blob: 135f1d17562e4ea7dc9bd24f359a8db8ef9badf7 [file] [log] [blame]
//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file performs vector type splitting and scalarization for LegalizeTypes.
// Scalarization is the act of changing a computation in an illegal one-element
// vector type to be a computation in its scalar element type. For example,
// implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
// as a base case when scalarizing vector arithmetic like <4 x f32>, which
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
// be a computation in two vectors of half the size. For example, implementing
// <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
//===----------------------------------------------------------------------===//
// Result Vector Scalarization: <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to scalarize the result of this "
"operator!\n");
case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break;
case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
case ISD::ANY_EXTEND:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
R = ScalarizeVecRes_UnaryOp(N);
break;
case ISD::ADD:
case ISD::AND:
case ISD::FADD:
case ISD::FCOPYSIGN:
case ISD::FDIV:
case ISD::FMUL:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB:
case ISD::MUL:
case ISD::OR:
case ISD::SDIV:
case ISD::SREM:
case ISD::SUB:
case ISD::UDIV:
case ISD::UREM:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
R = ScalarizeVecRes_BinOp(N);
break;
case ISD::FMA:
R = ScalarizeVecRes_TernaryOp(N);
break;
}
// If R is null, the sub-method took care of registering the result.
if (R.getNode())
SetScalarizedVector(SDValue(N, ResNo), R);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
SDValue Op1 = GetScalarizedVector(N->getOperand(1));
SDValue Op2 = GetScalarizedVector(N->getOperand(2));
return DAG.getNode(N->getOpcode(), SDLoc(N),
Op0.getValueType(), Op0, Op1, Op2);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return GetScalarizedVector(Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
return DAG.getNode(ISD::BITCAST, SDLoc(N),
NewVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
EVT EltVT = N->getValueType(0).getVectorElementType();
SDValue InOp = N->getOperand(0);
// The BUILD_VECTOR operands may be of wider element types and
// we may need to truncate them back to the requested return type.
if (EltVT.isInteger())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
return InOp;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
return DAG.getConvertRndSat(NewVT, SDLoc(N),
Op0, DAG.getValueType(NewVT),
DAG.getValueType(Op0.getValueType()),
N->getOperand(3),
N->getOperand(4),
cast<CvtRndSatSDNode>(N)->getCvtCode());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
N->getValueType(0).getVectorElementType(),
N->getOperand(0), N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
NewVT, Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FPOWI, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
// The value to insert may have a wider type than the vector element type,
// so be sure to truncate it to the element type if necessary.
SDValue Op = N->getOperand(1);
EVT EltVT = N->getValueType(0).getVectorElementType();
if (Op.getValueType() != EltVT)
// FIXME: Can this happen for floating point types?
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
return Op;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
assert(N->isUnindexed() && "Indexed vector load?");
SDValue Result = DAG.getLoad(ISD::UNINDEXED,
N->getExtensionType(),
N->getValueType(0).getVectorElementType(),
SDLoc(N),
N->getChain(), N->getBasePtr(),
DAG.getUNDEF(N->getBasePtr().getValueType()),
N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
N->isInvariant(), N->getOriginalAlignment(),
N->getAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
return Result;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
// Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
EVT DestVT = N->getValueType(0).getVectorElementType();
SDValue Op = N->getOperand(0);
EVT OpVT = Op.getValueType();
SDLoc DL(N);
// The result needs scalarizing, but it's not a given that the source does.
// This is a workaround for targets where it's impossible to scalarize the
// result of a conversion, because the source type is legal.
// For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
// are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
// legal and was not scalarized.
// See the similar logic in ScalarizeVecRes_VSETCC
if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
Op = GetScalarizedVector(Op);
} else {
EVT VT = OpVT.getVectorElementType();
Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
DAG.getConstant(0, TLI.getVectorIdxTy()));
}
return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
EVT EltVT = N->getValueType(0).getVectorElementType();
EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
SDValue LHS = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
LHS, DAG.getValueType(ExtVT));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
EVT EltVT = N->getValueType(0).getVectorElementType();
SDValue InOp = N->getOperand(0);
if (InOp.getValueType() != EltVT)
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
return InOp;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
SDValue Cond = GetScalarizedVector(N->getOperand(0));
SDValue LHS = GetScalarizedVector(N->getOperand(1));
TargetLowering::BooleanContent ScalarBool =
TLI.getBooleanContents(false, false);
TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
// If integer and float booleans have different contents then we can't
// reliably optimize in all cases. There is a full explanation for this in
// DAGCombiner::visitSELECT() where the same issue affects folding
// (select C, 0, 1) to (xor C, 1).
if (TLI.getBooleanContents(false, false) !=
TLI.getBooleanContents(false, true)) {
// At least try the common case where the boolean is generated by a
// comparison.
if (Cond->getOpcode() == ISD::SETCC) {
EVT OpVT = Cond->getOperand(0)->getValueType(0);
ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
VecBool = TLI.getBooleanContents(OpVT);
} else
ScalarBool = TargetLowering::UndefinedBooleanContent;
}
if (ScalarBool != VecBool) {
EVT CondVT = Cond.getValueType();
switch (ScalarBool) {
case TargetLowering::UndefinedBooleanContent:
break;
case TargetLowering::ZeroOrOneBooleanContent:
assert(VecBool == TargetLowering::UndefinedBooleanContent ||
VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
// Vector read from all ones, scalar expects a single 1 so mask.
Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
Cond, DAG.getConstant(1, CondVT));
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
assert(VecBool == TargetLowering::UndefinedBooleanContent ||
VecBool == TargetLowering::ZeroOrOneBooleanContent);
// Vector reads from a one, scalar from all ones so sign extend.
Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
Cond, DAG.getValueType(MVT::i1));
break;
}
}
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), Cond, LHS,
GetScalarizedVector(N->getOperand(2)));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(1));
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), N->getOperand(0), LHS,
GetScalarizedVector(N->getOperand(2)));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(2));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
N->getOperand(0), N->getOperand(1),
LHS, GetScalarizedVector(N->getOperand(3)),
N->getOperand(4));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
assert(N->getValueType(0).isVector() ==
N->getOperand(0).getValueType().isVector() &&
"Scalar/Vector type mismatch");
if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
SDLoc DL(N);
// Turn it into a scalar SETCC.
return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
// Figure out if the scalar is the LHS or RHS and return it.
SDValue Arg = N->getOperand(2).getOperand(0);
if (Arg.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
return GetScalarizedVector(N->getOperand(Op));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT OpVT = LHS.getValueType();
EVT NVT = N->getValueType(0).getVectorElementType();
SDLoc DL(N);
// The result needs scalarizing, but it's not a given that the source does.
if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
LHS = GetScalarizedVector(LHS);
RHS = GetScalarizedVector(RHS);
} else {
EVT VT = OpVT.getVectorElementType();
LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
DAG.getConstant(0, TLI.getVectorIdxTy()));
RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
DAG.getConstant(0, TLI.getVectorIdxTy()));
}
// Turn it into a scalar SETCC.
SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
N->getOperand(2));
// Vectors may have a different boolean contents to scalars. Promote the
// value appropriately.
ISD::NodeType ExtendCode =
TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
return DAG.getNode(ExtendCode, DL, NVT, Res);
}
//===----------------------------------------------------------------------===//
// Operand Vector Scalarization <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (!Res.getNode()) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to scalarize this operator's operand!");
case ISD::BITCAST:
Res = ScalarizeVecOp_BITCAST(N);
break;
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::TRUNCATE:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
Res = ScalarizeVecOp_UnaryOp(N);
break;
case ISD::CONCAT_VECTORS:
Res = ScalarizeVecOp_CONCAT_VECTORS(N);
break;
case ISD::EXTRACT_VECTOR_ELT:
Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
break;
case ISD::VSELECT:
Res = ScalarizeVecOp_VSELECT(N);
break;
case ISD::STORE:
Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
case ISD::FP_ROUND:
Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
/// to be scalarized, it must be <1 x ty>. Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
SDValue Elt = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::BITCAST, SDLoc(N),
N->getValueType(0), Elt);
}
/// ScalarizeVecOp_UnaryOp - If the input is a vector that needs to be
/// scalarized, it must be <1 x ty>. Do the operation on the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
assert(N->getValueType(0).getVectorNumElements() == 1 &&
"Unexpected vector type!");
SDValue Elt = GetScalarizedVector(N->getOperand(0));
SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
N->getValueType(0).getScalarType(), Elt);
// Revectorize the result so the types line up with what the uses of this
// expression expect.
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op);
}
/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
/// use a BUILD_VECTOR instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
SmallVector<SDValue, 8> Ops(N->getNumOperands());
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
Ops[i] = GetScalarizedVector(N->getOperand(i));
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops);
}
/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
/// index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Res = GetScalarizedVector(N->getOperand(0));
if (Res.getValueType() != N->getValueType(0))
Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
Res);
return Res;
}
/// ScalarizeVecOp_VSELECT - If the input condition is a vector that needs to be
/// scalarized, it must be <1 x i1>, so just convert to a normal ISD::SELECT
/// (still with vector output type since that was acceptable if we got here).
SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
EVT VT = N->getValueType(0);
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
N->getOperand(2));
}
/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
/// scalarized, it must be <1 x ty>. Just store the element.
SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(N->isUnindexed() && "Indexed store of one-element vector?");
assert(OpNo == 1 && "Do not know how to scalarize this operand!");
SDLoc dl(N);
if (N->isTruncatingStore())
return DAG.getTruncStore(N->getChain(), dl,
GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
N->getAlignment(), N->getAAInfo());
return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->isVolatile(), N->isNonTemporal(),
N->getOriginalAlignment(), N->getAAInfo());
}
/// ScalarizeVecOp_FP_ROUND - If the value to round is a vector that needs
/// to be scalarized, it must be <1 x ty>. Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
SDValue Elt = GetScalarizedVector(N->getOperand(0));
SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
N->getValueType(0).getVectorElementType(), Elt,
N->getOperand(1));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
}
//===----------------------------------------------------------------------===//
// Result Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitVectorResult - This method is called when the specified result of the
/// specified node is found to need vector splitting. At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Split node result: ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Lo, Hi;
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SplitVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to split the result of this "
"operator!\n");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
case ISD::VSELECT:
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
case ISD::INSERT_SUBVECTOR: SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::LOAD:
SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
break;
case ISD::MLOAD:
SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
break;
case ISD::SETCC:
SplitVecRes_SETCC(N, Lo, Hi);
break;
case ISD::VECTOR_SHUFFLE:
SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
break;
case ISD::BSWAP:
case ISD::CONVERT_RNDSAT:
case ISD::CTLZ:
case ISD::CTTZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
SplitVecRes_UnaryOp(N, Lo, Hi);
break;
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
SplitVecRes_ExtendOp(N, Lo, Hi);
break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::FADD:
case ISD::FCOPYSIGN:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::UREM:
case ISD::SREM:
case ISD::FREM:
SplitVecRes_BinOp(N, Lo, Hi);
break;
case ISD::FMA:
SplitVecRes_TernaryOp(N, Lo, Hi);
break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetSplitVector(SDValue(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDValue RHSLo, RHSHi;
GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
SDLoc dl(N);
Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
}
void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Op0Lo, Op0Hi;
GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
SDValue Op1Lo, Op1Hi;
GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
SDValue Op2Lo, Op2Hi;
GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
SDLoc dl(N);
Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
Op0Lo, Op1Lo, Op2Lo);
Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
Op0Hi, Op1Hi, Op2Hi);
}
void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SDLoc dl(N);
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
case TargetLowering::TypePromoteInteger:
case TargetLowering::TypePromoteFloat:
case TargetLowering::TypeSoftenFloat:
case TargetLowering::TypeScalarizeVector:
case TargetLowering::TypeWidenVector:
break;
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
// A scalar to vector conversion, where the scalar needs expansion.
// If the vector is being split in two then we can just convert the
// expanded pieces.
if (LoVT == HiVT) {
GetExpandedOp(InOp, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
return;
}
break;
case TargetLowering::TypeSplitVector:
// If the input is a vector that needs to be split, convert each split
// piece of the input now.
GetSplitVector(InOp, Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
return;
}
// In the general case, convert the input to an integer and split it by hand.
EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
if (TLI.isBigEndian())
std::swap(LoIntVT, HiIntVT);
SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
unsigned LoNumElts = LoVT.getVectorNumElements();
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps);
SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps);
}
void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
SDLoc dl(N);
unsigned NumSubvectors = N->getNumOperands() / 2;
if (NumSubvectors == 1) {
Lo = N->getOperand(0);
Hi = N->getOperand(1);
return;
}
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
}
void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
SDLoc dl(N);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
DAG.getConstant(IdxVal + LoVT.getVectorNumElements(),
TLI.getVectorIdxTy()));
}
void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue SubVec = N->getOperand(1);
SDValue Idx = N->getOperand(2);
SDLoc dl(N);
GetSplitVector(Vec, Lo, Hi);
// Spill the vector to the stack.
EVT VecVT = Vec.getValueType();
EVT SubVecVT = VecVT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo(), false, false, 0);
// Store the new subvector into the specified index.
SDValue SubVecPtr = GetVectorElementPointer(StackPtr, SubVecVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment = TLI.getDataLayout()->getPrefTypeAlignment(VecType);
Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(),
false, false, 0);
// Load the Lo part from the stack slot.
Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
false, false, false, 0);
// Increment the pointer to the other part.
unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
StackPtr =
DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, StackPtr.getValueType()));
// Load the Hi part from the stack slot.
Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
false, false, false, MinAlign(Alignment, IncrementSize));
}
void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
}
void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDLoc dl(N);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) =
DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
DAG.getValueType(LoVT));
Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
DAG.getValueType(HiVT));
}
void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Elt = N->getOperand(1);
SDValue Idx = N->getOperand(2);
SDLoc dl(N);
GetSplitVector(Vec, Lo, Hi);
if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
unsigned IdxVal = CIdx->getZExtValue();
unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoNumElts)
Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
Lo.getValueType(), Lo, Elt, Idx);
else
Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
DAG.getConstant(IdxVal - LoNumElts,
TLI.getVectorIdxTy()));
return;
}
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(0), true))
return;
// Spill the vector to the stack.
