blob: 15a64c518067d24fa43210d613c383842c4694f9 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_constant_expression.cpp
* Evaluate and process constant valued expressions
*
* In GLSL, constant valued expressions are used in several places. These
* must be processed and evaluated very early in the compilation process.
*
* * Sizes of arrays
* * Initializers for uniforms
* * Initializers for \c const variables
*/
#include <math.h>
#include <cmath>
#include "main/core.h" /* for MAX2, MIN2, CLAMP */
#include "ir.h"
#include "ir_visitor.h"
#include "glsl_types.h"
static float
dot(ir_constant *op0, ir_constant *op1)
{
assert(op0->type->is_float() && op1->type->is_float());
float result = 0;
for (unsigned c = 0; c < op0->type->components(); c++)
result += op0->value.f[c] * op1->value.f[c];
return result;
}
ir_constant *
ir_expression::constant_expression_value()
{
if (this->type->is_error())
return NULL;
ir_constant *op[Elements(this->operands)] = { NULL, };
ir_constant_data data;
memset(&data, 0, sizeof(data));
for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
op[operand] = this->operands[operand]->constant_expression_value();
if (!op[operand])
return NULL;
}
if (op[1] != NULL)
assert(op[0]->type->base_type == op[1]->type->base_type);
bool op0_scalar = op[0]->type->is_scalar();
bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
/* When iterating over a vector or matrix's components, we want to increase
* the loop counter. However, for scalars, we want to stay at 0.
*/
unsigned c0_inc = op0_scalar ? 0 : 1;
unsigned c1_inc = op1_scalar ? 0 : 1;
unsigned components;
if (op1_scalar || !op[1]) {
components = op[0]->type->components();
} else {
components = op[1]->type->components();
}
void *ctx = hieralloc_parent(this);
/* Handle array operations here, rather than below. */
if (op[0]->type->is_array()) {
assert(op[1] != NULL && op[1]->type->is_array());
switch (this->operation) {
case ir_binop_all_equal:
return new(ctx) ir_constant(op[0]->has_value(op[1]));
case ir_binop_any_nequal:
return new(ctx) ir_constant(!op[0]->has_value(op[1]));
default:
break;
}
return NULL;
}
switch (this->operation) {
case ir_unop_bit_not:
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
for (unsigned c = 0; c < components; c++)
data.i[c] = ~ op[0]->value.i[c];
break;
case GLSL_TYPE_UINT:
for (unsigned c = 0; c < components; c++)
data.u[c] = ~ op[0]->value.u[c];
break;
default:
assert(0);
}
break;
case ir_unop_logic_not:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = !op[0]->value.b[c];
break;
case ir_unop_f2i:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.i[c] = (int) op[0]->value.f[c];
}
break;
case ir_unop_i2f:
assert(op[0]->type->base_type == GLSL_TYPE_INT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = (float) op[0]->value.i[c];
}
break;
case ir_unop_u2f:
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = (float) op[0]->value.u[c];
}
break;
case ir_unop_b2f:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
}
break;
case ir_unop_f2b:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
}
break;
case ir_unop_b2i:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.u[c] = op[0]->value.b[c] ? 1 : 0;
}
break;
case ir_unop_i2b:
assert(op[0]->type->is_integer());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.b[c] = op[0]->value.u[c] ? true : false;
}
break;
case ir_unop_any:
assert(op[0]->type->is_boolean());
data.b[0] = false;
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->value.b[c])
data.b[0] = true;
}
break;
case ir_unop_trunc:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = truncf(op[0]->value.f[c]);
}
break;
case ir_unop_ceil:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = ceilf(op[0]->value.f[c]);
}
break;
case ir_unop_floor:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = floorf(op[0]->value.f[c]);
}
break;
case ir_unop_fract:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = 0;
break;
case GLSL_TYPE_INT:
data.i[c] = 0;
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
break;
default:
assert(0);
}
}
break;
case ir_unop_sin:
case ir_unop_sin_reduced:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = sinf(op[0]->value.f[c]);
}
break;
case ir_unop_cos:
case ir_unop_cos_reduced:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = cosf(op[0]->value.f[c]);
}
break;
case ir_unop_neg:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = -((int) op[0]->value.u[c]);
break;
case GLSL_TYPE_INT:
data.i[c] = -op[0]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = -op[0]->value.f[c];
break;
default:
assert(0);
}
}
break;
case ir_unop_abs:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c];
if (data.i[c] < 0)
data.i[c] = -data.i[c];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = fabs(op[0]->value.f[c]);
break;
default:
assert(0);
}
}
break;
case ir_unop_sign:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.i[c] > 0;
break;
case GLSL_TYPE_INT:
data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
break;
default:
assert(0);
}
}
break;
case ir_unop_rcp:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
if (op[0]->value.u[c] != 0.0)
data.u[c] = 1 / op[0]->value.u[c];
break;
case GLSL_TYPE_INT:
if (op[0]->value.i[c] != 0.0)
data.i[c] = 1 / op[0]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
if (op[0]->value.f[c] != 0.0)
data.f[c] = 1.0F / op[0]->value.f[c];
break;
default:
assert(0);
}
}
break;
case ir_unop_rsq:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
}
break;
case ir_unop_sqrt:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = sqrtf(op[0]->value.f[c]);
}
break;
case ir_unop_exp:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = expf(op[0]->value.f[c]);
}
break;
case ir_unop_exp2:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = exp2f(op[0]->value.f[c]);
}
break;
case ir_unop_log:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = logf(op[0]->value.f[c]);
}
break;
case ir_unop_log2:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = log(op[0]->value.f[c]);
}
break;
case ir_unop_dFdx:
case ir_unop_dFdy:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = 0.0;
}
break;
case ir_binop_pow:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
}
break;
case ir_binop_dot:
data.f[0] = dot(op[0], op[1]);
break;
case ir_binop_min:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
break;
case GLSL_TYPE_INT:
data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
break;
default:
assert(0);
}
}
break;
case ir_binop_max:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
break;
case GLSL_TYPE_INT:
data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
break;
default:
assert(0);
}
}
break;
case ir_binop_add:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
break;
default:
assert(0);
}
}
break;
case ir_binop_sub:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
break;
default:
assert(0);
}
}
break;
case ir_binop_mul:
/* Check for equal types, or unequal types involving scalars */
if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
|| op0_scalar || op1_scalar) {
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
break;
default:
assert(0);
}
}
} else {
assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
/* Multiply an N-by-M matrix with an M-by-P matrix. Since either
* matrix can be a GLSL vector, either N or P can be 1.
*
* For vec*mat, the vector is treated as a row vector. This
* means the vector is a 1-row x M-column matrix.
*
* For mat*vec, the vector is treated as a column vector. Since
* matrix_columns is 1 for vectors, this just works.
*/
const unsigned n = op[0]->type->is_vector()
? 1 : op[0]->type->vector_elements;
const unsigned m = op[1]->type->vector_elements;
const unsigned p = op[1]->type->matrix_columns;
for (unsigned j = 0; j < p; j++) {
for (unsigned i = 0; i < n; i++) {
for (unsigned k = 0; k < m; k++) {
data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
}
}
}
}
break;
case ir_binop_div:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
break;
default:
assert(0);
}
}
break;
case ir_binop_mod:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
/* We don't use fmod because it rounds toward zero; GLSL specifies
* the use of floor.
