blob: 8ba19f76797f954b79680a250758bd0da8d51e3b [file] [log] [blame]
//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class. This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLowering.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
/// on it until only value types the target machine can handle are left. This
/// involves promoting small sizes to large sizes or splitting up large values
/// into small values.
///
class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
const TargetLowering &TLI;
SelectionDAG &DAG;
public:
// NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
// about the state of the node. The enum has all the values.
enum NodeIdFlags {
/// ReadyToProcess - All operands have been processed, so this node is ready
/// to be handled.
ReadyToProcess = 0,
/// NewNode - This is a new node, not before seen, that was created in the
/// process of legalizing some other node.
NewNode = -1,
/// Unanalyzed - This node's ID needs to be set to the number of its
/// unprocessed operands.
Unanalyzed = -2,
/// Processed - This is a node that has already been processed.
Processed = -3
// 1+ - This is a node which has this many unprocessed operands.
};
private:
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// simple value type, where the two bits correspond to the LegalizeAction
/// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// getTypeAction - Return how we should legalize values of this type.
TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT);
}
/// isTypeLegal - Return true if this type is legal on this target.
bool isTypeLegal(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
}
/// isSimpleLegalType - Return true if this is a simple legal type.
bool isSimpleLegalType(EVT VT) const {
return VT.isSimple() && TLI.isTypeLegal(VT);
}
/// isLegalInHWReg - Return true if this type can be passed in registers.
/// For example, x86_64's f128, should to be legally in registers
/// and only some operations converted to library calls or integer
/// bitwise operations.
bool isLegalInHWReg(EVT VT) const {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
return VT == NVT && isSimpleLegalType(VT);
}
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
/// IgnoreNodeResults - Pretend all of this node's results are legal.
bool IgnoreNodeResults(SDNode *N) const {
return N->getOpcode() == ISD::TargetConstant;
}
/// PromotedIntegers - For integer nodes that are below legal width, this map
/// indicates what promoted value to use.
SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
/// ExpandedIntegers - For integer nodes that need to be expanded this map
/// indicates which operands are the expanded version of the input.
SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
/// SoftenedFloats - For floating point nodes converted to integers of
/// the same size, this map indicates the converted value to use.
SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
/// PromotedFloats - For floating point nodes that have a smaller precision
/// than the smallest supported precision, this map indicates what promoted
/// value to use.
SmallDenseMap<SDValue, SDValue, 8> PromotedFloats;
/// ExpandedFloats - For float nodes that need to be expanded this map
/// indicates which operands are the expanded version of the input.
SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
/// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
/// scalar value of type 'ty' to use.
SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
/// SplitVectors - For nodes that need to be split this map indicates
/// which operands are the expanded version of the input.
SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
/// WidenedVectors - For vector nodes that need to be widened, indicates
/// the widened value to use.
SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
/// ReplacedValues - For values that have been replaced with another,
/// indicates the replacement value to use.
SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
/// Worklist - This defines a worklist of nodes to process. In order to be
/// pushed onto this worklist, all operands of a node must have already been
/// processed.
SmallVector<SDNode*, 128> Worklist;
public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
"Too many value types for ValueTypeActions to hold!");
}
/// run - This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes. Returns
/// "true" if it made any changes.
bool run();
void NoteDeletion(SDNode *Old, SDNode *New) {
ExpungeNode(Old);
ExpungeNode(New);
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
}
SelectionDAG &getDAG() const { return DAG; }
private:
SDNode *AnalyzeNewNode(SDNode *N);
void AnalyzeNewValue(SDValue &Val);
void ExpungeNode(SDNode *N);
void PerformExpensiveChecks();
void RemapValue(SDValue &N);
// Common routines.
SDValue BitConvertToInteger(SDValue Op);
SDValue BitConvertVectorToIntegerVector(SDValue Op);
SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
bool CustomWidenLowerNode(SDNode *N, EVT VT);
/// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
/// node with the corresponding input operand, except for the result 'ResNo',
/// for which the corresponding input operand is returned.
SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
SDNode *Node, bool isSigned);
std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
/// Modify Bit Vector to match SetCC result type of ValVT.
/// The bit vector is widened with zeroes when WithZeroes is true.
SDValue WidenTargetBoolean(SDValue Bool, EVT ValVT, bool WithZeroes = false);
void ReplaceValueWith(SDValue From, SDValue To);
void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Integer Promotion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// GetPromotedInteger - Given a processed operand Op which was promoted to a
/// larger integer type, this returns the promoted value. The low bits of the
/// promoted value corresponding to the original type are exactly equal to Op.
/// The extra bits contain rubbish, so the promoted value may need to be zero-
/// or sign-extended from the original type before it is usable (the helpers
/// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
/// For example, if Op is an i16 and was promoted to an i32, then this method
/// returns an i32, the lower 16 bits of which coincide with Op, and the upper
/// 16 bits of which contain rubbish.
SDValue GetPromotedInteger(SDValue Op) {
SDValue &PromotedOp = PromotedIntegers[Op];
RemapValue(PromotedOp);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedInteger(SDValue Op, SDValue Result);
/// SExtPromotedInteger - Get a promoted operand and sign extend it to the
/// final size.
SDValue SExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
DAG.getValueType(OldVT));
}
/// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
/// final size.
SDValue ZExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
}
// Integer Result Promotion.
void PromoteIntegerResult(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_AssertSext(SDNode *N);
SDValue PromoteIntRes_AssertZext(SDNode *N);
SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntRes_BITCAST(SDNode *N);
SDValue PromoteIntRes_BSWAP(SDNode *N);
SDValue PromoteIntRes_BITREVERSE(SDNode *N);
SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
SDValue PromoteIntRes_Constant(SDNode *N);
SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
SDValue PromoteIntRes_CTLZ(SDNode *N);
SDValue PromoteIntRes_CTPOP(SDNode *N);
SDValue PromoteIntRes_CTTZ(SDNode *N);
SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
SDValue PromoteIntRes_LOAD(LoadSDNode *N);
SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
SDValue PromoteIntRes_Overflow(SDNode *N);
SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_SELECT(SDNode *N);
SDValue PromoteIntRes_VSELECT(SDNode *N);
SDValue PromoteIntRes_SELECT_CC(SDNode *N);
SDValue PromoteIntRes_SETCC(SDNode *N);
SDValue PromoteIntRes_SHL(SDNode *N);
SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
SDValue PromoteIntRes_SRA(SDNode *N);
SDValue PromoteIntRes_SRL(SDNode *N);
SDValue PromoteIntRes_TRUNCATE(SDNode *N);
SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_UNDEF(SDNode *N);
SDValue PromoteIntRes_VAARG(SDNode *N);
SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
// Integer Operand Promotion.
bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
SDValue PromoteIntOp_BITCAST(SDNode *N);
SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_Shift(SDNode *N);
SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
//===--------------------------------------------------------------------===//
// Integer Expansion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// GetExpandedInteger - Given a processed operand Op which was expanded into
/// two integers of half the size, this returns the two halves. The low bits
/// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
/// For example, if Op is an i64 which was expanded into two i32's, then this
/// method returns the two i32's, with Lo being equal to the lower 32 bits of
/// Op, and Hi being equal to the upper 32 bits.
void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
// Integer Result Expansion.
void ExpandIntegerResult(SDNode *N, unsigned ResNo);
void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
// Integer Operand Expansion.
bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
SDValue ExpandIntOp_BR_CC(SDNode *N);
SDValue ExpandIntOp_SELECT_CC(SDNode *N);
SDValue ExpandIntOp_SETCC(SDNode *N);
SDValue ExpandIntOp_SETCCE(SDNode *N);
SDValue ExpandIntOp_Shift(SDNode *N);
SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ExpandIntOp_TRUNCATE(SDNode *N);
SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_RETURNADDR(SDNode *N);
SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, SDLoc dl);
//===--------------------------------------------------------------------===//
// Float to Integer Conversion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// GetSoftenedFloat - Given an operand Op of Float type, returns the integer
/// if the Op is not supported in target HW and converted to the integer.
