blob: 4b030ebfce8c5aa259beec56ab3d5502561b4c20 [file] [log] [blame]
//===-- MipsMCCodeEmitter.cpp - Convert Mips Code to Machine Code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MipsMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
//
#include "MipsMCCodeEmitter.h"
#include "MCTargetDesc/MipsFixupKinds.h"
#include "MCTargetDesc/MipsMCExpr.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "mccodeemitter"
#define GET_INSTRMAP_INFO
#include "MipsGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
namespace llvm {
MCCodeEmitter *createMipsMCCodeEmitterEB(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new MipsMCCodeEmitter(MCII, Ctx, false);
}
MCCodeEmitter *createMipsMCCodeEmitterEL(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new MipsMCCodeEmitter(MCII, Ctx, true);
}
} // End of namespace llvm.
// If the D<shift> instruction has a shift amount that is greater
// than 31 (checked in calling routine), lower it to a D<shift>32 instruction
static void LowerLargeShift(MCInst& Inst) {
assert(Inst.getNumOperands() == 3 && "Invalid no. of operands for shift!");
assert(Inst.getOperand(2).isImm());
int64_t Shift = Inst.getOperand(2).getImm();
if (Shift <= 31)
return; // Do nothing
Shift -= 32;
// saminus32
Inst.getOperand(2).setImm(Shift);
switch (Inst.getOpcode()) {
default:
// Calling function is not synchronized
llvm_unreachable("Unexpected shift instruction");
case Mips::DSLL:
Inst.setOpcode(Mips::DSLL32);
return;
case Mips::DSRL:
Inst.setOpcode(Mips::DSRL32);
return;
case Mips::DSRA:
Inst.setOpcode(Mips::DSRA32);
return;
case Mips::DROTR:
Inst.setOpcode(Mips::DROTR32);
return;
}
}
// Pick a DEXT or DINS instruction variant based on the pos and size operands
static void LowerDextDins(MCInst& InstIn) {
int Opcode = InstIn.getOpcode();
if (Opcode == Mips::DEXT)
assert(InstIn.getNumOperands() == 4 &&
"Invalid no. of machine operands for DEXT!");
else // Only DEXT and DINS are possible
assert(InstIn.getNumOperands() == 5 &&
"Invalid no. of machine operands for DINS!");
assert(InstIn.getOperand(2).isImm());
int64_t pos = InstIn.getOperand(2).getImm();
assert(InstIn.getOperand(3).isImm());
int64_t size = InstIn.getOperand(3).getImm();
if (size <= 32) {
if (pos < 32) // DEXT/DINS, do nothing
return;
// DEXTU/DINSU
InstIn.getOperand(2).setImm(pos - 32);
InstIn.setOpcode((Opcode == Mips::DEXT) ? Mips::DEXTU : Mips::DINSU);
return;
}
// DEXTM/DINSM
assert(pos < 32 && "DEXT/DINS cannot have both size and pos > 32");
InstIn.getOperand(3).setImm(size - 32);
InstIn.setOpcode((Opcode == Mips::DEXT) ? Mips::DEXTM : Mips::DINSM);
return;
}
bool MipsMCCodeEmitter::isMicroMips(const MCSubtargetInfo &STI) const {
return STI.getFeatureBits()[Mips::FeatureMicroMips];
}
bool MipsMCCodeEmitter::isMips32r6(const MCSubtargetInfo &STI) const {
return STI.getFeatureBits()[Mips::FeatureMips32r6];
}
void MipsMCCodeEmitter::EmitByte(unsigned char C, raw_ostream &OS) const {
OS << (char)C;
}
void MipsMCCodeEmitter::EmitInstruction(uint64_t Val, unsigned Size,
const MCSubtargetInfo &STI,
raw_ostream &OS) const {
// Output the instruction encoding in little endian byte order.
// Little-endian byte ordering:
// mips32r2: 4 | 3 | 2 | 1
// microMIPS: 2 | 1 | 4 | 3
if (IsLittleEndian && Size == 4 && isMicroMips(STI)) {
EmitInstruction(Val >> 16, 2, STI, OS);
EmitInstruction(Val, 2, STI, OS);
} else {
for (unsigned i = 0; i < Size; ++i) {
unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
EmitByte((Val >> Shift) & 0xff, OS);
}
}
}
/// encodeInstruction - Emit the instruction.
/// Size the instruction with Desc.getSize().
void MipsMCCodeEmitter::
encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const
{
// Non-pseudo instructions that get changed for direct object
// only based on operand values.
// If this list of instructions get much longer we will move
// the check to a function call. Until then, this is more efficient.