*/
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
* floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
break;
default:
assert(0);
}
}
break;
case ir_binop_logic_and:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
break;
case ir_binop_logic_xor:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
break;
case ir_binop_logic_or:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
break;
case ir_binop_less:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[0] = op[0]->value.u[0] < op[1]->value.u[0];
break;
case GLSL_TYPE_INT:
data.b[0] = op[0]->value.i[0] < op[1]->value.i[0];
break;
case GLSL_TYPE_FLOAT:
data.b[0] = op[0]->value.f[0] < op[1]->value.f[0];
break;
default:
assert(0);
}
}
break;
case ir_binop_greater:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_lequal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0];
break;
case GLSL_TYPE_INT:
data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0];
break;
case GLSL_TYPE_FLOAT:
data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0];
break;
default:
assert(0);
}
}
break;
case ir_binop_gequal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0];
break;
case GLSL_TYPE_INT:
data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0];
break;
case GLSL_TYPE_FLOAT:
data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0];
break;
default:
assert(0);
}
}
break;
case ir_binop_equal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < components; c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_nequal:
assert(op[0]->type != op[1]->type);
for (unsigned c = 0; c < components; c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_all_equal:
data.b[0] = op[0]->has_value(op[1]);
break;
case ir_binop_any_nequal:
data.b[0] = !op[0]->has_value(op[1]);
break;
case ir_binop_lshift:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
} else if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
}
}
break;
case ir_binop_rshift:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
} else if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
}
}
break;
case ir_binop_bit_and:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
break;
default:
assert(0);
}
}
break;
case ir_binop_bit_or:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
break;
default:
assert(0);
}
}
break;
case ir_binop_bit_xor:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
break;
default:
assert(0);
}
}
break;
case ir_quadop_vector:
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[c]->value.i[0];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[c]->value.u[0];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[c]->value.f[0];
break;
default:
assert(0);
}
}
break;
default:
/* FINISHME: Should handle all expression types. */
return NULL;
}
return new(ctx) ir_constant(this->type, &data);
}
ir_constant *
ir_texture::constant_expression_value()
{
/* texture lookups aren't constant expressions */
return NULL;
}
ir_constant *
ir_swizzle::constant_expression_value()
{
ir_constant *v = this->val->constant_expression_value();
if (v != NULL) {
ir_constant_data data = { { 0 } };
const unsigned swiz_idx[4] = {
this->mask.x, this->mask.y, this->mask.z, this->mask.w
};
for (unsigned i = 0; i < this->mask.num_components; i++) {
switch (v->type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
default: assert(!"Should not get here."); break;
}
}
void *ctx = hieralloc_parent(this);
return new(ctx) ir_constant(this->type, &data);
}
return NULL;
}
ir_constant *
ir_dereference_variable::constant_expression_value()
{
/* This may occur during compile and var->type is glsl_type::error_type */
if (!var)
return NULL;
/* The constant_value of a uniform variable is its initializer,
* not the lifetime constant value of the uniform.
*/
if (var->mode == ir_var_uniform)
return NULL;
if (!var->constant_value)
return NULL;
return var->constant_value->clone(hieralloc_parent(var), NULL);
}
ir_constant *
ir_dereference_array::constant_expression_value()
{
ir_constant *array = this->array->constant_expression_value();
ir_constant *idx = this->array_index->constant_expression_value();
if ((array != NULL) && (idx != NULL)) {
void *ctx = hieralloc_parent(this);
if (array->type->is_matrix()) {
/* Array access of a matrix results in a vector.
*/
const unsigned column = idx->value.u[0];
const glsl_type *const column_type = array->type->column_type();
/* Offset in the constant matrix to the first element of the column
* to be extracted.
*/
const unsigned mat_idx = column * column_type->vector_elements;
ir_constant_data data = { { 0 } };
switch (column_type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
for (unsigned i = 0; i < column_type->vector_elements; i++)
data.u[i] = array->value.u[mat_idx + i];
break;
case GLSL_TYPE_FLOAT:
for (unsigned i = 0; i < column_type->vector_elements; i++)
data.f[i] = array->value.f[mat_idx + i];
break;
default:
assert(!"Should not get here.");
break;
}
return new(ctx) ir_constant(column_type, &data);
} else if (array->type->is_vector()) {
const unsigned component = idx->value.u[0];
return new(ctx) ir_constant(array, component);
} else {
const unsigned index = idx->value.u[0];
return array->get_array_element(index)->clone(ctx, NULL);
}
}
return NULL;
}
ir_constant *
ir_dereference_record::constant_expression_value()
{
ir_constant *v = this->record->constant_expression_value();
return (v != NULL) ? v->get_record_field(this->field) : NULL;
}
ir_constant *
ir_assignment::constant_expression_value()
{
/* FINISHME: Handle CEs involving assignment (return RHS) */
return NULL;
}
ir_constant *
ir_constant::constant_expression_value()
{
return this;
}
ir_constant *
ir_call::constant_expression_value()
{
if (this->type == glsl_type::error_type)
return NULL;
/* From the GLSL 1.20 spec, page 23:
* "Function calls to user-defined functions (non-built-in functions)
* cannot be used to form constant expressions."
