blob: f50a5a6c0b4258a0b21c992b60abc205ed453645 [file] [log] [blame]
/*
* Copyright © 2014-2015 Broadcom
* Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/ralloc.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_control_flow.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/glsl/list.h"
#include "compiler/shader_enums.h"
#include "tgsi_to_nir.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_scan.h"
#define SWIZ(X, Y, Z, W) (unsigned[4]){ \
TGSI_SWIZZLE_##X, \
TGSI_SWIZZLE_##Y, \
TGSI_SWIZZLE_##Z, \
TGSI_SWIZZLE_##W, \
}
struct ttn_reg_info {
/** nir register containing this TGSI index. */
nir_register *reg;
nir_variable *var;
/** Offset (in vec4s) from the start of var for this TGSI index. */
int offset;
};
struct ttn_compile {
union tgsi_full_token *token;
nir_builder build;
struct tgsi_shader_info *scan;
struct ttn_reg_info *output_regs;
struct ttn_reg_info *temp_regs;
nir_ssa_def **imm_defs;
unsigned num_samp_types;
nir_alu_type *samp_types;
nir_register *addr_reg;
/**
* Stack of nir_cursors where instructions should be pushed as we pop
* back out of the control flow stack.
*
* For each IF/ELSE/ENDIF block, if_stack[if_stack_pos] has where the else
* instructions should be placed, and if_stack[if_stack_pos - 1] has where
* the next instructions outside of the if/then/else block go.
*/
nir_cursor *if_stack;
unsigned if_stack_pos;
/**
* Stack of nir_cursors where instructions should be pushed as we pop
* back out of the control flow stack.
*
* loop_stack[loop_stack_pos - 1] contains the cf_node_list for the outside
* of the loop.
*/
nir_cursor *loop_stack;
unsigned loop_stack_pos;
/* How many TGSI_FILE_IMMEDIATE vec4s have been parsed so far. */
unsigned next_imm;
};
#define ttn_swizzle(b, src, x, y, z, w) \
nir_swizzle(b, src, SWIZ(x, y, z, w), 4, false)
#define ttn_channel(b, src, swiz) \
nir_swizzle(b, src, SWIZ(swiz, swiz, swiz, swiz), 1, false)
static gl_varying_slot
tgsi_varying_semantic_to_slot(unsigned semantic, unsigned index)
{
switch (semantic) {
case TGSI_SEMANTIC_POSITION:
return VARYING_SLOT_POS;
case TGSI_SEMANTIC_COLOR:
if (index == 0)
return VARYING_SLOT_COL0;
else
return VARYING_SLOT_COL1;
case TGSI_SEMANTIC_BCOLOR:
if (index == 0)
return VARYING_SLOT_BFC0;
else
return VARYING_SLOT_BFC1;
case TGSI_SEMANTIC_FOG:
return VARYING_SLOT_FOGC;
case TGSI_SEMANTIC_PSIZE:
return VARYING_SLOT_PSIZ;
case TGSI_SEMANTIC_GENERIC:
return VARYING_SLOT_VAR0 + index;
case TGSI_SEMANTIC_FACE:
return VARYING_SLOT_FACE;
case TGSI_SEMANTIC_EDGEFLAG:
return VARYING_SLOT_EDGE;
case TGSI_SEMANTIC_PRIMID:
return VARYING_SLOT_PRIMITIVE_ID;
case TGSI_SEMANTIC_CLIPDIST:
if (index == 0)
return VARYING_SLOT_CLIP_DIST0;
else
return VARYING_SLOT_CLIP_DIST1;
case TGSI_SEMANTIC_CLIPVERTEX:
return VARYING_SLOT_CLIP_VERTEX;
case TGSI_SEMANTIC_TEXCOORD:
return VARYING_SLOT_TEX0 + index;
case TGSI_SEMANTIC_PCOORD:
return VARYING_SLOT_PNTC;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
return VARYING_SLOT_VIEWPORT;
case TGSI_SEMANTIC_LAYER:
return VARYING_SLOT_LAYER;
default:
fprintf(stderr, "Bad TGSI semantic: %d/%d\n", semantic, index);
abort();
}
}
/* Temporary helper to remap back to TGSI style semantic name/index
* values, for use in drivers that haven't been converted to using
* VARYING_SLOT_
*/
void
varying_slot_to_tgsi_semantic(gl_varying_slot slot,
unsigned *semantic_name, unsigned *semantic_index)
{
static const unsigned map[][2] = {
[VARYING_SLOT_POS] = { TGSI_SEMANTIC_POSITION, 0 },
[VARYING_SLOT_COL0] = { TGSI_SEMANTIC_COLOR, 0 },
[VARYING_SLOT_COL1] = { TGSI_SEMANTIC_COLOR, 1 },
[VARYING_SLOT_BFC0] = { TGSI_SEMANTIC_BCOLOR, 0 },
[VARYING_SLOT_BFC1] = { TGSI_SEMANTIC_BCOLOR, 1 },
[VARYING_SLOT_FOGC] = { TGSI_SEMANTIC_FOG, 0 },
[VARYING_SLOT_PSIZ] = { TGSI_SEMANTIC_PSIZE, 0 },
[VARYING_SLOT_FACE] = { TGSI_SEMANTIC_FACE, 0 },
[VARYING_SLOT_EDGE] = { TGSI_SEMANTIC_EDGEFLAG, 0 },
[VARYING_SLOT_PRIMITIVE_ID] = { TGSI_SEMANTIC_PRIMID, 0 },
[VARYING_SLOT_CLIP_DIST0] = { TGSI_SEMANTIC_CLIPDIST, 0 },
[VARYING_SLOT_CLIP_DIST1] = { TGSI_SEMANTIC_CLIPDIST, 1 },
[VARYING_SLOT_CLIP_VERTEX] = { TGSI_SEMANTIC_CLIPVERTEX, 0 },
[VARYING_SLOT_PNTC] = { TGSI_SEMANTIC_PCOORD, 0 },
[VARYING_SLOT_VIEWPORT] = { TGSI_SEMANTIC_VIEWPORT_INDEX, 0 },
[VARYING_SLOT_LAYER] = { TGSI_SEMANTIC_LAYER, 0 },
};
if (slot >= VARYING_SLOT_VAR0) {
*semantic_name = TGSI_SEMANTIC_GENERIC;
*semantic_index = slot - VARYING_SLOT_VAR0;
return;
}
if (slot >= VARYING_SLOT_TEX0 && slot <= VARYING_SLOT_TEX7) {
*semantic_name = TGSI_SEMANTIC_TEXCOORD;
*semantic_index = slot - VARYING_SLOT_TEX0;
return;
}
if (slot >= ARRAY_SIZE(map)) {
fprintf(stderr, "Unknown varying slot %d\n", slot);
abort();
}
*semantic_name = map[slot][0];
*semantic_index = map[slot][1];
}
/* Temporary helper to remap back to TGSI style semantic name/index
* values, for use in drivers that haven't been converted to using
* FRAG_RESULT_
*/
void
frag_result_to_tgsi_semantic(gl_frag_result slot,
unsigned *semantic_name, unsigned *semantic_index)
{
static const unsigned map[][2] = {
[FRAG_RESULT_DEPTH] = { TGSI_SEMANTIC_POSITION, 0 },
[FRAG_RESULT_COLOR] = { TGSI_SEMANTIC_COLOR, -1 },
[FRAG_RESULT_DATA0 + 0] = { TGSI_SEMANTIC_COLOR, 0 },
[FRAG_RESULT_DATA0 + 1] = { TGSI_SEMANTIC_COLOR, 1 },
[FRAG_RESULT_DATA0 + 2] = { TGSI_SEMANTIC_COLOR, 2 },
[FRAG_RESULT_DATA0 + 3] = { TGSI_SEMANTIC_COLOR, 3 },
[FRAG_RESULT_DATA0 + 4] = { TGSI_SEMANTIC_COLOR, 4 },
[FRAG_RESULT_DATA0 + 5] = { TGSI_SEMANTIC_COLOR, 5 },
[FRAG_RESULT_DATA0 + 6] = { TGSI_SEMANTIC_COLOR, 6 },
[FRAG_RESULT_DATA0 + 7] = { TGSI_SEMANTIC_COLOR, 7 },
};
*semantic_name = map[slot][0];
*semantic_index = map[slot][1];
}
static nir_ssa_def *
ttn_src_for_dest(nir_builder *b, nir_alu_dest *dest)
{
nir_alu_src src;
memset(&src, 0, sizeof(src));
if (dest->dest.is_ssa)
src.src = nir_src_for_ssa(&dest->dest.ssa);
else {
assert(!dest->dest.reg.indirect);
src.src = nir_src_for_reg(dest->dest.reg.reg);
src.src.reg.base_offset = dest->dest.reg.base_offset;
}
for (int i = 0; i < 4; i++)
src.swizzle[i] = i;
return nir_fmov_alu(b, src, 4);
}
static void
ttn_emit_declaration(struct ttn_compile *c)
{
nir_builder *b = &c->build;
struct tgsi_full_declaration *decl = &c->token->FullDeclaration;
unsigned array_size = decl->Range.Last - decl->Range.First + 1;
unsigned file = decl->Declaration.File;