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo(), false, false, 0);
// Store the new element. This may be larger than the vector element type,
// so use a truncating store.
SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment =
TLI.getDataLayout()->getPrefTypeAlignment(VecType);
Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
false, false, 0);
// Load the Lo part from the stack slot.
Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
false, false, false, 0);
// Increment the pointer to the other part.
unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, StackPtr.getValueType()));
// Load the Hi part from the stack slot.
Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
false, false, false, MinAlign(Alignment, IncrementSize));
}
void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
Hi = DAG.getUNDEF(HiVT);
}
void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
EVT LoVT, HiVT;
SDLoc dl(LD);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Ch = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
EVT MemoryVT = LD->getMemoryVT();
unsigned Alignment = LD->getOriginalAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
AAMDNodes AAInfo = LD->getAAInfo();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
isInvariant, Alignment, AAInfo);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo().getWithOffset(IncrementSize),
HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(LD, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(MLD);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
SDValue Ch = MLD->getChain();
SDValue Ptr = MLD->getBasePtr();
SDValue Mask = MLD->getMask();
unsigned Alignment = MLD->getOriginalAlignment();
ISD::LoadExtType ExtType = MLD->getExtensionType();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
SDValue MaskLo, MaskHi;
std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
EVT MemoryVT = MLD->getMemoryVT();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue Src0 = MLD->getSrc0();
SDValue Src0Lo, Src0Hi;
std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
ExtType);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
ExtType);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(MLD, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
EVT LoVT, HiVT;
SDLoc DL(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// Split the input.
SDValue LL, LH, RL, RH;
std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
}
void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// Get the dest types - they may not match the input types, e.g. int_to_fp.
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// If the input also splits, handle it directly for a compile time speedup.
// Otherwise split it by hand.
EVT InVT = N->getOperand(0).getValueType();
if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
GetSplitVector(N->getOperand(0), Lo, Hi);
else
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
if (N->getOpcode() == ISD::FP_ROUND) {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
} else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
SDValue DTyOpLo = DAG.getValueType(LoVT);
SDValue DTyOpHi = DAG.getValueType(HiVT);
SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
SDValue RndOp = N->getOperand(3);
SDValue SatOp = N->getOperand(4);
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
CvtCode);
Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
CvtCode);
} else {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
}
}
void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
EVT SrcVT = N->getOperand(0).getValueType();
EVT DestVT = N->getValueType(0);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
// We can do better than a generic split operation if the extend is doing
// more than just doubling the width of the elements and the following are
// true:
// - The number of vector elements is even,
// - the source type is legal,
// - the type of a split source is illegal,
// - the type of an extended (by doubling element size) source is legal, and
// - the type of that extended source when split is legal.
//
// This won't necessarily completely legalize the operation, but it will
// more effectively move in the right direction and prevent falling down
// to scalarization in many cases due to the input vector being split too
// far.
unsigned NumElements = SrcVT.getVectorNumElements();
if ((NumElements & 1) == 0 &&
SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
LLVMContext &Ctx = *DAG.getContext();
EVT NewSrcVT = EVT::getVectorVT(
Ctx, EVT::getIntegerVT(
Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
NumElements);
EVT SplitSrcVT =
EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
EVT SplitLoVT, SplitHiVT;
std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
DEBUG(dbgs() << "Split vector extend via incremental extend:";
N->dump(&DAG); dbgs() << "\n");
// Extend the source vector by one step.
SDValue NewSrc =
DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
// Get the low and high halves of the new, extended one step, vector.
std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
// Extend those vector halves the rest of the way.
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
return;
}
}
// Fall back to the generic unary operator splitting otherwise.
SplitVecRes_UnaryOp(N, Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
SDValue &Lo, SDValue &Hi) {
// The low and high parts of the original input give four input vectors.
SDValue Inputs[4];
SDLoc dl(N);
GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
EVT NewVT = Inputs[0].getValueType();
unsigned NewElts = NewVT.getVectorNumElements();
// If Lo or Hi uses elements from at most two of the four input vectors, then
// express it as a vector shuffle of those two inputs. Otherwise extract the
// input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
SmallVector<int, 16> Ops;
for (unsigned High = 0; High < 2; ++High) {
SDValue &Output = High ? Hi : Lo;
// Build a shuffle mask for the output, discovering on the fly which
// input vectors to use as shuffle operands (recorded in InputUsed).