MCInst TmpInst = MI;
switch (MI.getOpcode()) {
// If shift amount is >= 32 it the inst needs to be lowered further
case Mips::DSLL:
case Mips::DSRL:
case Mips::DSRA:
case Mips::DROTR:
LowerLargeShift(TmpInst);
break;
// Double extract instruction is chosen by pos and size operands
case Mips::DEXT:
case Mips::DINS:
LowerDextDins(TmpInst);
}
unsigned long N = Fixups.size();
uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
// Check for unimplemented opcodes.
// Unfortunately in MIPS both NOP and SLL will come in with Binary == 0
// so we have to special check for them.
unsigned Opcode = TmpInst.getOpcode();
if ((Opcode != Mips::NOP) && (Opcode != Mips::SLL) &&
(Opcode != Mips::SLL_MM) && !Binary)
llvm_unreachable("unimplemented opcode in encodeInstruction()");
int NewOpcode = -1;
if (isMicroMips(STI)) {
if (isMips32r6(STI)) {
NewOpcode = Mips::MipsR62MicroMipsR6(Opcode, Mips::Arch_micromipsr6);
if (NewOpcode == -1)
NewOpcode = Mips::Std2MicroMipsR6(Opcode, Mips::Arch_micromipsr6);
}
else
NewOpcode = Mips::Std2MicroMips(Opcode, Mips::Arch_micromips);
// Check whether it is Dsp instruction.
if (NewOpcode == -1)
NewOpcode = Mips::Dsp2MicroMips(Opcode, Mips::Arch_mmdsp);
if (NewOpcode != -1) {
if (Fixups.size() > N)
Fixups.pop_back();
Opcode = NewOpcode;
TmpInst.setOpcode (NewOpcode);
Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
}
}
const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
// Get byte count of instruction
unsigned Size = Desc.getSize();
if (!Size)
llvm_unreachable("Desc.getSize() returns 0");
EmitInstruction(Binary, Size, STI, OS);
}
/// getBranchTargetOpValue - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTargetOpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_Mips_PC16)));
return 0;
}
/// getBranchTarget7OpValueMM - Return binary encoding of the microMIPS branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget7OpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValueMM expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MICROMIPS_PC7_S1)));
return 0;
}
/// getBranchTargetOpValueMMPC10 - Return binary encoding of the microMIPS
/// 10-bit branch target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValueMMPC10(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValuePC10 expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MICROMIPS_PC10_S1)));
return 0;
}
/// getBranchTargetOpValue - Return binary encoding of the microMIPS branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValueMM expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::
fixup_MICROMIPS_PC16_S1)));
return 0;
}
/// getBranchTarget21OpValue - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget21OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTarget21OpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_MIPS_PC21_S2)));
return 0;
}
/// getBranchTarget26OpValue - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget26OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTarget26OpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_MIPS_PC26_S2)));
return 0;
}
/// getBranchTarget26OpValueMM - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::getBranchTarget26OpValueMM(
const MCInst &MI, unsigned OpNo, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm())
return MO.getImm() >> 1;
// TODO: Push 26 PC fixup.
return 0;
}
/// getJumpOffset16OpValue - Return binary encoding of the jump
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getJumpOffset16OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) return MO.getImm();
assert(MO.isExpr() &&
"getJumpOffset16OpValue expects only expressions or an immediate");
// TODO: Push fixup.
return 0;
}
/// getJumpTargetOpValue - Return binary encoding of the jump
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getJumpTargetOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm()>>2;
assert(MO.isExpr() &&
"getJumpTargetOpValue expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_Mips_26)));
return 0;
}
unsigned MipsMCCodeEmitter::
getJumpTargetOpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getJumpTargetOpValueMM expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MICROMIPS_26_S1)));
return 0;
}
unsigned MipsMCCodeEmitter::
getUImm5Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
// The immediate is encoded as 'immediate << 2'.