unsigned i;
if (file == TGSI_FILE_TEMPORARY) {
if (decl->Declaration.Array) {
/* for arrays, we create variables instead of registers: */
nir_variable *var = rzalloc(b->shader, nir_variable);
var->type = glsl_array_type(glsl_vec4_type(), array_size);
var->data.mode = nir_var_global;
var->name = ralloc_asprintf(var, "arr_%d", decl->Array.ArrayID);
exec_list_push_tail(&b->shader->globals, &var->node);
for (i = 0; i < array_size; i++) {
/* point all the matching slots to the same var,
* with appropriate offset set, mostly just so
* we know what to do when tgsi does a non-indirect
* access
*/
c->temp_regs[decl->Range.First + i].reg = NULL;
c->temp_regs[decl->Range.First + i].var = var;
c->temp_regs[decl->Range.First + i].offset = i;
}
} else {
for (i = 0; i < array_size; i++) {
nir_register *reg = nir_local_reg_create(b->impl);
reg->num_components = 4;
c->temp_regs[decl->Range.First + i].reg = reg;
c->temp_regs[decl->Range.First + i].var = NULL;
c->temp_regs[decl->Range.First + i].offset = 0;
}
}
} else if (file == TGSI_FILE_ADDRESS) {
c->addr_reg = nir_local_reg_create(b->impl);
c->addr_reg->num_components = 4;
} else if (file == TGSI_FILE_SYSTEM_VALUE) {
/* Nothing to record for system values. */
} else if (file == TGSI_FILE_SAMPLER) {
/* Nothing to record for samplers. */
} else if (file == TGSI_FILE_SAMPLER_VIEW) {
struct tgsi_declaration_sampler_view *sview = &decl->SamplerView;
nir_alu_type type;
assert((sview->ReturnTypeX == sview->ReturnTypeY) &&
(sview->ReturnTypeX == sview->ReturnTypeZ) &&
(sview->ReturnTypeX == sview->ReturnTypeW));
switch (sview->ReturnTypeX) {
case TGSI_RETURN_TYPE_SINT:
type = nir_type_int;
break;
case TGSI_RETURN_TYPE_UINT:
type = nir_type_uint;
break;
case TGSI_RETURN_TYPE_FLOAT:
default:
type = nir_type_float;
break;
}
for (i = 0; i < array_size; i++) {
c->samp_types[decl->Range.First + i] = type;
}
} else {
bool is_array = (array_size > 1);
assert(file == TGSI_FILE_INPUT ||
file == TGSI_FILE_OUTPUT ||
file == TGSI_FILE_CONSTANT);
/* nothing to do for UBOs: */
if ((file == TGSI_FILE_CONSTANT) && decl->Declaration.Dimension)
return;
if ((file == TGSI_FILE_INPUT) || (file == TGSI_FILE_OUTPUT)) {
is_array = (is_array && decl->Declaration.Array &&
(decl->Array.ArrayID != 0));
}
for (i = 0; i < array_size; i++) {
unsigned idx = decl->Range.First + i;
nir_variable *var = rzalloc(b->shader, nir_variable);
var->data.driver_location = idx;
var->type = glsl_vec4_type();
if (is_array)
var->type = glsl_array_type(var->type, array_size);
switch (file) {
case TGSI_FILE_INPUT:
var->data.read_only = true;
var->data.mode = nir_var_shader_in;
var->name = ralloc_asprintf(var, "in_%d", idx);
if (c->scan->processor == PIPE_SHADER_FRAGMENT) {
if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
var->data.location = SYSTEM_VALUE_FRONT_FACE;
var->data.mode = nir_var_system_value;
} else {
var->data.location =
tgsi_varying_semantic_to_slot(decl->Semantic.Name,
decl->Semantic.Index);
}
} else {
assert(!decl->Declaration.Semantic);
var->data.location = VERT_ATTRIB_GENERIC0 + idx;
}
var->data.index = 0;
/* We definitely need to translate the interpolation field, because
* nir_print will decode it.
*/
switch (decl->Interp.Interpolate) {
case TGSI_INTERPOLATE_CONSTANT:
var->data.interpolation = INTERP_MODE_FLAT;
break;
case TGSI_INTERPOLATE_LINEAR:
var->data.interpolation = INTERP_MODE_NOPERSPECTIVE;
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
var->data.interpolation = INTERP_MODE_SMOOTH;
break;
}
exec_list_push_tail(&b->shader->inputs, &var->node);
for (int i = 0; i < array_size; i++)
b->shader->info->inputs_read |= 1 << (var->data.location + i);
break;
case TGSI_FILE_OUTPUT: {
int semantic_name = decl->Semantic.Name;
int semantic_index = decl->Semantic.Index;
/* Since we can't load from outputs in the IR, we make temporaries
* for the outputs and emit stores to the real outputs at the end of
* the shader.
*/
nir_register *reg = nir_local_reg_create(b->impl);
reg->num_components = 4;
if (is_array)
reg->num_array_elems = array_size;
var->data.mode = nir_var_shader_out;
var->name = ralloc_asprintf(var, "out_%d", idx);
var->data.index = 0;
if (c->scan->processor == PIPE_SHADER_FRAGMENT) {
switch (semantic_name) {
case TGSI_SEMANTIC_COLOR: {
/* TODO tgsi loses some information, so we cannot
* actually differentiate here between DSB and MRT
* at this point. But so far no drivers using tgsi-
* to-nir support dual source blend:
*/
bool dual_src_blend = false;
if (dual_src_blend && (semantic_index == 1)) {
var->data.location = FRAG_RESULT_DATA0;
var->data.index = 1;
} else {
if (c->scan->properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
var->data.location = FRAG_RESULT_COLOR;
else
var->data.location = FRAG_RESULT_DATA0 + semantic_index;
}
break;
}
case TGSI_SEMANTIC_POSITION:
var->data.location = FRAG_RESULT_DEPTH;
break;
default:
fprintf(stderr, "Bad TGSI semantic: %d/%d\n",
decl->Semantic.Name, decl->Semantic.Index);
abort();
}
} else {
var->data.location =
tgsi_varying_semantic_to_slot(semantic_name, semantic_index);
}
if (is_array) {
unsigned j;
for (j = 0; j < array_size; j++) {
c->output_regs[idx + j].offset = i + j;
c->output_regs[idx + j].reg = reg;
}
} else {
c->output_regs[idx].offset = i;
c->output_regs[idx].reg = reg;
}
exec_list_push_tail(&b->shader->outputs, &var->node);
for (int i = 0; i < array_size; i++)
b->shader->info->outputs_written |= 1 << (var->data.location + i);
}
break;
case TGSI_FILE_CONSTANT:
var->data.mode = nir_var_uniform;
var->name = ralloc_asprintf(var, "uniform_%d", idx);
exec_list_push_tail(&b->shader->uniforms, &var->node);
break;
default:
unreachable("bad declaration file");
return;
}
if (is_array)
break;
}
}
}
static void
ttn_emit_immediate(struct ttn_compile *c)
{
nir_builder *b = &c->build;
struct tgsi_full_immediate *tgsi_imm = &c->token->FullImmediate;
nir_load_const_instr *load_const;
int i;
load_const = nir_load_const_instr_create(b->shader, 4, 32);
c->imm_defs[c->next_imm] = &load_const->def;
c->next_imm++;
for (i = 0; i < 4; i++)
load_const->value.u32[i] = tgsi_imm->u[i].Uint;
nir_builder_instr_insert(b, &load_const->instr);
}
static nir_ssa_def *
ttn_src_for_indirect(struct ttn_compile *c, struct tgsi_ind_register *indirect);
/* generate either a constant or indirect deref chain for accessing an
* array variable.