*/
if (!this->callee->is_builtin)
return NULL;
unsigned num_parameters = 0;
/* Check if all parameters are constant */
ir_constant *op[3];
foreach_list(n, &this->actual_parameters) {
ir_constant *constant = ((ir_rvalue *) n)->constant_expression_value();
if (constant == NULL)
return NULL;
op[num_parameters] = constant;
assert(num_parameters < 3);
num_parameters++;
}
/* Individual cases below can either:
* - Assign "expr" a new ir_expression to evaluate (for basic opcodes)
* - Fill "data" with appopriate constant data
* - Return an ir_constant directly.
*/
void *mem_ctx = hieralloc_parent(this);
ir_expression *expr = NULL;
ir_constant_data data;
memset(&data, 0, sizeof(data));
const char *callee = this->callee_name();
if (strcmp(callee, "abs") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_abs, type, op[0], NULL);
} else if (strcmp(callee, "all") == 0) {
assert(op[0]->type->is_boolean());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (!op[0]->value.b[c])
return new(mem_ctx) ir_constant(false);
}
return new(mem_ctx) ir_constant(true);
} else if (strcmp(callee, "any") == 0) {
assert(op[0]->type->is_boolean());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->value.b[c])
return new(mem_ctx) ir_constant(true);
}
return new(mem_ctx) ir_constant(false);
} else if (strcmp(callee, "acos") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = acosf(op[0]->value.f[c]);
} else if (strcmp(callee, "acosh") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = acoshf(op[0]->value.f[c]);
} else if (strcmp(callee, "asin") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = asinf(op[0]->value.f[c]);
} else if (strcmp(callee, "asinh") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = asinhf(op[0]->value.f[c]);
} else if (strcmp(callee, "atan") == 0) {
assert(op[0]->type->is_float());
if (num_parameters == 2) {
assert(op[1]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = atan2f(op[0]->value.f[c], op[1]->value.f[c]);
} else {
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = atanf(op[0]->value.f[c]);
}
} else if (strcmp(callee, "atanh") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = atanhf(op[0]->value.f[c]);
} else if (strcmp(callee, "dFdx") == 0 || strcmp(callee, "dFdy") == 0) {
return ir_constant::zero(mem_ctx, this->type);
} else if (strcmp(callee, "ceil") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_ceil, type, op[0], NULL);
} else if (strcmp(callee, "clamp") == 0) {
assert(num_parameters == 3);
unsigned c1_inc = op[1]->type->is_scalar() ? 0 : 1;
unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
for (unsigned c = 0, c1 = 0, c2 = 0;
c < op[0]->type->components();
c1 += c1_inc, c2 += c2_inc, c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = CLAMP(op[0]->value.u[c], op[1]->value.u[c1],
op[2]->value.u[c2]);
break;
case GLSL_TYPE_INT:
data.i[c] = CLAMP(op[0]->value.i[c], op[1]->value.i[c1],
op[2]->value.i[c2]);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = CLAMP(op[0]->value.f[c], op[1]->value.f[c1],
op[2]->value.f[c2]);
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "cos") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_cos, type, op[0], NULL);
} else if (strcmp(callee, "cosh") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = coshf(op[0]->value.f[c]);
} else if (strcmp(callee, "cross") == 0) {
assert(op[0]->type == glsl_type::vec3_type);
assert(op[1]->type == glsl_type::vec3_type);
data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] -
op[1]->value.f[1] * op[0]->value.f[2]);
data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] -
op[1]->value.f[2] * op[0]->value.f[0]);
data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] -
