blob: 4bfc7f9861d21882e7d0ef0b78db2e0d2e0fb17c [file] [log] [blame]
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86ISelLowering.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86SelectionDAGInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "x86-selectiondag-info"
X86SelectionDAGInfo::X86SelectionDAGInfo(const DataLayout &DL)
: TargetSelectionDAGInfo(&DL) {}
X86SelectionDAGInfo::~X86SelectionDAGInfo() {}
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<unsigned> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
// blocks. Legalization may introduce new stack temporaries with large
// alignment requirements. Fall back to generic code if there are any
// dynamic stack adjustments (hopefully rare) and the base pointer would
// conflict if we had to use it.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (!MFI->hasVarSizedObjects() && !MFI->hasInlineAsmWithSPAdjust())
return false;
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
DAG.getSubtarget().getRegisterInfo());
unsigned BaseReg = TRI->getBaseRegister();
for (unsigned R : ClobberSet)
if (BaseReg == R)
return true;
return false;
}
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
#ifndef NDEBUG
// If the base register might conflict with our physical registers, bail out.
const unsigned ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
X86::ECX, X86::EAX, X86::EDI};
assert(!isBaseRegConflictPossible(DAG, ClobberSet));
#endif
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if ((Align & 3) != 0 || !ConstantSize ||
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
if (const char *bzeroEntry = V &&
V->isNullValue() ? Subtarget.getBZeroEntry() : nullptr) {
EVT IntPtr = DAG.getTargetLoweringInfo().getPointerTy();
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(bzeroEntry, IntPtr), std::move(Args),
0)
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = DAG.getTargetLoweringInfo().LowerCallTo(CLI);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag;
EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
unsigned BytesLeft = 0;
bool TwoRepStos = false;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal);
break;
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
if (TwoRepStos) {
InFlag = Chain.getValue(1);
Count = Size;
EVT CVT = Count.getValueType();
SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
} else if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, AddrVT)),
Src,
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, false,
DstPtrInfo.getWithOffset(Offset));
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
/// If not DWORD aligned, it is more efficient to call the library. However
/// if calling the library is not allowed (AlwaysInline), then soldier on as
/// the code generated here is better than the long load-store sequence we
/// would otherwise get.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 ||
SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base register might conflict with our physical registers, bail out.
const unsigned ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
X86::ECX, X86::ESI, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
MVT AVT;
if (Align & 1)
AVT = MVT::i8;
else if (Align & 2)
AVT = MVT::i16;
else if (Align & 4)
// DWORD aligned
AVT = MVT::i32;
else
// QWORD aligned
AVT = Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
unsigned UBytes = AVT.getSizeInBits() / 8;
unsigned CountVal = SizeVal / UBytes;
SDValue Count = DAG.getIntPtrConstant(CountVal);
unsigned BytesLeft = SizeVal % UBytes;
SDValue InFlag;
Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RSI :
X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
EVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
DAG.getConstant(Offset, SrcVT)),
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, AlwaysInline, false,
DstPtrInfo.getWithOffset(Offset),
SrcPtrInfo.getWithOffset(Offset)));
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}