blob: fbfd868600826577c45add74364e32be409a8a2e [file] [log] [blame]
//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include <limits>
using namespace llvm;
#define DEBUG_TYPE "x86-instr-info"
#define GET_INSTRINFO_CTOR_DTOR
#include "X86GenInstrInfo.inc"
static cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
static cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
static cl::opt<bool>
ReMatPICStubLoad("remat-pic-stub-load",
cl::desc("Re-materialize load from stub in PIC mode"),
cl::init(false), cl::Hidden);
enum {
// Select which memory operand is being unfolded.
// (stored in bits 0 - 3)
TB_INDEX_0 = 0,
TB_INDEX_1 = 1,
TB_INDEX_2 = 2,
TB_INDEX_3 = 3,
TB_INDEX_4 = 4,
TB_INDEX_MASK = 0xf,
// Do not insert the reverse map (MemOp -> RegOp) into the table.
// This may be needed because there is a many -> one mapping.
TB_NO_REVERSE = 1 << 4,
// Do not insert the forward map (RegOp -> MemOp) into the table.
// This is needed for Native Client, which prohibits branch
// instructions from using a memory operand.
TB_NO_FORWARD = 1 << 5,
TB_FOLDED_LOAD = 1 << 6,
TB_FOLDED_STORE = 1 << 7,
// Minimum alignment required for load/store.
// Used for RegOp->MemOp conversion.
// (stored in bits 8 - 15)
TB_ALIGN_SHIFT = 8,
TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
};
struct X86MemoryFoldTableEntry {
uint16_t RegOp;
uint16_t MemOp;
uint16_t Flags;
};
// Pin the vtable to this file.
void X86InstrInfo::anchor() {}
X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
: X86GenInstrInfo(
(STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
(STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
Subtarget(STI), RI(STI.getTargetTriple()) {
static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
{ X86::ADC32ri, X86::ADC32mi, 0 },
{ X86::ADC32ri8, X86::ADC32mi8, 0 },
{ X86::ADC32rr, X86::ADC32mr, 0 },
{ X86::ADC64ri32, X86::ADC64mi32, 0 },
{ X86::ADC64ri8, X86::ADC64mi8, 0 },
{ X86::ADC64rr, X86::ADC64mr, 0 },
{ X86::ADD16ri, X86::ADD16mi, 0 },
{ X86::ADD16ri8, X86::ADD16mi8, 0 },
{ X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
{ X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
{ X86::ADD16rr, X86::ADD16mr, 0 },
{ X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
{ X86::ADD32ri, X86::ADD32mi, 0 },
{ X86::ADD32ri8, X86::ADD32mi8, 0 },
{ X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
{ X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
{ X86::ADD32rr, X86::ADD32mr, 0 },
{ X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
{ X86::ADD64ri32, X86::ADD64mi32, 0 },
{ X86::ADD64ri8, X86::ADD64mi8, 0 },
{ X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