op[1]->value.f[0] * op[0]->value.f[1]);
} else if (strcmp(callee, "degrees") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = 180.0F / M_PI * op[0]->value.f[c];
} else if (strcmp(callee, "distance") == 0) {
assert(op[0]->type->is_float() && op[1]->type->is_float());
float length_squared = 0.0;
for (unsigned c = 0; c < op[0]->type->components(); c++) {
float t = op[0]->value.f[c] - op[1]->value.f[c];
length_squared += t * t;
}
return new(mem_ctx) ir_constant(sqrtf(length_squared));
} else if (strcmp(callee, "dot") == 0) {
return new(mem_ctx) ir_constant(dot(op[0], op[1]));
} else if (strcmp(callee, "equal") == 0) {
assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
break;
case GLSL_TYPE_BOOL:
data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "exp") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_exp, type, op[0], NULL);
} else if (strcmp(callee, "exp2") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_exp2, type, op[0], NULL);
} else if (strcmp(callee, "faceforward") == 0) {
if (dot(op[2], op[1]) < 0)
return op[0];
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = -op[0]->value.f[c];
} else if (strcmp(callee, "floor") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_floor, type, op[0], NULL);
} else if (strcmp(callee, "fract") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_fract, type, op[0], NULL);
} else if (strcmp(callee, "fwidth") == 0) {
return ir_constant::zero(mem_ctx, this->type);
} else if (strcmp(callee, "greaterThan") == 0) {
assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "greaterThanEqual") == 0) {
assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "inversesqrt") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_rsq, type, op[0], NULL);
} else if (strcmp(callee, "length") == 0) {
return new(mem_ctx) ir_constant(sqrtf(dot(op[0], op[0])));
} else if (strcmp(callee, "lessThan") == 0) {
assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "lessThanEqual") == 0) {
assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "log") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_log, type, op[0], NULL);
} else if (strcmp(callee, "log2") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_log2, type, op[0], NULL);
} else if (strcmp(callee, "matrixCompMult") == 0) {
assert(op[0]->type->is_float() && op[1]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = op[0]->value.f[c] * op[1]->value.f[c];
} else if (strcmp(callee, "max") == 0) {
expr = new(mem_ctx) ir_expression(ir_binop_max, type, op[0], op[1]);
} else if (strcmp(callee, "min") == 0) {
expr = new(mem_ctx) ir_expression(ir_binop_min, type, op[0], op[1]);
} else if (strcmp(callee, "mix") == 0) {
assert(op[0]->type->is_float() && op[1]->type->is_float());
if (op[2]->type->is_float()) {
unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
unsigned components = op[0]->type->components();
for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
data.f[c] = op[0]->value.f[c] * (1 - op[2]->value.f[c2]) +
op[1]->value.f[c] * op[2]->value.f[c2];
}
} else {
assert(op[2]->type->is_boolean());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = op[op[2]->value.b[c] ? 1 : 0]->value.f[c];
}
} else if (strcmp(callee, "mod") == 0) {
expr = new(mem_ctx) ir_expression(ir_binop_mod, type, op[0], op[1]);
} else if (strcmp(callee, "normalize") == 0) {
assert(op[0]->type->is_float());
float length = sqrtf(dot(op[0], op[0]));
if (length == 0)
return ir_constant::zero(mem_ctx, this->type);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = op[0]->value.f[c] / length;
} else if (strcmp(callee, "not") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_logic_not, type, op[0], NULL);