unsigned Res = getMachineOpValue(MI, MO, Fixups, STI);
assert((Res & 3) == 0);
return Res >> 2;
}
assert(MO.isExpr() &&
"getUImm5Lsl2Encoding expects only expressions or an immediate");
return 0;
}
unsigned MipsMCCodeEmitter::
getSImm3Lsa2Value(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
int Value = MO.getImm();
return Value >> 2;
}
return 0;
}
unsigned MipsMCCodeEmitter::
getUImm6Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
unsigned Value = MO.getImm();
return Value >> 2;
}
return 0;
}
unsigned MipsMCCodeEmitter::
getSImm9AddiuspValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
unsigned Binary = (MO.getImm() >> 2) & 0x0000ffff;
return (((Binary & 0x8000) >> 7) | (Binary & 0x00ff));
}
return 0;
}
unsigned MipsMCCodeEmitter::
getExprOpValue(const MCExpr *Expr, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
int64_t Res;
if (Expr->evaluateAsAbsolute(Res))
return Res;
MCExpr::ExprKind Kind = Expr->getKind();
if (Kind == MCExpr::Constant) {
return cast<MCConstantExpr>(Expr)->getValue();
}
if (Kind == MCExpr::Binary) {
unsigned Res = getExprOpValue(cast<MCBinaryExpr>(Expr)->getLHS(), Fixups, STI);
Res += getExprOpValue(cast<MCBinaryExpr>(Expr)->getRHS(), Fixups, STI);
return Res;
}
if (Kind == MCExpr::Target) {
const MipsMCExpr *MipsExpr = cast<MipsMCExpr>(Expr);
Mips::Fixups FixupKind = Mips::Fixups(0);
switch (MipsExpr->getKind()) {
default: llvm_unreachable("Unsupported fixup kind for target expression!");
case MipsMCExpr::VK_Mips_HIGHEST:
FixupKind = Mips::fixup_Mips_HIGHEST;
break;
case MipsMCExpr::VK_Mips_HIGHER:
FixupKind = Mips::fixup_Mips_HIGHER;
break;
case MipsMCExpr::VK_Mips_HI:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16
: Mips::fixup_Mips_HI16;
break;
case MipsMCExpr::VK_Mips_LO:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16
: Mips::fixup_Mips_LO16;
break;
}
Fixups.push_back(MCFixup::create(0, MipsExpr, MCFixupKind(FixupKind)));
return 0;
}
if (Kind == MCExpr::SymbolRef) {
Mips::Fixups FixupKind = Mips::Fixups(0);
switch(cast<MCSymbolRefExpr>(Expr)->getKind()) {
default: llvm_unreachable("Unknown fixup kind!");
break;
case MCSymbolRefExpr::VK_None:
FixupKind = Mips::fixup_Mips_32; // FIXME: This is ok for O32/N32 but not N64.
break;
case MCSymbolRefExpr::VK_Mips_GPOFF_HI :
FixupKind = Mips::fixup_Mips_GPOFF_HI;
break;
case MCSymbolRefExpr::VK_Mips_GPOFF_LO :
FixupKind = Mips::fixup_Mips_GPOFF_LO;
break;
case MCSymbolRefExpr::VK_Mips_GOT_PAGE :
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_PAGE
: Mips::fixup_Mips_GOT_PAGE;
break;
case MCSymbolRefExpr::VK_Mips_GOT_OFST :
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_OFST
: Mips::fixup_Mips_GOT_OFST;
break;
case MCSymbolRefExpr::VK_Mips_GOT_DISP :
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_DISP
: Mips::fixup_Mips_GOT_DISP;
break;
case MCSymbolRefExpr::VK_Mips_GPREL:
FixupKind = Mips::fixup_Mips_GPREL16;
break;
case MCSymbolRefExpr::VK_Mips_GOT_CALL:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_CALL16
: Mips::fixup_Mips_CALL16;
break;
case MCSymbolRefExpr::VK_Mips_GOT16:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16
: Mips::fixup_Mips_GOT_Global;
break;
case MCSymbolRefExpr::VK_Mips_GOT:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16
: Mips::fixup_Mips_GOT_Local;
break;
case MCSymbolRefExpr::VK_Mips_ABS_HI:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16
: Mips::fixup_Mips_HI16;
break;
case MCSymbolRefExpr::VK_Mips_ABS_LO:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16
: Mips::fixup_Mips_LO16;
break;
case MCSymbolRefExpr::VK_Mips_TLSGD:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_GD
: Mips::fixup_Mips_TLSGD;
break;
case MCSymbolRefExpr::VK_Mips_TLSLDM:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_LDM
: Mips::fixup_Mips_TLSLDM;
break;
case MCSymbolRefExpr::VK_Mips_DTPREL_HI:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_HI16
: Mips::fixup_Mips_DTPREL_HI;
break;
case MCSymbolRefExpr::VK_Mips_DTPREL_LO:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_LO16
: Mips::fixup_Mips_DTPREL_LO;
break;
case MCSymbolRefExpr::VK_Mips_GOTTPREL:
FixupKind = Mips::fixup_Mips_GOTTPREL;
break;
case MCSymbolRefExpr::VK_Mips_TPREL_HI:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_HI16