{ X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
{ X86::ADD64rr, X86::ADD64mr, 0 },
{ X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
{ X86::ADD8ri, X86::ADD8mi, 0 },
{ X86::ADD8rr, X86::ADD8mr, 0 },
{ X86::AND16ri, X86::AND16mi, 0 },
{ X86::AND16ri8, X86::AND16mi8, 0 },
{ X86::AND16rr, X86::AND16mr, 0 },
{ X86::AND32ri, X86::AND32mi, 0 },
{ X86::AND32ri8, X86::AND32mi8, 0 },
{ X86::AND32rr, X86::AND32mr, 0 },
{ X86::AND64ri32, X86::AND64mi32, 0 },
{ X86::AND64ri8, X86::AND64mi8, 0 },
{ X86::AND64rr, X86::AND64mr, 0 },
{ X86::AND8ri, X86::AND8mi, 0 },
{ X86::AND8rr, X86::AND8mr, 0 },
{ X86::DEC16r, X86::DEC16m, 0 },
{ X86::DEC32r, X86::DEC32m, 0 },
{ X86::DEC64r, X86::DEC64m, 0 },
{ X86::DEC8r, X86::DEC8m, 0 },
{ X86::INC16r, X86::INC16m, 0 },
{ X86::INC32r, X86::INC32m, 0 },
{ X86::INC64r, X86::INC64m, 0 },
{ X86::INC8r, X86::INC8m, 0 },
{ X86::NEG16r, X86::NEG16m, 0 },
{ X86::NEG32r, X86::NEG32m, 0 },
{ X86::NEG64r, X86::NEG64m, 0 },
{ X86::NEG8r, X86::NEG8m, 0 },
{ X86::NOT16r, X86::NOT16m, 0 },
{ X86::NOT32r, X86::NOT32m, 0 },
{ X86::NOT64r, X86::NOT64m, 0 },
{ X86::NOT8r, X86::NOT8m, 0 },
{ X86::OR16ri, X86::OR16mi, 0 },
{ X86::OR16ri8, X86::OR16mi8, 0 },
{ X86::OR16rr, X86::OR16mr, 0 },
{ X86::OR32ri, X86::OR32mi, 0 },
{ X86::OR32ri8, X86::OR32mi8, 0 },
{ X86::OR32rr, X86::OR32mr, 0 },
{ X86::OR64ri32, X86::OR64mi32, 0 },
{ X86::OR64ri8, X86::OR64mi8, 0 },
{ X86::OR64rr, X86::OR64mr, 0 },
{ X86::OR8ri, X86::OR8mi, 0 },
{ X86::OR8rr, X86::OR8mr, 0 },
{ X86::ROL16r1, X86::ROL16m1, 0 },
{ X86::ROL16rCL, X86::ROL16mCL, 0 },
{ X86::ROL16ri, X86::ROL16mi, 0 },
{ X86::ROL32r1, X86::ROL32m1, 0 },
{ X86::ROL32rCL, X86::ROL32mCL, 0 },
{ X86::ROL32ri, X86::ROL32mi, 0 },
{ X86::ROL64r1, X86::ROL64m1, 0 },
{ X86::ROL64rCL, X86::ROL64mCL, 0 },
{ X86::ROL64ri, X86::ROL64mi, 0 },
{ X86::ROL8r1, X86::ROL8m1, 0 },
{ X86::ROL8rCL, X86::ROL8mCL, 0 },
{ X86::ROL8ri, X86::ROL8mi, 0 },
{ X86::ROR16r1, X86::ROR16m1, 0 },
{ X86::ROR16rCL, X86::ROR16mCL, 0 },
{ X86::ROR16ri, X86::ROR16mi, 0 },
{ X86::ROR32r1, X86::ROR32m1, 0 },
{ X86::ROR32rCL, X86::ROR32mCL, 0 },
{ X86::ROR32ri, X86::ROR32mi, 0 },
{ X86::ROR64r1, X86::ROR64m1, 0 },
{ X86::ROR64rCL, X86::ROR64mCL, 0 },
{ X86::ROR64ri, X86::ROR64mi, 0 },
{ X86::ROR8r1, X86::ROR8m1, 0 },
{ X86::ROR8rCL, X86::ROR8mCL, 0 },
{ X86::ROR8ri, X86::ROR8mi, 0 },
{ X86::SAR16r1, X86::SAR16m1, 0 },
{ X86::SAR16rCL, X86::SAR16mCL, 0 },
{ X86::SAR16ri, X86::SAR16mi, 0 },
{ X86::SAR32r1, X86::SAR32m1, 0 },
{ X86::SAR32rCL, X86::SAR32mCL, 0 },
{ X86::SAR32ri, X86::SAR32mi, 0 },
{ X86::SAR64r1, X86::SAR64m1, 0 },
{ X86::SAR64rCL, X86::SAR64mCL, 0 },
{ X86::SAR64ri, X86::SAR64mi, 0 },