/// The integer contains exactly the same bits as Op - only the type changed.
/// For example, if Op is an f32 which was softened to an i32, then this method
/// returns an i32, the bits of which coincide with those of Op.
/// If the Op can be efficiently supported in target HW or the operand must
/// stay in a register, the Op is not converted to an integer.
/// In that case, the given op is returned.
SDValue GetSoftenedFloat(SDValue Op) {
SDValue &SoftenedOp = SoftenedFloats[Op];
if (!SoftenedOp.getNode() &&
isSimpleLegalType(Op.getValueType()))
return Op;
RemapValue(SoftenedOp);
assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
return SoftenedOp;
}
void SetSoftenedFloat(SDValue Op, SDValue Result);
// Call ReplaceValueWith(SDValue(N, ResNo), Res) if necessary.
void ReplaceSoftenFloatResult(SDNode *N, unsigned ResNo, SDValue &NewRes) {
// When the result type can be kept in HW registers, the converted
// NewRes node could have the same type. We can save the effort in
// cloning every user of N in SoftenFloatOperand or other legalization functions,
// by calling ReplaceValueWith here to update all users.
if (NewRes.getNode() != N && isLegalInHWReg(N->getValueType(ResNo)))
ReplaceValueWith(SDValue(N, ResNo), NewRes);
}
// Convert Float Results to Integer for Non-HW-supported Operations.
bool SoftenFloatResult(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_BITCAST(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
SDValue SoftenFloatRes_ConstantFP(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SoftenFloatRes_FABS(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_FMINNUM(SDNode *N);
SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
SDValue SoftenFloatRes_FADD(SDNode *N);
SDValue SoftenFloatRes_FCEIL(SDNode *N);
SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_FCOS(SDNode *N);
SDValue SoftenFloatRes_FDIV(SDNode *N);
SDValue SoftenFloatRes_FEXP(SDNode *N);
SDValue SoftenFloatRes_FEXP2(SDNode *N);
SDValue SoftenFloatRes_FFLOOR(SDNode *N);
SDValue SoftenFloatRes_FLOG(SDNode *N);
SDValue SoftenFloatRes_FLOG2(SDNode *N);
SDValue SoftenFloatRes_FLOG10(SDNode *N);
SDValue SoftenFloatRes_FMA(SDNode *N);
SDValue SoftenFloatRes_FMUL(SDNode *N);
SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
SDValue SoftenFloatRes_FNEG(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
SDValue SoftenFloatRes_FPOW(SDNode *N);
SDValue SoftenFloatRes_FPOWI(SDNode *N);
SDValue SoftenFloatRes_FREM(SDNode *N);
SDValue SoftenFloatRes_FRINT(SDNode *N);
SDValue SoftenFloatRes_FROUND(SDNode *N);
SDValue SoftenFloatRes_FSIN(SDNode *N);
SDValue SoftenFloatRes_FSQRT(SDNode *N);
SDValue SoftenFloatRes_FSUB(SDNode *N);
SDValue SoftenFloatRes_FTRUNC(SDNode *N);
SDValue SoftenFloatRes_LOAD(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_SELECT(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_SELECT_CC(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_UNDEF(SDNode *N);
SDValue SoftenFloatRes_VAARG(SDNode *N);
SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
// Return true if we can skip softening the given operand or SDNode because
// it was soften before by SoftenFloatResult and references to the operand
// were replaced by ReplaceValueWith.
bool CanSkipSoftenFloatOperand(SDNode *N, unsigned OpNo);
// Convert Float Operand to Integer for Non-HW-supported Operations.
bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_BITCAST(SDNode *N);
SDValue SoftenFloatOp_BR_CC(SDNode *N);
SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
SDValue SoftenFloatOp_SETCC(SDNode *N);
SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Float Expansion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// GetExpandedFloat - Given a processed operand Op which was expanded into
/// two floating point values of half the size, this returns the two halves.
