sizeof(*image), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!image)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(image, 0, sizeof(*image));
image->type = pCreateInfo->imageType;
image->extent = pCreateInfo->extent;
image->vk_format = pCreateInfo->format;
image->levels = pCreateInfo->mipLevels;
image->array_size = pCreateInfo->arrayLayers;
image->samples = pCreateInfo->samples;
image->tiling = pCreateInfo->tiling;
image->usage = pCreateInfo->usage;
image->exclusive = pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE;
if (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) {
for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; ++i)
image->queue_family_mask |= 1u << pCreateInfo->pQueueFamilyIndices[i];
}
radv_init_surface(device, &image->surface, create_info);
device->ws->surface_init(device->ws, &image->surface);
image->size = image->surface.bo_size;
image->alignment = image->surface.bo_alignment;
if (image->exclusive || image->queue_family_mask == 1)
can_cmask_dcc = true;
if ((pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) &&
image->surface.dcc_size && can_cmask_dcc)
radv_image_alloc_dcc(device, image);
else
image->surface.dcc_size = 0;
if ((pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) &&
pCreateInfo->mipLevels == 1 &&
!image->surface.dcc_size && image->extent.depth == 1 && can_cmask_dcc)
radv_image_alloc_cmask(device, image);
if (image->samples > 1 && vk_format_is_color(pCreateInfo->format)) {
radv_image_alloc_fmask(device, image);
} else if (vk_format_is_depth(pCreateInfo->format)) {
radv_image_alloc_htile(device, image);
}
if (create_info->stride && create_info->stride != image->surface.level[0].pitch_bytes) {
image->surface.level[0].nblk_x = create_info->stride / image->surface.bpe;
image->surface.level[0].pitch_bytes = create_info->stride;
image->surface.level[0].slice_size = create_info->stride * image->surface.level[0].nblk_y;
}
*pImage = radv_image_to_handle(image);
return VK_SUCCESS;
}
void
radv_image_view_init(struct radv_image_view *iview,
struct radv_device *device,
const VkImageViewCreateInfo* pCreateInfo,
struct radv_cmd_buffer *cmd_buffer,
VkImageUsageFlags usage_mask)
{
RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
uint32_t blk_w;
bool is_stencil = false;
switch (image->type) {
case VK_IMAGE_TYPE_1D:
case VK_IMAGE_TYPE_2D:
assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->array_size);
break;
case VK_IMAGE_TYPE_3D:
assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1
<= radv_minify(image->extent.depth, range->baseMipLevel));
break;
default:
unreachable("bad VkImageType");
}
iview->image = image;
iview->bo = image->bo;
iview->type = pCreateInfo->viewType;
iview->vk_format = pCreateInfo->format;
iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) {
is_stencil = true;
iview->vk_format = vk_format_stencil_only(iview->vk_format);
} else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) {
iview->vk_format = vk_format_depth_only(iview->vk_format);
}
iview->extent = (VkExtent3D) {
.width = radv_minify(image->extent.width , range->baseMipLevel),
.height = radv_minify(image->extent.height, range->baseMipLevel),
.depth = radv_minify(image->extent.depth , range->baseMipLevel),
};
iview->extent.width = round_up_u32(iview->extent.width * vk_format_get_blockwidth(iview->vk_format),
vk_format_get_blockwidth(image->vk_format));
iview->extent.height = round_up_u32(iview->extent.height * vk_format_get_blockheight(iview->vk_format),
vk_format_get_blockheight(image->vk_format));
assert(image->surface.blk_w % vk_format_get_blockwidth(image->vk_format) == 0);
blk_w = image->surface.blk_w / vk_format_get_blockwidth(image->vk_format) * vk_format_get_blockwidth(iview->vk_format);
iview->base_layer = range->baseArrayLayer;
iview->layer_count = radv_get_layerCount(image, range);
iview->base_mip = range->baseMipLevel;
si_make_texture_descriptor(device, image, false,
iview->type,
iview->vk_format,
&pCreateInfo->components,
0, radv_get_levelCount(image, range) - 1,
range->baseArrayLayer,
range->baseArrayLayer + radv_get_layerCount(image, range) - 1,
iview->extent.width,
iview->extent.height,
iview->extent.depth,
iview->descriptor,
iview->fmask_descriptor);
si_set_mutable_tex_desc_fields(device, image,
is_stencil ? &image->surface.stencil_level[range->baseMipLevel] : &image->surface.level[range->baseMipLevel], range->baseMipLevel,
range->baseMipLevel,
blk_w, is_stencil, iview->descriptor);
}
void radv_image_set_optimal_micro_tile_mode(struct radv_device *device,
struct radv_image *image, uint32_t micro_tile_mode)
{
/* These magic numbers were copied from addrlib. It doesn't use any
* definitions for them either. They are all 2D_TILED_THIN1 modes with
* different bpp and micro tile mode.