{ X86::SAR8r1, X86::SAR8m1, 0 },
{ X86::SAR8rCL, X86::SAR8mCL, 0 },
{ X86::SAR8ri, X86::SAR8mi, 0 },
{ X86::SBB32ri, X86::SBB32mi, 0 },
{ X86::SBB32ri8, X86::SBB32mi8, 0 },
{ X86::SBB32rr, X86::SBB32mr, 0 },
{ X86::SBB64ri32, X86::SBB64mi32, 0 },
{ X86::SBB64ri8, X86::SBB64mi8, 0 },
{ X86::SBB64rr, X86::SBB64mr, 0 },
{ X86::SHL16rCL, X86::SHL16mCL, 0 },
{ X86::SHL16ri, X86::SHL16mi, 0 },
{ X86::SHL32rCL, X86::SHL32mCL, 0 },
{ X86::SHL32ri, X86::SHL32mi, 0 },
{ X86::SHL64rCL, X86::SHL64mCL, 0 },
{ X86::SHL64ri, X86::SHL64mi, 0 },
{ X86::SHL8rCL, X86::SHL8mCL, 0 },
{ X86::SHL8ri, X86::SHL8mi, 0 },
{ X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
{ X86::SHLD16rri8, X86::SHLD16mri8, 0 },
{ X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
{ X86::SHLD32rri8, X86::SHLD32mri8, 0 },
{ X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
{ X86::SHLD64rri8, X86::SHLD64mri8, 0 },
{ X86::SHR16r1, X86::SHR16m1, 0 },
{ X86::SHR16rCL, X86::SHR16mCL, 0 },
{ X86::SHR16ri, X86::SHR16mi, 0 },
{ X86::SHR32r1, X86::SHR32m1, 0 },
{ X86::SHR32rCL, X86::SHR32mCL, 0 },
{ X86::SHR32ri, X86::SHR32mi, 0 },
{ X86::SHR64r1, X86::SHR64m1, 0 },
{ X86::SHR64rCL, X86::SHR64mCL, 0 },
{ X86::SHR64ri, X86::SHR64mi, 0 },
{ X86::SHR8r1, X86::SHR8m1, 0 },
{ X86::SHR8rCL, X86::SHR8mCL, 0 },
{ X86::SHR8ri, X86::SHR8mi, 0 },
{ X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
{ X86::SHRD16rri8, X86::SHRD16mri8, 0 },
{ X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
{ X86::SHRD32rri8, X86::SHRD32mri8, 0 },
{ X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
{ X86::SHRD64rri8, X86::SHRD64mri8, 0 },
{ X86::SUB16ri, X86::SUB16mi, 0 },
{ X86::SUB16ri8, X86::SUB16mi8, 0 },
{ X86::SUB16rr, X86::SUB16mr, 0 },
{ X86::SUB32ri, X86::SUB32mi, 0 },
{ X86::SUB32ri8, X86::SUB32mi8, 0 },
{ X86::SUB32rr, X86::SUB32mr, 0 },
{ X86::SUB64ri32, X86::SUB64mi32, 0 },
{ X86::SUB64ri8, X86::SUB64mi8, 0 },
{ X86::SUB64rr, X86::SUB64mr, 0 },
{ X86::SUB8ri, X86::SUB8mi, 0 },
{ X86::SUB8rr, X86::SUB8mr, 0 },
{ X86::XOR16ri, X86::XOR16mi, 0 },
{ X86::XOR16ri8, X86::XOR16mi8, 0 },
{ X86::XOR16rr, X86::XOR16mr, 0 },
{ X86::XOR32ri, X86::XOR32mi, 0 },
{ X86::XOR32ri8, X86::XOR32mi8, 0 },
{ X86::XOR32rr, X86::XOR32mr, 0 },
{ X86::XOR64ri32, X86::XOR64mi32, 0 },
{ X86::XOR64ri8, X86::XOR64mi8, 0 },
{ X86::XOR64rr, X86::XOR64mr, 0 },
{ X86::XOR8ri, X86::XOR8mi, 0 },
{ X86::XOR8rr, X86::XOR8mr, 0 }
};
for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
unsigned Flags = MemoryFoldTable2Addr[i].Flags;
AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
RegOp, MemOp,
// Index 0, folded load and store, no alignment requirement.
Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
}
static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
{ X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
{ X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
{ X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
{ X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
{ X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
{ X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
{ X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
{ X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
{ X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
{ X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
{ X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
{ X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
{ X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
{ X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
{ X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
{ X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
{ X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
{ X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
{ X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
{ X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
{ X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
{ X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
{ X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
{ X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
{ X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
{ X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
{ X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
{ X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
{ X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
{ X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
{ X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
{ X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
{ X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
{ X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
{ X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
{ X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
{ X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
{ X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
{ X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
{ X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
{ X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
{ X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
{ X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
{ X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
{ X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
{ X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
{ X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
{ X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
{ X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
{ X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
{ X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
{ X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
{ X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
{ X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
{ X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
{ X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
{ X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
{ X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
{ X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
{ X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
{ X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
{ X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
{ X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
{ X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
{ X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
{ X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
{ X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
{ X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
{ X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
{ X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
{ X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
{ X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
{ X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
{ X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
{ X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
// AVX 128-bit versions of foldable instructions
{ X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
{ X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
{ X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
{ X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
{ X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
{ X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
{ X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
{ X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
// AVX 256-bit foldable instructions
{ X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
{ X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
// AVX-512 foldable instructions
{ X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
{ X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
{ X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
{ X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
{ X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
{ X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
{ X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
// AVX-512 foldable instructions (256-bit versions)
{ X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
{ X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
// AVX-512 foldable instructions (128-bit versions)
{ X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
{ X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
// F16C foldable instructions
{ X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
{ X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
};
for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
unsigned RegOp = MemoryFoldTable0[i].RegOp;
unsigned MemOp = MemoryFoldTable0[i].MemOp;
unsigned Flags = MemoryFoldTable0[i].Flags;
AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
RegOp, MemOp, TB_INDEX_0 | Flags);
}
static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
{ X86::CMP16rr, X86::CMP16rm, 0 },
{ X86::CMP32rr, X86::CMP32rm, 0 },
{ X86::CMP64rr, X86::CMP64rm, 0 },
{ X86::CMP8rr, X86::CMP8rm, 0 },
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
{ X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
{ X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
{ X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
{ X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
{ X86::IMUL16rri, X86::IMUL16rmi, 0 },
{ X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
{ X86::IMUL32rri, X86::IMUL32rmi, 0 },
{ X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
{ X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
{ X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
{ X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
{ X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
{ X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
{ X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
{ X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
{ X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
{ X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 },
{ X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
{ X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
{ X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
{ X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
{ X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 },
{ X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
{ X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
{ X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
{ X86::MOV16rr, X86::MOV16rm, 0 },
{ X86::MOV32rr, X86::MOV32rm, 0 },
{ X86::MOV64rr, X86::MOV64rm, 0 },
{ X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
{ X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
{ X86::MOV8rr, X86::MOV8rm, 0 },
{ X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
{ X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
{ X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
{ X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
{ X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
{ X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
{ X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
{ X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
{ X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
{ X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
{ X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
{ X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
{ X86::MOVUPSrr, X86::MOVUPSrm, 0 },
{ X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
{ X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
{ X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
{ X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
{ X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
{ X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
{ X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
{ X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