// If building a suitable shuffle vector proves too hard, then bail
// out with useBuildVector set.
unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
unsigned FirstMaskIdx = High * NewElts;
bool useBuildVector = false;
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element does not index into any input vector.
Ops.push_back(-1);
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Find or create a shuffle vector operand to hold this input.
unsigned OpNo;
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
if (InputUsed[OpNo] == Input) {
// This input vector is already an operand.
break;
} else if (InputUsed[OpNo] == -1U) {
// Create a new operand for this input vector.
InputUsed[OpNo] = Input;
break;
}
}
if (OpNo >= array_lengthof(InputUsed)) {
// More than two input vectors used! Give up on trying to create a
// shuffle vector. Insert all elements into a BUILD_VECTOR instead.
useBuildVector = true;
break;
}
// Add the mask index for the new shuffle vector.
Ops.push_back(Idx + OpNo * NewElts);
}
if (useBuildVector) {
EVT EltVT = NewVT.getVectorElementType();
SmallVector<SDValue, 16> SVOps;
// Extract the input elements by hand.
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element is "undef" or indexes off the end of the input.
SVOps.push_back(DAG.getUNDEF(EltVT));
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Extract the vector element by hand.
SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
Inputs[Input], DAG.getConstant(Idx,
TLI.getVectorIdxTy())));
}
// Construct the Lo/Hi output using a BUILD_VECTOR.
Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps);
} else if (InputUsed[0] == -1U) {
// No input vectors were used! The result is undefined.
Output = DAG.getUNDEF(NewVT);
} else {
SDValue Op0 = Inputs[InputUsed[0]];
// If only one input was used, use an undefined vector for the other.
SDValue Op1 = InputUsed[1] == -1U ?
DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
// At least one input vector was used. Create a new shuffle vector.
Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
}
Ops.clear();
}
}
//===----------------------------------------------------------------------===//
// Operand Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitVectorOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
DEBUG(dbgs() << "Split node operand: ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom split this node.
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
return false;
if (!Res.getNode()) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to split this operator's "
"operand!\n");
case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
case ISD::TRUNCATE:
Res = SplitVecOp_TruncateHelper(N);
break;
case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
case ISD::STORE:
Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
case ISD::MSTORE:
Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
break;
case ISD::VSELECT:
Res = SplitVecOp_VSELECT(N, OpNo);
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
Res = SplitVecOp_TruncateHelper(N);
else
Res = SplitVecOp_UnaryOp(N);
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
Res = SplitVecOp_TruncateHelper(N);
else
Res = SplitVecOp_UnaryOp(N);
break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::FP_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::FTRUNC:
Res = SplitVecOp_UnaryOp(N);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
// The only possibility for an illegal operand is the mask, since result type
// legalization would have handled this node already otherwise.
assert(OpNo == 0 && "Illegal operand must be mask");
SDValue Mask = N->getOperand(0);
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
EVT Src0VT = Src0.getValueType();
SDLoc DL(N);
assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
assert(Lo.getValueType() == Hi.getValueType() &&
"Lo and Hi have differing types");
EVT LoOpVT, HiOpVT;
std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
SDValue LoSelect =
DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
SDValue HiSelect =
DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
}
SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
SDLoc dl(N);
GetSplitVector(N->getOperand(0), Lo, Hi);
EVT InVT = Lo.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
// For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
// end up being split all the way down to individual components. Convert the
// split pieces into integers and reassemble.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
JoinIntegers(Lo, Hi));
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
// We know that the extracted result type is legal.
EVT SubVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
SDLoc dl(N);
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal < LoElts) {
assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
"Extracted subvector crosses vector split!");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
} else {
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
}
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VecVT = Vec.getValueType();
if (isa<ConstantSDNode>(Idx)) {
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
SDValue Lo, Hi;
GetSplitVector(Vec, Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoElts)
return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
return SDValue(DAG.UpdateNodeOperands(N, Hi,
DAG.getConstant(IdxVal - LoElts,
Idx.getValueType())), 0);
}
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(0), true))
return SDValue();
// Store the vector to the stack.
EVT EltVT = VecVT.getVectorElementType();
SDLoc dl(N);
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo(), false, false, 0);
// Load back the required element.
StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
MachinePointerInfo(), EltVT, false, false, false, 0);
}
SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
unsigned OpNo) {
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
SDValue Mask = N->getMask();
SDValue Data = N->getValue();
EVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getOriginalAlignment();
SDLoc DL(N);
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
GetSplitVector(Data, DataLo, DataHi);
SDValue MaskLo, MaskHi;
GetSplitVector(Mask, MaskLo, MaskHi);
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == Data->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
SDValue Lo, Hi;
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(N->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, N->getAAInfo(), N->getRanges());
Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
N->isTruncatingStore());
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
MMO = DAG.getMachineFunction().
getMachineMemOperand(N->getPointerInfo(),
MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
SecondHalfAlignment, N->getAAInfo(), N->getRanges());
Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
N->isTruncatingStore());
// Build a factor node to remember that this store is independent of the
// other one.