: Mips::fixup_Mips_TPREL_HI;
break;
case MCSymbolRefExpr::VK_Mips_TPREL_LO:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_LO16
: Mips::fixup_Mips_TPREL_LO;
break;
case MCSymbolRefExpr::VK_Mips_HIGHER:
FixupKind = Mips::fixup_Mips_HIGHER;
break;
case MCSymbolRefExpr::VK_Mips_HIGHEST:
FixupKind = Mips::fixup_Mips_HIGHEST;
break;
case MCSymbolRefExpr::VK_Mips_GOT_HI16:
FixupKind = Mips::fixup_Mips_GOT_HI16;
break;
case MCSymbolRefExpr::VK_Mips_GOT_LO16:
FixupKind = Mips::fixup_Mips_GOT_LO16;
break;
case MCSymbolRefExpr::VK_Mips_CALL_HI16:
FixupKind = Mips::fixup_Mips_CALL_HI16;
break;
case MCSymbolRefExpr::VK_Mips_CALL_LO16:
FixupKind = Mips::fixup_Mips_CALL_LO16;
break;
case MCSymbolRefExpr::VK_Mips_PCREL_HI16:
FixupKind = Mips::fixup_MIPS_PCHI16;
break;
case MCSymbolRefExpr::VK_Mips_PCREL_LO16:
FixupKind = Mips::fixup_MIPS_PCLO16;
break;
} // switch
Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(FixupKind)));
return 0;
}
return 0;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg()) {
unsigned Reg = MO.getReg();
unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg);
return RegNo;
} else if (MO.isImm()) {
return static_cast<unsigned>(MO.getImm());
} else if (MO.isFPImm()) {
return static_cast<unsigned>(APFloat(MO.getFPImm())
.bitcastToAPInt().getHiBits(32).getLimitedValue());
}
// MO must be an Expr.
assert(MO.isExpr());
return getExprOpValue(MO.getExpr(),Fixups, STI);
}
/// getMSAMemEncoding - Return binary encoding of memory operand for LD/ST
/// instructions.
unsigned
MipsMCCodeEmitter::getMSAMemEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
// The immediate field of an LD/ST instruction is scaled which means it must
// be divided (when encoding) by the size (in bytes) of the instructions'
// data format.
// .b - 1 byte
// .h - 2 bytes
// .w - 4 bytes
// .d - 8 bytes
switch(MI.getOpcode())
{
default:
assert (0 && "Unexpected instruction");
break;
case Mips::LD_B:
case Mips::ST_B:
// We don't need to scale the offset in this case
break;
case Mips::LD_H:
case Mips::ST_H:
OffBits >>= 1;
break;
case Mips::LD_W:
case Mips::ST_W:
OffBits >>= 2;
break;
case Mips::LD_D:
case Mips::ST_D:
OffBits >>= 3;
break;
}
return (OffBits & 0xFFFF) | RegBits;
}
/// getMemEncoding - Return binary encoding of memory related operand.
/// If the offset operand requires relocation, record the relocation.
unsigned
MipsMCCodeEmitter::getMemEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return (OffBits & 0xFFFF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
Fixups, STI) << 4;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI);
return (OffBits & 0xF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4Lsl1(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
Fixups, STI) << 4;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 1;
return (OffBits & 0xF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4Lsl2(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
Fixups, STI) << 4;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 2;
return (OffBits & 0xF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMSPImm5Lsl2(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Register is encoded in bits 9-5, offset is encoded in bits 4-0.
assert(MI.getOperand(OpNo).isReg() &&
(MI.getOperand(OpNo).getReg() == Mips::SP ||
MI.getOperand(OpNo).getReg() == Mips::SP_64) &&
"Unexpected base register!");
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 2;
return OffBits & 0x1F;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMGPImm7Lsl2(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Register is encoded in bits 9-7, offset is encoded in bits 6-0.
assert(MI.getOperand(OpNo).isReg() &&
MI.getOperand(OpNo).getReg() == Mips::GP &&
"Unexpected base register!");
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 2;
return OffBits & 0x7F;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm9(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 8-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups,
STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI);
return (OffBits & 0x1FF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// opNum can be invalid if instruction had reglist as operand.