*/
static nir_deref_var *
ttn_array_deref(struct ttn_compile *c, nir_intrinsic_instr *instr,
nir_variable *var, unsigned offset,
struct tgsi_ind_register *indirect)
{
nir_deref_var *deref = nir_deref_var_create(instr, var);
nir_deref_array *arr = nir_deref_array_create(deref);
arr->base_offset = offset;
arr->deref.type = glsl_get_array_element(var->type);
if (indirect) {
arr->deref_array_type = nir_deref_array_type_indirect;
arr->indirect = nir_src_for_ssa(ttn_src_for_indirect(c, indirect));
} else {
arr->deref_array_type = nir_deref_array_type_direct;
}
deref->deref.child = &arr->deref;
return deref;
}
static nir_src
ttn_src_for_file_and_index(struct ttn_compile *c, unsigned file, unsigned index,
struct tgsi_ind_register *indirect,
struct tgsi_dimension *dim,
struct tgsi_ind_register *dimind)
{
nir_builder *b = &c->build;
nir_src src;
memset(&src, 0, sizeof(src));
switch (file) {
case TGSI_FILE_TEMPORARY:
if (c->temp_regs[index].var) {
unsigned offset = c->temp_regs[index].offset;
nir_variable *var = c->temp_regs[index].var;
nir_intrinsic_instr *load;
load = nir_intrinsic_instr_create(b->shader,
nir_intrinsic_load_var);
load->num_components = 4;
load->variables[0] = ttn_array_deref(c, load, var, offset, indirect);
nir_ssa_dest_init(&load->instr, &load->dest,
4, 32, NULL);
nir_builder_instr_insert(b, &load->instr);
src = nir_src_for_ssa(&load->dest.ssa);
} else {
assert(!indirect);
src.reg.reg = c->temp_regs[index].reg;
}
assert(!dim);
break;
case TGSI_FILE_ADDRESS:
src.reg.reg = c->addr_reg;
assert(!dim);
break;
case TGSI_FILE_IMMEDIATE:
src = nir_src_for_ssa(c->imm_defs[index]);
assert(!indirect);
assert(!dim);
break;
case TGSI_FILE_SYSTEM_VALUE: {
nir_intrinsic_instr *load;
nir_intrinsic_op op;
unsigned ncomp = 1;
assert(!indirect);
assert(!dim);
switch (c->scan->system_value_semantic_name[index]) {
case TGSI_SEMANTIC_VERTEXID_NOBASE:
op = nir_intrinsic_load_vertex_id_zero_base;
break;
case TGSI_SEMANTIC_VERTEXID:
op = nir_intrinsic_load_vertex_id;
break;
case TGSI_SEMANTIC_BASEVERTEX:
op = nir_intrinsic_load_base_vertex;
break;
case TGSI_SEMANTIC_INSTANCEID:
op = nir_intrinsic_load_instance_id;
break;
default:
unreachable("bad system value");
}
load = nir_intrinsic_instr_create(b->shader, op);
load->num_components = ncomp;
nir_ssa_dest_init(&load->instr, &load->dest, ncomp, 32, NULL);
nir_builder_instr_insert(b, &load->instr);
src = nir_src_for_ssa(&load->dest.ssa);
b->shader->info->system_values_read |=
(1 << nir_system_value_from_intrinsic(op));
break;
}
case TGSI_FILE_INPUT:
case TGSI_FILE_CONSTANT: {
nir_intrinsic_instr *load;
nir_intrinsic_op op;
unsigned srcn = 0;
switch (file) {
case TGSI_FILE_INPUT:
/* Special case: Turn the frontface varying into a load of the
* frontface intrinsic plus math, and appending the silly floats.
*/
if (c->scan->processor == PIPE_SHADER_FRAGMENT &&
c->scan->input_semantic_name[index] == TGSI_SEMANTIC_FACE) {
nir_ssa_def *tgsi_frontface[4] = {
nir_bcsel(&c->build,
nir_load_system_value(&c->build,
nir_intrinsic_load_front_face, 0),
nir_imm_float(&c->build, 1.0),
nir_imm_float(&c->build, -1.0)),
nir_imm_float(&c->build, 0.0),
nir_imm_float(&c->build, 0.0),
nir_imm_float(&c->build, 1.0),
};
return nir_src_for_ssa(nir_vec(&c->build, tgsi_frontface, 4));
}
op = nir_intrinsic_load_input;
assert(!dim);
break;
case TGSI_FILE_CONSTANT:
if (dim) {
op = nir_intrinsic_load_ubo;
} else {
op = nir_intrinsic_load_uniform;
}
break;
default:
unreachable("No other load files supported");
break;
}
load = nir_intrinsic_instr_create(b->shader, op);
load->num_components = 4;
if (dim) {
if (dimind) {
load->src[srcn] =
ttn_src_for_file_and_index(c, dimind->File, dimind->Index,
NULL, NULL, NULL);
} else {
/* UBOs start at index 1 in TGSI: */
load->src[srcn] =
nir_src_for_ssa(nir_imm_int(b, dim->Index - 1));
}
srcn++;
}
nir_ssa_def *offset;
if (op == nir_intrinsic_load_ubo) {
/* UBO loads don't have a base offset. */
offset = nir_imm_int(b, index);
if (indirect) {
offset = nir_iadd(b, offset, ttn_src_for_indirect(c, indirect));
}
/* UBO offsets are in bytes, but TGSI gives them to us in vec4's */
offset = nir_ishl(b, offset, nir_imm_int(b, 4));
} else {
nir_intrinsic_set_base(load, index);
if (indirect) {
offset = ttn_src_for_indirect(c, indirect);
} else {
offset = nir_imm_int(b, 0);
}
}
load->src[srcn++] = nir_src_for_ssa(offset);
nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
nir_builder_instr_insert(b, &load->instr);
src = nir_src_for_ssa(&load->dest.ssa);
break;
}
default:
unreachable("bad src file");
}
return src;
}
static nir_ssa_def *
ttn_src_for_indirect(struct ttn_compile *c, struct tgsi_ind_register *indirect)
{
nir_builder *b = &c->build;
nir_alu_src src;
memset(&src, 0, sizeof(src));
for (int i = 0; i < 4; i++)
src.swizzle[i] = indirect->Swizzle;
src.src = ttn_src_for_file_and_index(c,
indirect->File,
indirect->Index,
NULL, NULL, NULL);
return nir_imov_alu(b, src, 1);
}
static nir_alu_dest
ttn_get_dest(struct ttn_compile *c, struct tgsi_full_dst_register *tgsi_fdst)
{
struct tgsi_dst_register *tgsi_dst = &tgsi_fdst->Register;
nir_alu_dest dest;
unsigned index = tgsi_dst->Index;
memset(&dest, 0, sizeof(dest));
if (tgsi_dst->File == TGSI_FILE_TEMPORARY) {
if (c->temp_regs[index].var) {
nir_register *reg;
/* this works, because TGSI will give us a base offset
* (in case of indirect index) that points back into
* the array. Access can be direct or indirect, we
* don't really care. Just create a one-shot dst reg
* that will get store_var'd back into the array var
* at the end of ttn_emit_instruction()
*/
reg = nir_local_reg_create(c->build.impl);
reg->num_components = 4;
dest.dest.reg.reg = reg;
dest.dest.reg.base_offset = 0;
} else {
assert(!tgsi_dst->Indirect);
dest.dest.reg.reg = c->temp_regs[index].reg;
dest.dest.reg.base_offset = c->temp_regs[index].offset;
}
} else if (tgsi_dst->File == TGSI_FILE_OUTPUT) {
dest.dest.reg.reg = c->output_regs[index].reg;
dest.dest.reg.base_offset = c->output_regs[index].offset;
} else if (tgsi_dst->File == TGSI_FILE_ADDRESS) {
assert(index == 0);
dest.dest.reg.reg = c->addr_reg;
}
dest.write_mask = tgsi_dst->WriteMask;
dest.saturate = false;
if (tgsi_dst->Indirect && (tgsi_dst->File != TGSI_FILE_TEMPORARY)) {
nir_src *indirect = ralloc(c->build.shader, nir_src);
*indirect = nir_src_for_ssa(ttn_src_for_indirect(c, &tgsi_fdst->Indirect));
dest.dest.reg.indirect = indirect;
}
return dest;
}
static nir_variable *
ttn_get_var(struct ttn_compile *c, struct tgsi_full_dst_register *tgsi_fdst)
{
struct tgsi_dst_register *tgsi_dst = &tgsi_fdst->Register;
unsigned index = tgsi_dst->Index;
if (tgsi_dst->File == TGSI_FILE_TEMPORARY) {
/* we should not have an indirect when there is no var! */
if (!c->temp_regs[index].var)
assert(!tgsi_dst->Indirect);
return c->temp_regs[index].var;
}
return NULL;
}
static nir_ssa_def *
ttn_get_src(struct ttn_compile *c, struct tgsi_full_src_register *tgsi_fsrc)
{
nir_builder *b = &c->build;
struct tgsi_src_register *tgsi_src = &tgsi_fsrc->Register;
unsigned tgsi_opcode = c->token->FullInstruction.Instruction.Opcode;
unsigned tgsi_src_type = tgsi_opcode_infer_src_type(tgsi_opcode);
bool src_is_float = !(tgsi_src_type == TGSI_TYPE_SIGNED ||
tgsi_src_type == TGSI_TYPE_UNSIGNED);
nir_alu_src src;
memset(&src, 0, sizeof(src));
if (tgsi_src->File == TGSI_FILE_NULL) {
return nir_imm_float(b, 0.0);
} else if (tgsi_src->File == TGSI_FILE_SAMPLER) {
/* Only the index of the sampler gets used in texturing, and it will
* handle looking that up on its own instead of using the nir_alu_src.