*/
if (device->instance->physicalDevice.rad_info.chip_class >= CIK) {
switch (micro_tile_mode) {
case 0: /* displayable */
image->surface.tiling_index[0] = 10;
break;
case 1: /* thin */
image->surface.tiling_index[0] = 14;
break;
case 3: /* rotated */
image->surface.tiling_index[0] = 28;
break;
default: /* depth, thick */
assert(!"unexpected micro mode");
return;
}
} else { /* SI */
switch (micro_tile_mode) {
case 0: /* displayable */
switch (image->surface.bpe) {
case 1:
image->surface.tiling_index[0] = 10;
break;
case 2:
image->surface.tiling_index[0] = 11;
break;
default: /* 4, 8 */
image->surface.tiling_index[0] = 12;
break;
}
break;
case 1: /* thin */
switch (image->surface.bpe) {
case 1:
image->surface.tiling_index[0] = 14;
break;
case 2:
image->surface.tiling_index[0] = 15;
break;
case 4:
image->surface.tiling_index[0] = 16;
break;
default: /* 8, 16 */
image->surface.tiling_index[0] = 17;
break;
}
break;
default: /* depth, thick */
assert(!"unexpected micro mode");
return;
}
}
image->surface.micro_tile_mode = micro_tile_mode;
}
bool radv_layout_has_htile(const struct radv_image *image,
VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
bool radv_layout_is_htile_compressed(const struct radv_image *image,
VkImageLayout layout)
{
return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
bool radv_layout_can_expclear(const struct radv_image *image,
VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
bool radv_layout_can_fast_clear(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask)
{
return layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL &&
queue_mask == (1u << RADV_QUEUE_GENERAL);
}
unsigned radv_image_queue_family_mask(const struct radv_image *image, int family) {
if (image->exclusive)
return 1u <<family;
return image->queue_family_mask;
}
VkResult
radv_CreateImage(VkDevice device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
return radv_image_create(device,
&(struct radv_image_create_info) {
.vk_info = pCreateInfo,
.scanout = false,
},
pAllocator,
pImage);
}
void
radv_DestroyImage(VkDevice _device, VkImage _image,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (!_image)
return;
vk_free2(&device->alloc, pAllocator, radv_image_from_handle(_image));
}
void radv_GetImageSubresourceLayout(
VkDevice device,
VkImage _image,
const VkImageSubresource* pSubresource,
VkSubresourceLayout* pLayout)
{
RADV_FROM_HANDLE(radv_image, image, _image);
int level = pSubresource->mipLevel;
int layer = pSubresource->arrayLayer;
pLayout->offset = image->surface.level[level].offset + image->surface.level[level].slice_size * layer;
pLayout->rowPitch = image->surface.level[level].pitch_bytes;
pLayout->arrayPitch = image->surface.level[level].slice_size;
pLayout->depthPitch = image->surface.level[level].slice_size;
pLayout->size = image->surface.level[level].slice_size;
if (image->type == VK_IMAGE_TYPE_3D)
pLayout->size *= image->surface.level[level].nblk_z;
}
VkResult
radv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_image_view *view;
view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (view == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
radv_image_view_init(view, device, pCreateInfo, NULL, ~0);
*pView = radv_image_view_to_handle(view);
return VK_SUCCESS;
}
void
radv_DestroyImageView(VkDevice _device, VkImageView _iview,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_image_view, iview, _iview);
if (!iview)
return;
vk_free2(&device->alloc, pAllocator, iview);
}
void radv_buffer_view_init(struct radv_buffer_view *view,
struct radv_device *device,
const VkBufferViewCreateInfo* pCreateInfo,
struct radv_cmd_buffer *cmd_buffer)
{
RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer);
view->bo = buffer->bo;
view->range = pCreateInfo->range == VK_WHOLE_SIZE ?
buffer->size - pCreateInfo->offset : pCreateInfo->range;
view->vk_format = pCreateInfo->format;
radv_make_buffer_descriptor(device, buffer, view->vk_format,
pCreateInfo->offset, view->range, view->state);
}
VkResult
radv_CreateBufferView(VkDevice _device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_buffer_view *view;
view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!view)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
radv_buffer_view_init(view, device, pCreateInfo, NULL);
*pView = radv_buffer_view_to_handle(view);
return VK_SUCCESS;
}
void
radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer_view, view, bufferView);
if (!view)
return;
vk_free2(&device->alloc, pAllocator, view);
}