/// The low bits of Op are exactly equal to the bits of Lo; the high bits
/// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
/// into two f64's, then this method returns the two f64's, with Lo being
/// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
// Float Result Expansion.
void ExpandFloatResult(SDNode *N, unsigned ResNo);
void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
// Float Operand Expansion.
bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
SDValue ExpandFloatOp_BR_CC(SDNode *N);
SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
SDValue ExpandFloatOp_SETCC(SDNode *N);
SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, SDLoc dl);
//===--------------------------------------------------------------------===//
// Float promotion support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetPromotedFloat(SDValue Op) {
SDValue &PromotedOp = PromotedFloats[Op];
RemapValue(PromotedOp);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedFloat(SDValue Op, SDValue Result);
void PromoteFloatResult(SDNode *N, unsigned ResNo);
SDValue PromoteFloatRes_BITCAST(SDNode *N);
SDValue PromoteFloatRes_BinOp(SDNode *N);
SDValue PromoteFloatRes_ConstantFP(SDNode *N);
SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
SDValue PromoteFloatRes_FMAD(SDNode *N);
SDValue PromoteFloatRes_FPOWI(SDNode *N);
SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
SDValue PromoteFloatRes_LOAD(SDNode *N);
SDValue PromoteFloatRes_SELECT(SDNode *N);
SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
SDValue PromoteFloatRes_UnaryOp(SDNode *N);
SDValue PromoteFloatRes_UNDEF(SDNode *N);
SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
bool PromoteFloatOperand(SDNode *N, unsigned ResNo);
SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Scalarization Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// GetScalarizedVector - Given a processed one-element vector Op which was
/// scalarized to its element type, this returns the element. For example,
/// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
SDValue GetScalarizedVector(SDValue Op) {
SDValue &ScalarizedOp = ScalarizedVectors[Op];
RemapValue(ScalarizedOp);
assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
return ScalarizedOp;
}
void SetScalarizedVector(SDValue Op, SDValue Result);
// Vector Result Scalarization: <1 x ty> -> ty.
void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
SDValue ScalarizeVecRes_InregOp(SDNode *N);
SDValue ScalarizeVecRes_BITCAST(SDNode *N);
SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
SDValue ScalarizeVecRes_FPOWI(SDNode *N);
SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_VSELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
SDValue ScalarizeVecRes_SETCC(SDNode *N);
SDValue ScalarizeVecRes_UNDEF(SDNode *N);
SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
SDValue ScalarizeVecRes_VSETCC(SDNode *N);
// Vector Operand Scalarization: <1 x ty> -> ty.
bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_BITCAST(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecOp_VSELECT(SDNode *N);
SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Vector Splitting Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// GetSplitVector - Given a processed vector Op which was split into vectors
/// of half the size, this method returns the halves. The first elements of
/// Op coincide with the elements of Lo; the remaining elements of Op coincide
/// with the elements of Hi: Op is what you would get by concatenating Lo and
/// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
/// this method returns the two v4i32's, with Lo corresponding to the first 4
/// elements of Op, and Hi to the last 4 elements.
void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
// Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
void SplitVectorResult(SDNode *N, unsigned OpNo);
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_MGATHER(MaskedGatherSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
SDValue &Hi);
// Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitVectorOperand(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_UnaryOp(SDNode *N);
SDValue SplitVecOp_TruncateHelper(SDNode *N);
SDValue SplitVecOp_BITCAST(SDNode *N);
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
SDValue SplitVecOp_VSETCC(SDNode *N);
SDValue SplitVecOp_FP_ROUND(SDNode *N);
SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Widening Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// GetWidenedVector - Given a processed vector Op which was widened into a
/// larger vector, this method returns the larger vector. The elements of
/// the returned vector consist of the elements of Op followed by elements
/// containing rubbish. For example, if Op is a v2i32 that was widened to a
/// v4i32, then this method returns a v4i32 for which the first two elements
/// are the same as those of Op, while the last two elements contain rubbish.