*/
assert(!tgsi_src->Indirect);
return NULL;
} else {
struct tgsi_ind_register *ind = NULL;
struct tgsi_dimension *dim = NULL;
struct tgsi_ind_register *dimind = NULL;
if (tgsi_src->Indirect)
ind = &tgsi_fsrc->Indirect;
if (tgsi_src->Dimension) {
dim = &tgsi_fsrc->Dimension;
if (dim->Indirect)
dimind = &tgsi_fsrc->DimIndirect;
}
src.src = ttn_src_for_file_and_index(c,
tgsi_src->File,
tgsi_src->Index,
ind, dim, dimind);
}
src.swizzle[0] = tgsi_src->SwizzleX;
src.swizzle[1] = tgsi_src->SwizzleY;
src.swizzle[2] = tgsi_src->SwizzleZ;
src.swizzle[3] = tgsi_src->SwizzleW;
nir_ssa_def *def = nir_fmov_alu(b, src, 4);
if (tgsi_src->Absolute) {
if (src_is_float)
def = nir_fabs(b, def);
else
def = nir_iabs(b, def);
}
if (tgsi_src->Negate) {
if (src_is_float)
def = nir_fneg(b, def);
else
def = nir_ineg(b, def);
}
return def;
}
static void
ttn_alu(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
unsigned num_srcs = nir_op_infos[op].num_inputs;
nir_alu_instr *instr = nir_alu_instr_create(b->shader, op);
unsigned i;
for (i = 0; i < num_srcs; i++)
instr->src[i].src = nir_src_for_ssa(src[i]);
instr->dest = dest;
nir_builder_instr_insert(b, &instr->instr);
}
static void
ttn_move_dest_masked(nir_builder *b, nir_alu_dest dest,
nir_ssa_def *def, unsigned write_mask)
{
if (!(dest.write_mask & write_mask))
return;
nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov);
mov->dest = dest;
mov->dest.write_mask &= write_mask;
mov->src[0].src = nir_src_for_ssa(def);
for (unsigned i = def->num_components; i < 4; i++)
mov->src[0].swizzle[i] = def->num_components - 1;
nir_builder_instr_insert(b, &mov->instr);
}
static void
ttn_move_dest(nir_builder *b, nir_alu_dest dest, nir_ssa_def *def)
{
ttn_move_dest_masked(b, dest, def, TGSI_WRITEMASK_XYZW);
}
static void
ttn_arl(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_f2i(b, nir_ffloor(b, src[0])));
}
/* EXP - Approximate Exponential Base 2
* dst.x = 2^{\lfloor src.x\rfloor}
* dst.y = src.x - \lfloor src.x\rfloor
* dst.z = 2^{src.x}
* dst.w = 1.0
*/
static void
ttn_exp(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
nir_ssa_def *srcx = ttn_channel(b, src[0], X);
ttn_move_dest_masked(b, dest, nir_fexp2(b, nir_ffloor(b, srcx)),
TGSI_WRITEMASK_X);
ttn_move_dest_masked(b, dest, nir_fsub(b, srcx, nir_ffloor(b, srcx)),
TGSI_WRITEMASK_Y);
ttn_move_dest_masked(b, dest, nir_fexp2(b, srcx), TGSI_WRITEMASK_Z);
ttn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), TGSI_WRITEMASK_W);
}
/* LOG - Approximate Logarithm Base 2
* dst.x = \lfloor\log_2{|src.x|}\rfloor
* dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
* dst.z = \log_2{|src.x|}
* dst.w = 1.0
*/
static void
ttn_log(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
nir_ssa_def *abs_srcx = nir_fabs(b, ttn_channel(b, src[0], X));
nir_ssa_def *log2 = nir_flog2(b, abs_srcx);
ttn_move_dest_masked(b, dest, nir_ffloor(b, log2), TGSI_WRITEMASK_X);
ttn_move_dest_masked(b, dest,
nir_fdiv(b, abs_srcx, nir_fexp2(b, nir_ffloor(b, log2))),
TGSI_WRITEMASK_Y);
ttn_move_dest_masked(b, dest, nir_flog2(b, abs_srcx), TGSI_WRITEMASK_Z);
ttn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), TGSI_WRITEMASK_W);
}
/* DST - Distance Vector
* dst.x = 1.0
* dst.y = src0.y \times src1.y
* dst.z = src0.z
* dst.w = src1.w
*/
static void
ttn_dst(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), TGSI_WRITEMASK_X);
ttn_move_dest_masked(b, dest, nir_fmul(b, src[0], src[1]), TGSI_WRITEMASK_Y);
ttn_move_dest_masked(b, dest, nir_fmov(b, src[0]), TGSI_WRITEMASK_Z);
ttn_move_dest_masked(b, dest, nir_fmov(b, src[1]), TGSI_WRITEMASK_W);
}
/* LIT - Light Coefficients
* dst.x = 1.0
* dst.y = max(src.x, 0.0)
* dst.z = (src.x > 0.0) ? max(src.y, 0.0)^{clamp(src.w, -128.0, 128.0))} : 0
* dst.w = 1.0
*/
static void
ttn_lit(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), TGSI_WRITEMASK_XW);
ttn_move_dest_masked(b, dest, nir_fmax(b, ttn_channel(b, src[0], X),
nir_imm_float(b, 0.0)), TGSI_WRITEMASK_Y);
if (dest.write_mask & TGSI_WRITEMASK_Z) {
nir_ssa_def *src0_y = ttn_channel(b, src[0], Y);
nir_ssa_def *wclamp = nir_fmax(b, nir_fmin(b, ttn_channel(b, src[0], W),
nir_imm_float(b, 128.0)),
nir_imm_float(b, -128.0));
nir_ssa_def *pow = nir_fpow(b, nir_fmax(b, src0_y, nir_imm_float(b, 0.0)),
wclamp);
ttn_move_dest_masked(b, dest,
nir_bcsel(b,
nir_fge(b,
nir_imm_float(b, 0.0),
ttn_channel(b, src[0], X)),
nir_imm_float(b, 0.0),
pow),
TGSI_WRITEMASK_Z);
}
}
/* SCS - Sine Cosine
* dst.x = \cos{src.x}
* dst.y = \sin{src.x}
* dst.z = 0.0
* dst.w = 1.0
*/
static void
ttn_scs(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest_masked(b, dest, nir_fcos(b, ttn_channel(b, src[0], X)),
TGSI_WRITEMASK_X);
ttn_move_dest_masked(b, dest, nir_fsin(b, ttn_channel(b, src[0], X)),
TGSI_WRITEMASK_Y);
ttn_move_dest_masked(b, dest, nir_imm_float(b, 0.0), TGSI_WRITEMASK_Z);
ttn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), TGSI_WRITEMASK_W);
}
static void
ttn_sle(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_sge(b, src[1], src[0]));
}
static void
ttn_sgt(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_slt(b, src[1], src[0]));
}
static void
ttn_clamp(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_fmin(b, nir_fmax(b, src[0], src[1]), src[2]));
}
static void
ttn_xpd(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest_masked(b, dest,
nir_fsub(b,
nir_fmul(b,
ttn_swizzle(b, src[0], Y, Z, X, X),
ttn_swizzle(b, src[1], Z, X, Y, X)),
nir_fmul(b,
ttn_swizzle(b, src[1], Y, Z, X, X),
ttn_swizzle(b, src[0], Z, X, Y, X))),
TGSI_WRITEMASK_XYZ);
ttn_move_dest_masked(b, dest, nir_imm_float(b, 1.0), TGSI_WRITEMASK_W);
}
static void
ttn_dp2a(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest,
ttn_channel(b, nir_fadd(b, nir_fdot2(b, src[0], src[1]),
src[2]),
X));
}
static void
ttn_dp2(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_fdot2(b, src[0], src[1]));
}
static void
ttn_dp3(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_fdot3(b, src[0], src[1]));
}
static void
ttn_dp4(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_fdot4(b, src[0], src[1]));
}
static void
ttn_dph(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_fadd(b, nir_fdot3(b, src[0], src[1]),
ttn_channel(b, src[1], W)));
}
static void