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
assert(N->isUnindexed() && "Indexed store of vector?");
assert(OpNo == 1 && "Can only split the stored value");
SDLoc DL(N);
bool isTruncating = N->isTruncatingStore();
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
EVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getOriginalAlignment();
bool isVol = N->isVolatile();
bool isNT = N->isNonTemporal();
AAMDNodes AAInfo = N->getAAInfo();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
if (isTruncating)
Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
LoMemVT, isVol, isNT, Alignment, AAInfo);
else
Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
isVol, isNT, Alignment, AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
if (isTruncating)
Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
HiMemVT, isVol, isNT, Alignment, AAInfo);
else
Hi = DAG.getStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
isVol, isNT, Alignment, AAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
SDLoc DL(N);
// The input operands all must have the same type, and we know the result
// type is valid. Convert this to a buildvector which extracts all the
// input elements.
// TODO: If the input elements are power-two vectors, we could convert this to
// a new CONCAT_VECTORS node with elements that are half-wide.
SmallVector<SDValue, 32> Elts;
EVT EltVT = N->getValueType(0).getVectorElementType();
for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
SDValue Op = N->getOperand(op);
for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
i != e; ++i) {
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
Op, DAG.getConstant(i, TLI.getVectorIdxTy())));
}
}
return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts);
}
SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
// The result type is legal, but the input type is illegal. If splitting
// ends up with the result type of each half still being legal, just
// do that. If, however, that would result in an illegal result type,
// we can try to get more clever with power-two vectors. Specifically,
// split the input type, but also widen the result element size, then
// concatenate the halves and truncate again. For example, consider a target
// where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
// vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
// %inlo = v4i32 extract_subvector %in, 0
// %inhi = v4i32 extract_subvector %in, 4
// %lo16 = v4i16 trunc v4i32 %inlo
// %hi16 = v4i16 trunc v4i32 %inhi
// %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
// %res = v8i8 trunc v8i16 %in16
//
// Without this transform, the original truncate would end up being
// scalarized, which is pretty much always a last resort.
SDValue InVec = N->getOperand(0);
EVT InVT = InVec->getValueType(0);
EVT OutVT = N->getValueType(0);
unsigned NumElements = OutVT.getVectorNumElements();
bool IsFloat = OutVT.isFloatingPoint();
// Widening should have already made sure this is a power-two vector
// if we're trying to split it at all. assert() that's true, just in case.
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
// If the input elements are only 1/2 the width of the result elements,
// just use the normal splitting. Our trick only work if there's room
// to split more than once.
if (InElementSize <= OutElementSize * 2)
return SplitVecOp_UnaryOp(N);
SDLoc DL(N);
// Extract the halves of the input via extract_subvector.
SDValue InLoVec, InHiVec;
std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
// Truncate them to 1/2 the element size.
EVT HalfElementVT = IsFloat ?
EVT::getFloatingPointVT(InElementSize/2) :
EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
NumElements/2);
SDValue HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
SDValue HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
// Concatenate them to get the full intermediate truncation result.
EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
HalfHi);
// Now finish up by truncating all the way down to the original result
// type. This should normally be something that ends up being legal directly,
// but in theory if a target has very wide vectors and an annoyingly
// restricted set of legal types, this split can chain to build things up.
return IsFloat ?
DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
DAG.getTargetConstant(0, TLI.getPointerTy())) :
DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
}
SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
// The result has a legal vector type, but the input needs splitting.
SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
SDLoc DL(N);
GetSplitVector(N->getOperand(0), Lo0, Hi0);
GetSplitVector(N->getOperand(1), Lo1, Hi1);
unsigned PartElements = Lo0.getValueType().getVectorNumElements();
EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
return PromoteTargetBoolean(Con, N->getValueType(0));
}
SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
SDLoc DL(N);
GetSplitVector(N->getOperand(0), Lo, Hi);
EVT InVT = Lo.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
}
//===----------------------------------------------------------------------===//
// Result Vector Widening
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
// See if the target wants to custom widen this node.
if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
return;
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "WidenVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen the result of this operator!");
case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::VSELECT:
case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE:
Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
break;
case ISD::MLOAD:
Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
break;
case ISD::ADD:
case ISD::AND:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::OR:
case ISD::SUB:
case ISD::XOR:
case ISD::FMINNUM:
case ISD::FMAXNUM:
Res = WidenVecRes_Binary(N);
break;
case ISD::FADD:
case ISD::FCOPYSIGN:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
Res = WidenVecRes_BinaryCanTrap(N);
break;
case ISD::FPOWI:
Res = WidenVecRes_POWI(N);
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
Res = WidenVecRes_Shift(N);
break;
case ISD::ANY_EXTEND:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
Res = WidenVecRes_Convert(N);
break;
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
Res = WidenVecRes_Unary(N);
break;
case ISD::FMA:
Res = WidenVecRes_Ternary(N);
break;
}
// If Res is null, the sub-method took care of registering the result.
if (Res.getNode())
SetWidenedVector(SDValue(N, ResNo), Res);
}
SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
// Ternary op widening.