SDValue GetWidenedVector(SDValue Op) {
SDValue &WidenedOp = WidenedVectors[Op];
RemapValue(WidenedOp);
assert(WidenedOp.getNode() && "Operand wasn't widened?");
return WidenedOp;
}
void SetWidenedVector(SDValue Op, SDValue Result);
// Widen Vector Result Promotion.
void WidenVectorResult(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
SDValue WidenVecRes_BITCAST(SDNode* N);
SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
SDValue WidenVecRes_LOAD(SDNode* N);
SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
SDValue WidenVecRes_SELECT(SDNode* N);
SDValue WidenVecRes_SELECT_CC(SDNode* N);
SDValue WidenVecRes_SETCC(SDNode* N);
SDValue WidenVecRes_UNDEF(SDNode *N);
SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
SDValue WidenVecRes_VSETCC(SDNode* N);
SDValue WidenVecRes_Ternary(SDNode *N);
SDValue WidenVecRes_Binary(SDNode *N);
SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
SDValue WidenVecRes_Convert(SDNode *N);
SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
SDValue WidenVecRes_POWI(SDNode *N);
SDValue WidenVecRes_Shift(SDNode *N);
SDValue WidenVecRes_Unary(SDNode *N);
SDValue WidenVecRes_InregOp(SDNode *N);
// Widen Vector Operand.
bool WidenVectorOperand(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_BITCAST(SDNode *N);
SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
SDValue WidenVecOp_EXTEND(SDNode *N);
SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue WidenVecOp_STORE(SDNode* N);
SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_SETCC(SDNode* N);
SDValue WidenVecOp_Convert(SDNode *N);
SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Widening Utilities Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Helper GenWidenVectorLoads - Helper function to generate a set of
/// loads to load a vector with a resulting wider type. It takes
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD);
/// GenWidenVectorExtLoads - Helper function to generate a set of extension
/// loads to load a ector with a resulting wider type. It takes
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
/// ExtType: extension element type
SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD, ISD::LoadExtType ExtType);
/// Helper genWidenVectorStores - Helper function to generate a set of
/// stores to store a widen vector into non-widen memory
/// StChain: list of chains for the stores we have generated
/// ST: store of a widen value
void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
/// Helper genWidenVectorTruncStores - Helper function to generate a set of
/// stores to store a truncate widen vector into non-widen memory
/// StChain: list of chains for the stores we have generated
/// ST: store of a widen value
void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
StoreSDNode *ST);
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
/// When FillWithZeroes is "on" the vector will be widened with
/// zeroes.
/// By default, the vector will be widened with undefined values.
SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
//===--------------------------------------------------------------------===//
// Generic Splitting: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// not necessarily identical types. As such they can be used for splitting
// vectors and expanding integers and floats.
void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isVector())
GetSplitVector(Op, Lo, Hi);
else if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
/// high parts of the given value.
void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
// Generic Result Splitting.
void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Generic Expansion: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// identical types of half the size, and that the Lo/Hi part is stored first
// in memory on little/big-endian machines, followed by the Hi/Lo part. As
// such they can be used for expanding integers and floats.
void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// This function will split the integer \p Op into \p NumElements
/// operations of type \p EltVT and store them in \p Ops.
void IntegerToVector(SDValue Op, unsigned NumElements,
SmallVectorImpl<SDValue> &Ops, EVT EltVT);
// Generic Result Expansion.
void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
// Generic Operand Expansion.
SDValue ExpandOp_BITCAST (SDNode *N);
SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
};
} // end namespace llvm.
#endif