ttn_umad(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_iadd(b, nir_imul(b, src[0], src[1]), src[2]));
}
static void
ttn_arr(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_ffloor(b, nir_fadd(b, src[0], nir_imm_float(b, 0.5))));
}
static void
ttn_cmp(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_bcsel(b,
nir_flt(b, src[0], nir_imm_float(b, 0.0)),
src[1], src[2]));
}
static void
ttn_ucmp(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
ttn_move_dest(b, dest, nir_bcsel(b,
nir_ine(b, src[0], nir_imm_int(b, 0)),
src[1], src[2]));
}
static void
ttn_kill(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
nir_intrinsic_instr *discard =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard);
nir_builder_instr_insert(b, &discard->instr);
b->shader->info->fs.uses_discard = true;
}
static void
ttn_kill_if(nir_builder *b, nir_op op, nir_alu_dest dest, nir_ssa_def **src)
{
nir_ssa_def *cmp = nir_bany_inequal4(b, nir_flt(b, src[0],
nir_imm_float(b, 0.0)),
nir_imm_int(b, 0));
nir_intrinsic_instr *discard =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
discard->src[0] = nir_src_for_ssa(cmp);
nir_builder_instr_insert(b, &discard->instr);
b->shader->info->fs.uses_discard = true;
}
static void
ttn_if(struct ttn_compile *c, nir_ssa_def *src, bool is_uint)
{
nir_builder *b = &c->build;
src = ttn_channel(b, src, X);
nir_if *if_stmt = nir_if_create(b->shader);
if (is_uint) {
if_stmt->condition = nir_src_for_ssa(nir_ine(b, src, nir_imm_int(b, 0)));
} else {
if_stmt->condition = nir_src_for_ssa(nir_fne(b, src, nir_imm_int(b, 0)));
}
nir_builder_cf_insert(b, &if_stmt->cf_node);
c->if_stack[c->if_stack_pos] = nir_after_cf_node(&if_stmt->cf_node);
c->if_stack_pos++;
b->cursor = nir_after_cf_list(&if_stmt->then_list);
c->if_stack[c->if_stack_pos] = nir_after_cf_list(&if_stmt->else_list);
c->if_stack_pos++;
}
static void
ttn_else(struct ttn_compile *c)
{
nir_builder *b = &c->build;
b->cursor = c->if_stack[c->if_stack_pos - 1];
}
static void
ttn_endif(struct ttn_compile *c)
{
nir_builder *b = &c->build;
c->if_stack_pos -= 2;
b->cursor = c->if_stack[c->if_stack_pos];
}
static void
ttn_bgnloop(struct ttn_compile *c)
{
nir_builder *b = &c->build;
nir_loop *loop = nir_loop_create(b->shader);
nir_builder_cf_insert(b, &loop->cf_node);
c->loop_stack[c->loop_stack_pos] = nir_after_cf_node(&loop->cf_node);
c->loop_stack_pos++;
b->cursor = nir_after_cf_list(&loop->body);
}
static void
ttn_cont(nir_builder *b)
{
nir_jump_instr *instr = nir_jump_instr_create(b->shader, nir_jump_continue);
nir_builder_instr_insert(b, &instr->instr);
}
static void
ttn_brk(nir_builder *b)
{
nir_jump_instr *instr = nir_jump_instr_create(b->shader, nir_jump_break);
nir_builder_instr_insert(b, &instr->instr);
}
static void
ttn_endloop(struct ttn_compile *c)
{
nir_builder *b = &c->build;
c->loop_stack_pos--;
b->cursor = c->loop_stack[c->loop_stack_pos];
}
static void
setup_texture_info(nir_tex_instr *instr, unsigned texture)
{
switch (texture) {
case TGSI_TEXTURE_BUFFER:
instr->sampler_dim = GLSL_SAMPLER_DIM_BUF;
break;
case TGSI_TEXTURE_1D:
instr->sampler_dim = GLSL_SAMPLER_DIM_1D;
break;
case TGSI_TEXTURE_1D_ARRAY:
instr->sampler_dim = GLSL_SAMPLER_DIM_1D;
instr->is_array = true;
break;
case TGSI_TEXTURE_SHADOW1D:
instr->sampler_dim = GLSL_SAMPLER_DIM_1D;
instr->is_shadow = true;
break;
case TGSI_TEXTURE_SHADOW1D_ARRAY:
instr->sampler_dim = GLSL_SAMPLER_DIM_1D;
instr->is_shadow = true;
instr->is_array = true;
break;
case TGSI_TEXTURE_2D:
instr->sampler_dim = GLSL_SAMPLER_DIM_2D;
break;
case TGSI_TEXTURE_2D_ARRAY:
instr->sampler_dim = GLSL_SAMPLER_DIM_2D;
instr->is_array = true;
break;
case TGSI_TEXTURE_2D_MSAA:
instr->sampler_dim = GLSL_SAMPLER_DIM_MS;
break;
case TGSI_TEXTURE_2D_ARRAY_MSAA:
instr->sampler_dim = GLSL_SAMPLER_DIM_MS;
instr->is_array = true;
break;
case TGSI_TEXTURE_SHADOW2D:
instr->sampler_dim = GLSL_SAMPLER_DIM_2D;
instr->is_shadow = true;
break;
case TGSI_TEXTURE_SHADOW2D_ARRAY:
instr->sampler_dim = GLSL_SAMPLER_DIM_2D;
instr->is_shadow = true;
instr->is_array = true;
break;
case TGSI_TEXTURE_3D:
instr->sampler_dim = GLSL_SAMPLER_DIM_3D;
break;
case TGSI_TEXTURE_CUBE:
instr->sampler_dim = GLSL_SAMPLER_DIM_CUBE;
break;
case TGSI_TEXTURE_CUBE_ARRAY:
instr->sampler_dim = GLSL_SAMPLER_DIM_CUBE;
instr->is_array = true;
break;
case TGSI_TEXTURE_SHADOWCUBE:
instr->sampler_dim = GLSL_SAMPLER_DIM_CUBE;
instr->is_shadow = true;
break;
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
instr->sampler_dim = GLSL_SAMPLER_DIM_CUBE;
instr->is_shadow = true;
instr->is_array = true;
break;
case TGSI_TEXTURE_RECT:
instr->sampler_dim = GLSL_SAMPLER_DIM_RECT;
break;
case TGSI_TEXTURE_SHADOWRECT:
instr->sampler_dim = GLSL_SAMPLER_DIM_RECT;
instr->is_shadow = true;
break;
default:
fprintf(stderr, "Unknown TGSI texture target %d\n", texture);
abort();
}
}
static void
ttn_tex(struct ttn_compile *c, nir_alu_dest dest, nir_ssa_def **src)
{
nir_builder *b = &c->build;
struct tgsi_full_instruction *tgsi_inst = &c->token->FullInstruction;
nir_tex_instr *instr;
nir_texop op;
unsigned num_srcs, samp = 1, sview, i;
switch (tgsi_inst->Instruction.Opcode) {
case TGSI_OPCODE_TEX:
op = nir_texop_tex;
num_srcs = 1;
break;
case TGSI_OPCODE_TEX2:
op = nir_texop_tex;
num_srcs = 1;
samp = 2;
break;
case TGSI_OPCODE_TXP:
op = nir_texop_tex;
num_srcs = 2;
break;
case TGSI_OPCODE_TXB:
op = nir_texop_txb;
num_srcs = 2;
break;
case TGSI_OPCODE_TXB2:
op = nir_texop_txb;
num_srcs = 2;
samp = 2;
break;
case TGSI_OPCODE_TXL:
op = nir_texop_txl;
num_srcs = 2;
break;
case TGSI_OPCODE_TXL2:
op = nir_texop_txl;
num_srcs = 2;
samp = 2;
break;
case TGSI_OPCODE_TXF:
if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_2D_MSAA ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY_MSAA) {
op = nir_texop_txf_ms;
} else {
op = nir_texop_txf;
}
num_srcs = 2;
break;
case TGSI_OPCODE_TXD:
op = nir_texop_txd;
num_srcs = 3;
samp = 3;
break;
case TGSI_OPCODE_LODQ:
op = nir_texop_lod;
num_srcs = 1;
break;
default:
fprintf(stderr, "unknown TGSI tex op %d\n", tgsi_inst->Instruction.Opcode);
abort();
}
if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D_ARRAY ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D_ARRAY ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