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
SDValue InOp3 = GetWidenedVector(N->getOperand(2));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
}
SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
// Binary op widening.
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
}
SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
// Binary op widening for operations that can trap.
unsigned Opcode = N->getOpcode();
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT WidenEltVT = WidenVT.getVectorElementType();
EVT VT = WidenVT;
unsigned NumElts = VT.getVectorNumElements();
while (!TLI.isTypeLegal(VT) && NumElts != 1) {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
}
if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
// Operation doesn't trap so just widen as normal.
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
}
// No legal vector version so unroll the vector operation and then widen.
if (NumElts == 1)
return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
// Since the operation can trap, apply operation on the original vector.
EVT MaxVT = VT;
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
SmallVector<SDValue, 16> ConcatOps(CurNumElts);
unsigned ConcatEnd = 0; // Current ConcatOps index.
int Idx = 0; // Current Idx into input vectors.
// NumElts := greatest legal vector size (at most WidenVT)
// while (orig. vector has unhandled elements) {
// take munches of size NumElts from the beginning and add to ConcatOps
// NumElts := next smaller supported vector size or 1
// }
while (CurNumElts != 0) {
while (CurNumElts >= NumElts) {
SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
DAG.getConstant(Idx, TLI.getVectorIdxTy()));
SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
DAG.getConstant(Idx, TLI.getVectorIdxTy()));
ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
Idx += NumElts;
CurNumElts -= NumElts;
}
do {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
} while (!TLI.isTypeLegal(VT) && NumElts != 1);
if (NumElts == 1) {
for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
InOp1, DAG.getConstant(Idx,
TLI.getVectorIdxTy()));
SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
InOp2, DAG.getConstant(Idx,
TLI.getVectorIdxTy()));
ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
EOp1, EOp2);
}
CurNumElts = 0;
}
}
// Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
// while (Some element of ConcatOps is not of type MaxVT) {
// From the end of ConcatOps, collect elements of the same type and put
// them into an op of the next larger supported type
// }
while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
Idx = ConcatEnd - 1;
VT = ConcatOps[Idx--].getValueType();
while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
Idx--;
int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
EVT NextVT;
do {
NextSize *= 2;
NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
} while (!TLI.isTypeLegal(NextVT));
if (!VT.isVector()) {
// Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
SDValue VecOp = DAG.getUNDEF(NextVT);
unsigned NumToInsert = ConcatEnd - Idx - 1;
for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
ConcatOps[OpIdx], DAG.getConstant(i,
TLI.getVectorIdxTy()));
}
ConcatOps[Idx+1] = VecOp;
ConcatEnd = Idx + 2;
} else {
// Vector type, create a CONCAT_VECTORS of type NextVT
SDValue undefVec = DAG.getUNDEF(VT);
unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
unsigned RealVals = ConcatEnd - Idx - 1;
unsigned SubConcatEnd = 0;
unsigned SubConcatIdx = Idx + 1;
while (SubConcatEnd < RealVals)
SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
while (SubConcatEnd < OpsToConcat)
SubConcatOps[SubConcatEnd++] = undefVec;
ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
NextVT, SubConcatOps);
ConcatEnd = SubConcatIdx + 1;
}
}
// Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
// add undefs of size MaxVT until ConcatOps grows to length of WidenVT
unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
if (NumOps != ConcatEnd ) {
SDValue UndefVal = DAG.getUNDEF(MaxVT);
for (unsigned j = ConcatEnd; j < NumOps; ++j)
ConcatOps[j] = UndefVal;
}
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
makeArrayRef(ConcatOps.data(), NumOps));
}
SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
SDValue InOp = N->getOperand(0);
SDLoc DL(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
EVT InVT = InOp.getValueType();
EVT InEltVT = InVT.getVectorElementType();
EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
unsigned Opcode = N->getOpcode();
unsigned InVTNumElts = InVT.getVectorNumElements();
if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
InOp = GetWidenedVector(N->getOperand(0));
InVT = InOp.getValueType();
InVTNumElts = InVT.getVectorNumElements();
if (InVTNumElts == WidenNumElts) {
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InOp);
return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
}
}
if (TLI.isTypeLegal(InWidenVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
if (WidenNumElts % InVTNumElts == 0) {
// Widen the input and call convert on the widened input vector.
unsigned NumConcat = WidenNumElts/InVTNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
Ops[0] = InOp;
SDValue UndefVal = DAG.getUNDEF(InVT);
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = UndefVal;
SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InVec);
return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
}
if (InVTNumElts % WidenNumElts == 0) {
SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
InOp, DAG.getConstant(0,
TLI.getVectorIdxTy()));
// Extract the input and convert the shorten input vector.