} else if (strcmp(callee, "notEqual") == 0) {
assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
break;
case GLSL_TYPE_BOOL:
data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
break;
default:
assert(!"Should not get here.");
}
}
} else if (strcmp(callee, "outerProduct") == 0) {
assert(op[0]->type->is_vector() && op[1]->type->is_vector());
const unsigned m = op[0]->type->vector_elements;
const unsigned n = op[1]->type->vector_elements;
for (unsigned j = 0; j < n; j++) {
for (unsigned i = 0; i < m; i++) {
data.f[i+m*j] = op[0]->value.f[i] * op[1]->value.f[j];
}
}
} else if (strcmp(callee, "pow") == 0) {
expr = new(mem_ctx) ir_expression(ir_binop_pow, type, op[0], op[1]);
} else if (strcmp(callee, "radians") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = M_PI / 180.0F * op[0]->value.f[c];
} else if (strcmp(callee, "reflect") == 0) {
assert(op[0]->type->is_float());
float dot_NI = dot(op[1], op[0]);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = op[0]->value.f[c] - 2 * dot_NI * op[1]->value.f[c];
} else if (strcmp(callee, "refract") == 0) {
const float eta = op[2]->value.f[0];
const float dot_NI = dot(op[1], op[0]);
const float k = 1.0F - eta * eta * (1.0F - dot_NI * dot_NI);
if (k < 0.0) {
return ir_constant::zero(mem_ctx, this->type);
} else {
for (unsigned c = 0; c < type->components(); c++) {
data.f[c] = eta * op[0]->value.f[c] - (eta * dot_NI + sqrtf(k))
* op[1]->value.f[c];
}
}
} else if (strcmp(callee, "sign") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_sign, type, op[0], NULL);
} else if (strcmp(callee, "sin") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_sin, type, op[0], NULL);
} else if (strcmp(callee, "sinh") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = sinhf(op[0]->value.f[c]);
} else if (strcmp(callee, "smoothstep") == 0) {
assert(num_parameters == 3);
assert(op[1]->type == op[0]->type);
unsigned edge_inc = op[0]->type->is_scalar() ? 0 : 1;
for (unsigned c = 0, e = 0; c < type->components(); e += edge_inc, c++) {
const float edge0 = op[0]->value.f[e];
const float edge1 = op[1]->value.f[e];
if (edge0 == edge1) {
data.f[c] = 0.0; /* Avoid a crash - results are undefined anyway */
} else {
const float numerator = op[2]->value.f[c] - edge0;
const float denominator = edge1 - edge0;
const float t = CLAMP(numerator/denominator, 0, 1);
data.f[c] = t * t * (3 - 2 * t);
}
}
} else if (strcmp(callee, "sqrt") == 0) {
expr = new(mem_ctx) ir_expression(ir_unop_sqrt, type, op[0], NULL);
} else if (strcmp(callee, "step") == 0) {
assert(op[0]->type->is_float() && op[1]->type->is_float());
/* op[0] (edge) may be either a scalar or a vector */
const unsigned c0_inc = op[0]->type->is_scalar() ? 0 : 1;
for (unsigned c = 0, c0 = 0; c < type->components(); c0 += c0_inc, c++)
data.f[c] = (op[1]->value.f[c] < op[0]->value.f[c0]) ? 0.0F : 1.0F;
} else if (strcmp(callee, "tan") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = tanf(op[0]->value.f[c]);
} else if (strcmp(callee, "tanh") == 0) {
assert(op[0]->type->is_float());
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.f[c] = tanhf(op[0]->value.f[c]);
} else if (strcmp(callee, "transpose") == 0) {
assert(op[0]->type->is_matrix());
const unsigned n = op[0]->type->vector_elements;
const unsigned m = op[0]->type->matrix_columns;
for (unsigned j = 0; j < m; j++) {
for (unsigned i = 0; i < n; i++) {
data.f[m*i+j] += op[0]->value.f[i+n*j];
}
}
} else {
/* Unsupported builtin - some are not allowed in constant expressions. */
return NULL;
}
if (expr != NULL)
return expr->constant_expression_value();
return new(mem_ctx) ir_constant(this->type, &data);
}