num_srcs++;
}
num_srcs += tgsi_inst->Texture.NumOffsets;
instr = nir_tex_instr_create(b->shader, num_srcs);
instr->op = op;
setup_texture_info(instr, tgsi_inst->Texture.Texture);
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
instr->coord_components = 1;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_MS:
instr->coord_components = 2;
break;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
instr->coord_components = 3;
break;
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
unreachable("invalid sampler_dim");
}
if (instr->is_array)
instr->coord_components++;
assert(tgsi_inst->Src[samp].Register.File == TGSI_FILE_SAMPLER);
instr->texture_index = tgsi_inst->Src[samp].Register.Index;
instr->sampler_index = tgsi_inst->Src[samp].Register.Index;
/* TODO if we supported any opc's which take an explicit SVIEW
* src, we would use that here instead. But for the "legacy"
* texture opc's the SVIEW index is same as SAMP index:
*/
sview = instr->texture_index;
if (op == nir_texop_lod) {
instr->dest_type = nir_type_float;
} else if (sview < c->num_samp_types) {
instr->dest_type = c->samp_types[sview];
} else {
instr->dest_type = nir_type_float;
}
unsigned src_number = 0;
instr->src[src_number].src =
nir_src_for_ssa(nir_swizzle(b, src[0], SWIZ(X, Y, Z, W),
instr->coord_components, false));
instr->src[src_number].src_type = nir_tex_src_coord;
src_number++;
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[0], W));
instr->src[src_number].src_type = nir_tex_src_projector;
src_number++;
}
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB) {
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[0], W));
instr->src[src_number].src_type = nir_tex_src_bias;
src_number++;
}
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB2) {
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[1], X));
instr->src[src_number].src_type = nir_tex_src_bias;
src_number++;
}
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL) {
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[0], W));
instr->src[src_number].src_type = nir_tex_src_lod;
src_number++;
}
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL2) {
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[1], X));
instr->src[src_number].src_type = nir_tex_src_lod;
src_number++;
}
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[0], W));
if (op == nir_texop_txf_ms)
instr->src[src_number].src_type = nir_tex_src_ms_index;
else
instr->src[src_number].src_type = nir_tex_src_lod;
src_number++;
}
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
instr->src[src_number].src =
nir_src_for_ssa(nir_swizzle(b, src[1], SWIZ(X, Y, Z, W),
instr->coord_components, false));
instr->src[src_number].src_type = nir_tex_src_ddx;
src_number++;
instr->src[src_number].src =
nir_src_for_ssa(nir_swizzle(b, src[2], SWIZ(X, Y, Z, W),
instr->coord_components, false));
instr->src[src_number].src_type = nir_tex_src_ddy;
src_number++;
}
if (instr->is_shadow) {
if (instr->coord_components == 4)
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[1], X));
else if (instr->coord_components == 3)
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[0], W));
else
instr->src[src_number].src = nir_src_for_ssa(ttn_channel(b, src[0], Z));
instr->src[src_number].src_type = nir_tex_src_comparator;
src_number++;
}
for (i = 0; i < tgsi_inst->Texture.NumOffsets; i++) {
struct tgsi_texture_offset *tex_offset = &tgsi_inst->TexOffsets[i];
/* since TexOffset ins't using tgsi_full_src_register we get to
* do some extra gymnastics:
*/
nir_alu_src src;
memset(&src, 0, sizeof(src));
src.src = ttn_src_for_file_and_index(c,
tex_offset->File,
tex_offset->Index,
NULL, NULL, NULL);
src.swizzle[0] = tex_offset->SwizzleX;
src.swizzle[1] = tex_offset->SwizzleY;
src.swizzle[2] = tex_offset->SwizzleZ;
src.swizzle[3] = TGSI_SWIZZLE_W;
instr->src[src_number].src_type = nir_tex_src_offset;
instr->src[src_number].src = nir_src_for_ssa(
nir_fmov_alu(b, src, nir_tex_instr_src_size(instr, src_number)));
src_number++;
}
assert(src_number == num_srcs);
nir_ssa_dest_init(&instr->instr, &instr->dest, 4, 32, NULL);
nir_builder_instr_insert(b, &instr->instr);
/* Resolve the writemask on the texture op. */
ttn_move_dest(b, dest, &instr->dest.ssa);
}
/* TGSI_OPCODE_TXQ is actually two distinct operations:
*
* dst.x = texture\_width(unit, lod)
* dst.y = texture\_height(unit, lod)
* dst.z = texture\_depth(unit, lod)
* dst.w = texture\_levels(unit)
*
* dst.xyz map to NIR txs opcode, and dst.w maps to query_levels
*/
static void
ttn_txq(struct ttn_compile *c, nir_alu_dest dest, nir_ssa_def **src)
{
nir_builder *b = &c->build;
struct tgsi_full_instruction *tgsi_inst = &c->token->FullInstruction;
nir_tex_instr *txs, *qlv;
txs = nir_tex_instr_create(b->shader, 1);
txs->op = nir_texop_txs;
setup_texture_info(txs, tgsi_inst->Texture.Texture);
qlv = nir_tex_instr_create(b->shader, 0);
qlv->op = nir_texop_query_levels;
setup_texture_info(qlv, tgsi_inst->Texture.Texture);
assert(tgsi_inst->Src[1].Register.File == TGSI_FILE_SAMPLER);
txs->texture_index = tgsi_inst->Src[1].Register.Index;
qlv->texture_index = tgsi_inst->Src[1].Register.Index;
/* only single src, the lod: */
txs->src[0].src = nir_src_for_ssa(ttn_channel(b, src[0], X));
txs->src[0].src_type = nir_tex_src_lod;
nir_ssa_dest_init(&txs->instr, &txs->dest, 3, 32, NULL);
nir_builder_instr_insert(b, &txs->instr);
nir_ssa_dest_init(&qlv->instr, &qlv->dest, 1, 32, NULL);
nir_builder_instr_insert(b, &qlv->instr);
ttn_move_dest_masked(b, dest, &txs->dest.ssa, TGSI_WRITEMASK_XYZ);
ttn_move_dest_masked(b, dest, &qlv->dest.ssa, TGSI_WRITEMASK_W);
}
static const nir_op op_trans[TGSI_OPCODE_LAST] = {
[TGSI_OPCODE_ARL] = 0,
[TGSI_OPCODE_MOV] = nir_op_fmov,
[TGSI_OPCODE_LIT] = 0,
[TGSI_OPCODE_RCP] = nir_op_frcp,
[TGSI_OPCODE_RSQ] = nir_op_frsq,
[TGSI_OPCODE_EXP] = 0,
[TGSI_OPCODE_LOG] = 0,
[TGSI_OPCODE_MUL] = nir_op_fmul,
[TGSI_OPCODE_ADD] = nir_op_fadd,
[TGSI_OPCODE_DP3] = 0,
[TGSI_OPCODE_DP4] = 0,
[TGSI_OPCODE_DST] = 0,
[TGSI_OPCODE_MIN] = nir_op_fmin,
[TGSI_OPCODE_MAX] = nir_op_fmax,
[TGSI_OPCODE_SLT] = nir_op_slt,
[TGSI_OPCODE_SGE] = nir_op_sge,
[TGSI_OPCODE_MAD] = nir_op_ffma,
[TGSI_OPCODE_SUB] = nir_op_fsub,
[TGSI_OPCODE_LRP] = 0,
[TGSI_OPCODE_SQRT] = nir_op_fsqrt,