// MemOperand is always last operand of instruction (base + offset).
switch (MI.getOpcode()) {
default:
break;
case Mips::SWM32_MM:
case Mips::LWM32_MM:
OpNo = MI.getNumOperands() - 2;
break;
}
// Base register is encoded in bits 20-16, offset is encoded in bits 11-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return (OffBits & 0x0FFF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm16(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups,
STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return (OffBits & 0xFFFF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4sp(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// opNum can be invalid if instruction had reglist as operand
// MemOperand is always last operand of instruction (base + offset)
switch (MI.getOpcode()) {
default:
break;
case Mips::SWM16_MM:
case Mips::SWM16_MMR6:
case Mips::LWM16_MM:
case Mips::LWM16_MMR6:
OpNo = MI.getNumOperands() - 2;
break;
}
// Offset is encoded in bits 4-0.
assert(MI.getOperand(OpNo).isReg());
// Base register is always SP - thus it is not encoded.
assert(MI.getOperand(OpNo+1).isImm());
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return ((OffBits >> 2) & 0x0F);
}
// FIXME: should be called getMSBEncoding
//
unsigned
MipsMCCodeEmitter::getSizeInsEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo-1).isImm());
assert(MI.getOperand(OpNo).isImm());
unsigned Position = getMachineOpValue(MI, MI.getOperand(OpNo-1), Fixups, STI);
unsigned Size = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
return Position + Size - 1;
}
template <unsigned Bits, int Offset>
unsigned
MipsMCCodeEmitter::getUImmWithOffsetEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isImm());
unsigned Value = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
Value -= Offset;
return Value;
}
unsigned
MipsMCCodeEmitter::getSimm19Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
// The immediate is encoded as 'immediate << 2'.
unsigned Res = getMachineOpValue(MI, MO, Fixups, STI);
assert((Res & 3) == 0);
return Res >> 2;
}
assert(MO.isExpr() &&
"getSimm19Lsl2Encoding expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MIPS_PC19_S2)));
return 0;
}
unsigned
MipsMCCodeEmitter::getSimm18Lsl3Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
// The immediate is encoded as 'immediate << 3'.
unsigned Res = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
assert((Res & 7) == 0);
return Res >> 3;
}
assert(MO.isExpr() &&
"getSimm18Lsl2Encoding expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MIPS_PC18_S3)));
return 0;
}
unsigned
MipsMCCodeEmitter::getUImm3Mod8Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isImm());
const MCOperand &MO = MI.getOperand(OpNo);
return MO.getImm() % 8;
}
unsigned
MipsMCCodeEmitter::getUImm4AndValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isImm());
const MCOperand &MO = MI.getOperand(OpNo);
unsigned Value = MO.getImm();
switch (Value) {
case 128: return 0x0;
case 1: return 0x1;
case 2: return 0x2;
case 3: return 0x3;
case 4: return 0x4;
case 7: return 0x5;
case 8: return 0x6;
case 15: return 0x7;
case 16: return 0x8;
case 31: return 0x9;
case 32: return 0xa;
case 63: return 0xb;
case 64: return 0xc;
case 255: return 0xd;
case 32768: return 0xe;
case 65535: return 0xf;
}
llvm_unreachable("Unexpected value");
}
unsigned
MipsMCCodeEmitter::getRegisterListOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned res = 0;
// Register list operand is always first operand of instruction and it is
// placed before memory operand (register + imm).
for (unsigned I = OpNo, E = MI.getNumOperands() - 2; I < E; ++I) {
unsigned Reg = MI.getOperand(I).getReg();
unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg);
if (RegNo != 31)
res++;
else
res |= 0x10;
}
return res;
}
unsigned
MipsMCCodeEmitter::getRegisterListOpValue16(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return (MI.getNumOperands() - 4);
}
unsigned
MipsMCCodeEmitter::getRegisterPairOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
}
unsigned
MipsMCCodeEmitter::getMovePRegPairOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned res = 0;
if (MI.getOperand(0).getReg() == Mips::A1 &&
MI.getOperand(1).getReg() == Mips::A2)
res = 0;
else if (MI.getOperand(0).getReg() == Mips::A1 &&
MI.getOperand(1).getReg() == Mips::A3)
res = 1;
else if (MI.getOperand(0).getReg() == Mips::A2 &&
MI.getOperand(1).getReg() == Mips::A3)
res = 2;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::S5)
res = 3;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::S6)
res = 4;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::A1)
res = 5;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::A2)
res = 6;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::A3)
res = 7;
return res;
}
unsigned
MipsMCCodeEmitter::getSimm23Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm() && "getSimm23Lsl2Encoding expects only an immediate");
// The immediate is encoded as 'immediate >> 2'.
unsigned Res = static_cast<unsigned>(MO.getImm());
assert((Res & 3) == 0);
return Res >> 2;
}
#include "MipsGenMCCodeEmitter.inc"