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InVal);
return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
}
}
// Otherwise unroll into some nasty scalar code and rebuild the vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = WidenVT.getVectorElementType();
unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
unsigned i;
for (i=0; i < MinElts; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
DAG.getConstant(i, TLI.getVectorIdxTy()));
if (N->getNumOperands() == 1)
Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
else
Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
}
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i < WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
}
SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
EVT ShVT = ShOp.getValueType();
if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
ShOp = GetWidenedVector(ShOp);
ShVT = ShOp.getValueType();
}
EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
ShVT.getVectorElementType(),
WidenVT.getVectorNumElements());
if (ShVT != ShWidenVT)
ShOp = ModifyToType(ShOp, ShWidenVT);
return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
// Unary op widening.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
cast<VTSDNode>(N->getOperand(1))->getVT()
.getVectorElementType(),
WidenVT.getVectorNumElements());
SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N),
WidenVT, WidenLHS, DAG.getValueType(ExtVT));
}
SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
return GetWidenedVector(WidenVec);
}
SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
EVT VT = N->getValueType(0);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDLoc dl(N);
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
break;
case TargetLowering::TypePromoteInteger:
// If the incoming type is a vector that is being promoted, then
// we know that the elements are arranged differently and that we
// must perform the conversion using a stack slot.
if (InVT.isVector())
break;
// If the InOp is promoted to the same size, convert it. Otherwise,
// fall out of the switch and widen the promoted input.
InOp = GetPromotedInteger(InOp);
InVT = InOp.getValueType();
if (WidenVT.bitsEq(InVT))
return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
break;
case TargetLowering::TypeSoftenFloat:
case TargetLowering::TypePromoteFloat:
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
case TargetLowering::TypeScalarizeVector:
case TargetLowering::TypeSplitVector:
break;
case TargetLowering::TypeWidenVector:
// If the InOp is widened to the same size, convert it. Otherwise, fall
// out of the switch and widen the widened input.
InOp = GetWidenedVector(InOp);
InVT = InOp.getValueType();
if (WidenVT.bitsEq(InVT))
// The input widens to the same size. Convert to the widen value.
return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
break;
}
unsigned WidenSize = WidenVT.getSizeInBits();
unsigned InSize = InVT.getSizeInBits();
// x86mmx is not an acceptable vector element type, so don't try.
if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
// Determine new input vector type. The new input vector type will use
// the same element type (if its a vector) or use the input type as a
// vector. It is the same size as the type to widen to.
EVT NewInVT;
unsigned NewNumElts = WidenSize / InSize;
if (InVT.isVector()) {
EVT InEltVT = InVT.getVectorElementType();
NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
WidenSize / InEltVT.getSizeInBits());
} else {
NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
}
if (TLI.isTypeLegal(NewInVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
SmallVector<SDValue, 16> Ops(NewNumElts);
SDValue UndefVal = DAG.getUNDEF(InVT);
Ops[0] = InOp;
for (unsigned i = 1; i < NewNumElts; ++i)
Ops[i] = UndefVal;
SDValue NewVec;
if (InVT.isVector())
NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
else
NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
}
}
return CreateStackStoreLoad(InOp, WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
SDLoc dl(N);
// Build a vector with undefined for the new nodes.
EVT VT = N->getValueType(0);
// Integer BUILD_VECTOR operands may be larger than the node's vector element
// type. The UNDEFs need to have the same type as the existing operands.
EVT EltVT = N->getOperand(0).getValueType();
unsigned NumElts = VT.getVectorNumElements();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps);
}
SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
EVT InVT = N->getOperand(0).getValueType();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
unsigned NumInElts = InVT.getVectorNumElements();
unsigned NumOperands = N->getNumOperands();
bool InputWidened = false; // Indicates we need to widen the input.
if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
// Add undef vectors to widen to correct length.
unsigned NumConcat = WidenVT.getVectorNumElements() /
InVT.getVectorNumElements();
SDValue UndefVal = DAG.getUNDEF(InVT);
SmallVector<SDValue, 16> Ops(NumConcat);
for (unsigned i=0; i < NumOperands; ++i)
Ops[i] = N->getOperand(i);
for (unsigned i = NumOperands; i != NumConcat; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
}
} else {
InputWidened = true;
if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
// The inputs and the result are widen to the same value.