[TGSI_OPCODE_DP2A] = 0,
[TGSI_OPCODE_FRC] = nir_op_ffract,
[TGSI_OPCODE_CLAMP] = 0,
[TGSI_OPCODE_FLR] = nir_op_ffloor,
[TGSI_OPCODE_ROUND] = nir_op_fround_even,
[TGSI_OPCODE_EX2] = nir_op_fexp2,
[TGSI_OPCODE_LG2] = nir_op_flog2,
[TGSI_OPCODE_POW] = nir_op_fpow,
[TGSI_OPCODE_XPD] = 0,
[TGSI_OPCODE_ABS] = nir_op_fabs,
[TGSI_OPCODE_DPH] = 0,
[TGSI_OPCODE_COS] = nir_op_fcos,
[TGSI_OPCODE_DDX] = nir_op_fddx,
[TGSI_OPCODE_DDY] = nir_op_fddy,
[TGSI_OPCODE_KILL] = 0,
[TGSI_OPCODE_PK2H] = 0, /* XXX */
[TGSI_OPCODE_PK2US] = 0, /* XXX */
[TGSI_OPCODE_PK4B] = 0, /* XXX */
[TGSI_OPCODE_PK4UB] = 0, /* XXX */
[TGSI_OPCODE_SEQ] = nir_op_seq,
[TGSI_OPCODE_SGT] = 0,
[TGSI_OPCODE_SIN] = nir_op_fsin,
[TGSI_OPCODE_SNE] = nir_op_sne,
[TGSI_OPCODE_SLE] = 0,
[TGSI_OPCODE_TEX] = 0,
[TGSI_OPCODE_TXD] = 0,
[TGSI_OPCODE_TXP] = 0,
[TGSI_OPCODE_UP2H] = 0, /* XXX */
[TGSI_OPCODE_UP2US] = 0, /* XXX */
[TGSI_OPCODE_UP4B] = 0, /* XXX */
[TGSI_OPCODE_UP4UB] = 0, /* XXX */
[TGSI_OPCODE_ARR] = 0,
/* No function calls, yet. */
[TGSI_OPCODE_CAL] = 0, /* XXX */
[TGSI_OPCODE_RET] = 0, /* XXX */
[TGSI_OPCODE_SSG] = nir_op_fsign,
[TGSI_OPCODE_CMP] = 0,
[TGSI_OPCODE_SCS] = 0,
[TGSI_OPCODE_TXB] = 0,
[TGSI_OPCODE_DIV] = nir_op_fdiv,
[TGSI_OPCODE_DP2] = 0,
[TGSI_OPCODE_TXL] = 0,
[TGSI_OPCODE_BRK] = 0,
[TGSI_OPCODE_IF] = 0,
[TGSI_OPCODE_UIF] = 0,
[TGSI_OPCODE_ELSE] = 0,
[TGSI_OPCODE_ENDIF] = 0,
[TGSI_OPCODE_DDX_FINE] = nir_op_fddx_fine,
[TGSI_OPCODE_DDY_FINE] = nir_op_fddy_fine,
[TGSI_OPCODE_PUSHA] = 0, /* XXX */
[TGSI_OPCODE_POPA] = 0, /* XXX */
[TGSI_OPCODE_CEIL] = nir_op_fceil,
[TGSI_OPCODE_I2F] = nir_op_i2f,
[TGSI_OPCODE_NOT] = nir_op_inot,
[TGSI_OPCODE_TRUNC] = nir_op_ftrunc,
[TGSI_OPCODE_SHL] = nir_op_ishl,
[TGSI_OPCODE_AND] = nir_op_iand,
[TGSI_OPCODE_OR] = nir_op_ior,
[TGSI_OPCODE_MOD] = nir_op_umod,
[TGSI_OPCODE_XOR] = nir_op_ixor,
[TGSI_OPCODE_SAD] = 0, /* XXX */
[TGSI_OPCODE_TXF] = 0,
[TGSI_OPCODE_TXQ] = 0,
[TGSI_OPCODE_CONT] = 0,
[TGSI_OPCODE_EMIT] = 0, /* XXX */
[TGSI_OPCODE_ENDPRIM] = 0, /* XXX */
[TGSI_OPCODE_BGNLOOP] = 0,
[TGSI_OPCODE_BGNSUB] = 0, /* XXX: no function calls */
[TGSI_OPCODE_ENDLOOP] = 0,
[TGSI_OPCODE_ENDSUB] = 0, /* XXX: no function calls */
[TGSI_OPCODE_TXQ_LZ] = 0,
[TGSI_OPCODE_NOP] = 0,
[TGSI_OPCODE_FSEQ] = nir_op_feq,
[TGSI_OPCODE_FSGE] = nir_op_fge,
[TGSI_OPCODE_FSLT] = nir_op_flt,
[TGSI_OPCODE_FSNE] = nir_op_fne,
/* No control flow yet */
[TGSI_OPCODE_CALLNZ] = 0, /* XXX */
[TGSI_OPCODE_BREAKC] = 0, /* not emitted by glsl_to_tgsi.cpp */
[TGSI_OPCODE_KILL_IF] = 0,
[TGSI_OPCODE_END] = 0,
[TGSI_OPCODE_F2I] = nir_op_f2i,
[TGSI_OPCODE_IDIV] = nir_op_idiv,
[TGSI_OPCODE_IMAX] = nir_op_imax,
[TGSI_OPCODE_IMIN] = nir_op_imin,
[TGSI_OPCODE_INEG] = nir_op_ineg,
[TGSI_OPCODE_ISGE] = nir_op_ige,
[TGSI_OPCODE_ISHR] = nir_op_ishr,
[TGSI_OPCODE_ISLT] = nir_op_ilt,
[TGSI_OPCODE_F2U] = nir_op_f2u,
[TGSI_OPCODE_U2F] = nir_op_u2f,
[TGSI_OPCODE_UADD] = nir_op_iadd,
[TGSI_OPCODE_UDIV] = nir_op_udiv,
[TGSI_OPCODE_UMAD] = 0,
[TGSI_OPCODE_UMAX] = nir_op_umax,
[TGSI_OPCODE_UMIN] = nir_op_umin,
[TGSI_OPCODE_UMOD] = nir_op_umod,
[TGSI_OPCODE_UMUL] = nir_op_imul,
[TGSI_OPCODE_USEQ] = nir_op_ieq,
[TGSI_OPCODE_USGE] = nir_op_uge,
[TGSI_OPCODE_USHR] = nir_op_ushr,
[TGSI_OPCODE_USLT] = nir_op_ult,
[TGSI_OPCODE_USNE] = nir_op_ine,
[TGSI_OPCODE_SWITCH] = 0, /* not emitted by glsl_to_tgsi.cpp */
[TGSI_OPCODE_CASE] = 0, /* not emitted by glsl_to_tgsi.cpp */
[TGSI_OPCODE_DEFAULT] = 0, /* not emitted by glsl_to_tgsi.cpp */
[TGSI_OPCODE_ENDSWITCH] = 0, /* not emitted by glsl_to_tgsi.cpp */
/* XXX: SAMPLE opcodes */
[TGSI_OPCODE_UARL] = nir_op_imov,
[TGSI_OPCODE_UCMP] = 0,
[TGSI_OPCODE_IABS] = nir_op_iabs,
[TGSI_OPCODE_ISSG] = nir_op_isign,
/* XXX: atomics */
[TGSI_OPCODE_TEX2] = 0,
[TGSI_OPCODE_TXB2] = 0,
[TGSI_OPCODE_TXL2] = 0,
[TGSI_OPCODE_IMUL_HI] = nir_op_imul_high,
[TGSI_OPCODE_UMUL_HI] = nir_op_umul_high,
[TGSI_OPCODE_TG4] = 0,
[TGSI_OPCODE_LODQ] = 0,
[TGSI_OPCODE_IBFE] = nir_op_ibitfield_extract,
[TGSI_OPCODE_UBFE] = nir_op_ubitfield_extract,
[TGSI_OPCODE_BFI] = nir_op_bitfield_insert,
[TGSI_OPCODE_BREV] = nir_op_bitfield_reverse,
[TGSI_OPCODE_POPC] = nir_op_bit_count,
[TGSI_OPCODE_LSB] = nir_op_find_lsb,
[TGSI_OPCODE_IMSB] = nir_op_ifind_msb,
[TGSI_OPCODE_UMSB] = nir_op_ufind_msb,
[TGSI_OPCODE_INTERP_CENTROID] = 0, /* XXX */
[TGSI_OPCODE_INTERP_SAMPLE] = 0, /* XXX */
[TGSI_OPCODE_INTERP_OFFSET] = 0, /* XXX */
};
static void
ttn_emit_instruction(struct ttn_compile *c)
{
nir_builder *b = &c->build;
struct tgsi_full_instruction *tgsi_inst = &c->token->FullInstruction;
unsigned i;
unsigned tgsi_op = tgsi_inst->Instruction.Opcode;
struct tgsi_full_dst_register *tgsi_dst = &tgsi_inst->Dst[0];
if (tgsi_op == TGSI_OPCODE_END)
return;
nir_ssa_def *src[TGSI_FULL_MAX_SRC_REGISTERS];
for (i = 0; i < tgsi_inst->Instruction.NumSrcRegs; i++) {
src[i] = ttn_get_src(c, &tgsi_inst->Src[i]);
}
nir_alu_dest dest = ttn_get_dest(c, tgsi_dst);
switch (tgsi_op) {
case TGSI_OPCODE_RSQ:
ttn_move_dest(b, dest, nir_frsq(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_SQRT:
ttn_move_dest(b, dest, nir_fsqrt(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_RCP:
ttn_move_dest(b, dest, nir_frcp(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_EX2:
ttn_move_dest(b, dest, nir_fexp2(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_LG2:
ttn_move_dest(b, dest, nir_flog2(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_POW:
ttn_move_dest(b, dest, nir_fpow(b,
ttn_channel(b, src[0], X),
ttn_channel(b, src[1], X)));
break;
case TGSI_OPCODE_COS:
ttn_move_dest(b, dest, nir_fcos(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_SIN:
ttn_move_dest(b, dest, nir_fsin(b, ttn_channel(b, src[0], X)));
break;
case TGSI_OPCODE_ARL:
ttn_arl(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_EXP:
ttn_exp(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_LOG:
ttn_log(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_DST:
ttn_dst(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_LIT:
ttn_lit(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_CLAMP:
ttn_clamp(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_XPD:
ttn_xpd(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_DP2:
ttn_dp2(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_DP3:
ttn_dp3(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_DP4:
ttn_dp4(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_DP2A:
ttn_dp2a(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_DPH:
ttn_dph(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_UMAD:
ttn_umad(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_LRP:
ttn_move_dest(b, dest, nir_flrp(b, src[2], src[1], src[0]));
break;
case TGSI_OPCODE_KILL:
ttn_kill(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_ARR:
ttn_arr(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_CMP:
ttn_cmp(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_UCMP:
ttn_ucmp(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_SCS:
ttn_scs(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_SGT:
ttn_sgt(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_SLE:
ttn_sle(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_KILL_IF:
ttn_kill_if(b, op_trans[tgsi_op], dest, src);
break;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXD:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXL2:
case TGSI_OPCODE_TXB2:
case TGSI_OPCODE_TXQ_LZ:
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_TG4:
case TGSI_OPCODE_LODQ:
ttn_tex(c, dest, src);
break;
case TGSI_OPCODE_TXQ:
ttn_txq(c, dest, src);
break;
case TGSI_OPCODE_NOP:
break;
case TGSI_OPCODE_IF:
ttn_if(c, src[0], false);
break;
case TGSI_OPCODE_UIF:
ttn_if(c, src[0], true);
break;
case TGSI_OPCODE_ELSE:
ttn_else(c);
break;
case TGSI_OPCODE_ENDIF:
ttn_endif(c);
break;
case TGSI_OPCODE_BGNLOOP:
ttn_bgnloop(c);
break;
case TGSI_OPCODE_BRK:
ttn_brk(b);
break;
case TGSI_OPCODE_CONT:
ttn_cont(b);
break;
case TGSI_OPCODE_ENDLOOP:
ttn_endloop(c);
break;
default:
if (op_trans[tgsi_op] != 0 || tgsi_op == TGSI_OPCODE_MOV) {
ttn_alu(b, op_trans[tgsi_op], dest, src);
} else {
fprintf(stderr, "unknown TGSI opcode: %s\n",
tgsi_get_opcode_name(tgsi_op));
abort();
}
break;
}
if (tgsi_inst->Instruction.Saturate) {
assert(!dest.dest.is_ssa);
ttn_move_dest(b, dest, nir_fsat(b, ttn_src_for_dest(b, &dest)));
}
/* if the dst has a matching var, append store_var to move
* output from reg to var
*/
nir_variable *var = ttn_get_var(c, tgsi_dst);
if (var) {
unsigned index = tgsi_dst->Register.Index;
unsigned offset = c->temp_regs[index].offset;
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_var);
struct tgsi_ind_register *indirect = tgsi_dst->Register.Indirect ?
&tgsi_dst->Indirect : NULL;
store->num_components = 4;
nir_intrinsic_set_write_mask(store, dest.write_mask);
store->variables[0] = ttn_array_deref(c, store, var, offset, indirect);
store->src[0] = nir_src_for_reg(dest.dest.reg.reg);
nir_builder_instr_insert(b, &store->instr);
}
}
/**
* Puts a NIR intrinsic to store of each TGSI_FILE_OUTPUT value to the output
* variables at the end of the shader.
*
* We don't generate these incrementally as the TGSI_FILE_OUTPUT values are
* written, because there's no output load intrinsic, which means we couldn't
* handle writemasks.
*/
static void
ttn_add_output_stores(struct ttn_compile *c)
{
nir_builder *b = &c->build;
foreach_list_typed(nir_variable, var, node, &b->shader->outputs) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned i;
for (i = 0; i < array_len; i++) {
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
unsigned loc = var->data.driver_location + i;
nir_src src = nir_src_for_reg(c->output_regs[loc].reg);
src.reg.base_offset = c->output_regs[loc].offset;
if (c->build.shader->stage == MESA_SHADER_FRAGMENT &&
var->data.location == FRAG_RESULT_DEPTH) {
/* TGSI uses TGSI_SEMANTIC_POSITION.z for the depth output, while
* NIR uses a single float FRAG_RESULT_DEPTH.
*/
src = nir_src_for_ssa(nir_channel(b, nir_ssa_for_src(b, src, 4), 2));
store->num_components = 1;
} else {
store->num_components = 4;
}
store->src[0] = src;
nir_intrinsic_set_base(store, loc);
nir_intrinsic_set_write_mask(store, 0xf);
store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &store->instr);
}
}
}
static gl_shader_stage
tgsi_processor_to_shader_stage(unsigned processor)
{
switch (processor) {
case PIPE_SHADER_FRAGMENT: return MESA_SHADER_FRAGMENT;
case PIPE_SHADER_VERTEX: return MESA_SHADER_VERTEX;
case PIPE_SHADER_GEOMETRY: return MESA_SHADER_GEOMETRY;
case PIPE_SHADER_TESS_CTRL: return MESA_SHADER_TESS_CTRL;
case PIPE_SHADER_TESS_EVAL: return MESA_SHADER_TESS_EVAL;
case PIPE_SHADER_COMPUTE: return MESA_SHADER_COMPUTE;
default:
unreachable("invalid TGSI processor");
}
}
struct nir_shader *
tgsi_to_nir(const void *tgsi_tokens,
const nir_shader_compiler_options *options)
{
struct tgsi_parse_context parser;
struct tgsi_shader_info scan;
struct ttn_compile *c;
struct nir_shader *s;
int ret;
c = rzalloc(NULL, struct ttn_compile);
tgsi_scan_shader(tgsi_tokens, &scan);
c->scan = &scan;
nir_builder_init_simple_shader(&c->build, NULL,
tgsi_processor_to_shader_stage(scan.processor),
options);
s = c->build.shader;
s->num_inputs = scan.file_max[TGSI_FILE_INPUT] + 1;
s->num_uniforms = scan.const_file_max[0] + 1;
s->num_outputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
c->output_regs = rzalloc_array(c, struct ttn_reg_info,
scan.file_max[TGSI_FILE_OUTPUT] + 1);
c->temp_regs = rzalloc_array(c, struct ttn_reg_info,
scan.file_max[TGSI_FILE_TEMPORARY] + 1);
c->imm_defs = rzalloc_array(c, nir_ssa_def *,
scan.file_max[TGSI_FILE_IMMEDIATE] + 1);
c->num_samp_types = scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
c->samp_types = rzalloc_array(c, nir_alu_type, c->num_samp_types);
c->if_stack = rzalloc_array(c, nir_cursor,
(scan.opcode_count[TGSI_OPCODE_IF] +
scan.opcode_count[TGSI_OPCODE_UIF]) * 2);
c->loop_stack = rzalloc_array(c, nir_cursor,
scan.opcode_count[TGSI_OPCODE_BGNLOOP]);
ret = tgsi_parse_init(&parser, tgsi_tokens);
assert(ret == TGSI_PARSE_OK);
while (!tgsi_parse_end_of_tokens(&parser)) {
tgsi_parse_token(&parser);
c->token = &parser.FullToken;
switch (parser.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_DECLARATION:
ttn_emit_declaration(c);
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
ttn_emit_instruction(c);
break;
case TGSI_TOKEN_TYPE_IMMEDIATE:
ttn_emit_immediate(c);
break;
}
}
tgsi_parse_free(&parser);
ttn_add_output_stores(c);
ralloc_free(c);
return s;
}