{ X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
{ X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
{ X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
{ X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
{ X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
{ X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
{ X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 },
{ X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 },
{ X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 },
{ X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 },
{ X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 },
{ X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 },
{ X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 },
{ X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 },
{ X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 },
{ X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 },
{ X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 },
{ X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 },
{ X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
{ X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
{ X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
{ X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
{ X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
{ X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
{ X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
{ X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
{ X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
{ X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
{ X86::RSQRTSSr, X86::RSQRTSSm, 0 },
{ X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
{ X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
{ X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
{ X86::SQRTSDr, X86::SQRTSDm, 0 },
{ X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
{ X86::SQRTSSr, X86::SQRTSSm, 0 },
{ X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
{ X86::TEST16rr, X86::TEST16rm, 0 },
{ X86::TEST32rr, X86::TEST32rm, 0 },
{ X86::TEST64rr, X86::TEST64rm, 0 },
{ X86::TEST8rr, X86::TEST8rm, 0 },
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
{ X86::UCOMISDrr, X86::UCOMISDrm, 0 },
{ X86::UCOMISSrr, X86::UCOMISSrm, 0 },
// MMX version of foldable instructions
{ X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 },
{ X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 },
{ X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 },
{ X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 },
{ X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 },
{ X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 },
{ X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 },
{ X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 },
{ X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 },
{ X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 },
// 3DNow! version of foldable instructions
{ X86::PF2IDrr, X86::PF2IDrm, 0 },
{ X86::PF2IWrr, X86::PF2IWrm, 0 },
{ X86::PFRCPrr, X86::PFRCPrm, 0 },
{ X86::PFRSQRTrr, X86::PFRSQRTrm, 0 },
{ X86::PI2FDrr, X86::PI2FDrm, 0 },
{ X86::PI2FWrr, X86::PI2FWrm, 0 },
{ X86::PSWAPDrr, X86::PSWAPDrm, 0 },
// AVX 128-bit versions of foldable instructions
{ X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
{ X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
{ X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
{ X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
{ X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
{ X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
{ X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
{ X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
{ X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
{ X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
{ X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
{ X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
{ X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
{ X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
{ X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
{ X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
{ X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 },
{ X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
{ X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
{ X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
{ X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
{ X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 },
{ X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
{ X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
{ X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
{ X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
{ X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
{ X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
{ X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
{ X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
{ X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
{ X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
{ X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
{ X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
{ X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
{ X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
{ X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
{ X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
{ X86::VPABSBrr128, X86::VPABSBrm128, 0 },
{ X86::VPABSDrr128, X86::VPABSDrm128, 0 },
{ X86::VPABSWrr128, X86::VPABSWrm128, 0 },
{ X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
{ X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
{ X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
{ X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
{ X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
{ X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
{ X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
{ X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 },
{ X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 },
{ X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 },
{ X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 },
{ X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 },
{ X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 },
{ X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 },
{ X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 },
{ X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 },
{ X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 },
{ X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 },
{ X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 },
{ X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
{ X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
{ X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
{ X86::VPTESTrr, X86::VPTESTrm, 0 },
{ X86::VRCPPSr, X86::VRCPPSm, 0 },
{ X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
{ X86::VROUNDPDr, X86::VROUNDPDm, 0 },
{ X86::VROUNDPSr, X86::VROUNDPSm, 0 },
{ X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
{ X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
{ X86::VSQRTPDr, X86::VSQRTPDm, 0 },
{ X86::VSQRTPSr, X86::VSQRTPSm, 0 },
{ X86::VTESTPDrr, X86::VTESTPDrm, 0 },
{ X86::VTESTPSrr, X86::VTESTPSrm, 0 },
{ X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
{ X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
// AVX 256-bit foldable instructions
{ X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 },
{ X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
{ X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
{ X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
{ X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
{ X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 },
{ X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
{ X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
{ X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
{ X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
{ X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
{ X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
{ X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
{ X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
{ X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
{ X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
{ X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
{ X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
{ X86::VPTESTYrr, X86::VPTESTYrm, 0 },
{ X86::VRCPPSYr, X86::VRCPPSYm, 0 },
{ X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
{ X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
{ X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
{ X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
{ X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, 0 },
{ X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
{ X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
{ X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
{ X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
// AVX2 foldable instructions
// VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
// VBROADCASTS{SD}rm memory instructions were available from AVX1.
// TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
// on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
// so they don't need an equivalent limitation.
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
{ X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
{ X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
{ X86::VPABSBrr256, X86::VPABSBrm256, 0 },
{ X86::VPABSDrr256, X86::VPABSDrm256, 0 },
{ X86::VPABSWrr256, X86::VPABSWrm256, 0 },
{ X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 },
{ X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 },
{ X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 },
{ X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 },
{ X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 },
{ X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 },
{ X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 },
{ X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 },
{ X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
{ X86::VPERMQYri, X86::VPERMQYmi, 0 },
{ X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 },
{ X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 },
{ X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 },
{ X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 },
{ X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 },
{ X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 },
{ X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 },
{ X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 },
{ X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 },
{ X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 },
{ X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 },
{ X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 },
{ X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
{ X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
{ X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
// XOP foldable instructions
{ X86::VFRCZPDrr, X86::VFRCZPDrm, 0 },
{ X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 },
{ X86::VFRCZPSrr, X86::VFRCZPSrm, 0 },
{ X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 },
{ X86::VFRCZSDrr, X86::VFRCZSDrm, 0 },
{ X86::VFRCZSSrr, X86::VFRCZSSrm, 0 },
{ X86::VPHADDBDrr, X86::VPHADDBDrm, 0 },
{ X86::VPHADDBQrr, X86::VPHADDBQrm, 0 },
{ X86::VPHADDBWrr, X86::VPHADDBWrm, 0 },
{ X86::VPHADDDQrr, X86::VPHADDDQrm, 0 },
{ X86::VPHADDWDrr, X86::VPHADDWDrm, 0 },
{ X86::VPHADDWQrr, X86::VPHADDWQrm, 0 },
{ X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 },
{ X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 },
{ X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 },
{ X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 },
{ X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 },
{ X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 },
{ X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 },
{ X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 },
{ X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 },
{ X86::VPROTBri, X86::VPROTBmi, 0 },
{ X86::VPROTBrr, X86::VPROTBmr, 0 },
{ X86::VPROTDri, X86::VPROTDmi, 0 },
{ X86::VPROTDrr, X86::VPROTDmr, 0 },
{ X86::VPROTQri, X86::VPROTQmi, 0 },
{ X86::VPROTQrr, X86::VPROTQmr, 0 },
{ X86::VPROTWri, X86::VPROTWmi, 0 },
{ X86::VPROTWrr, X86::VPROTWmr, 0 },
{ X86::VPSHABrr, X86::VPSHABmr, 0 },
{ X86::VPSHADrr, X86::VPSHADmr, 0 },
{ X86::VPSHAQrr, X86::VPSHAQmr, 0 },
{ X86::VPSHAWrr, X86::VPSHAWmr, 0 },
{ X86::VPSHLBrr, X86::VPSHLBmr, 0 },
{ X86::VPSHLDrr, X86::VPSHLDmr, 0 },
{ X86::VPSHLQrr, X86::VPSHLQmr, 0 },
{ X86::VPSHLWrr, X86::VPSHLWmr, 0 },
// BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
{ X86::BEXTR32rr, X86::BEXTR32rm, 0 },
{ X86::BEXTR64rr, X86::BEXTR64rm, 0 },
{ X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
{ X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
{ X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
{ X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
{ X86::BLCI32rr, X86::BLCI32rm, 0 },
{ X86::BLCI64rr, X86::BLCI64rm, 0 },
{ X86::BLCIC32rr, X86::BLCIC32rm, 0 },
{ X86::BLCIC64rr, X86::BLCIC64rm, 0 },
{ X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
{ X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
{ X86::BLCS32rr, X86::BLCS32rm, 0 },
{ X86::BLCS64rr, X86::BLCS64rm, 0 },
{ X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
{ X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
{ X86::BLSI32rr, X86::BLSI32rm, 0 },
{ X86::BLSI64rr, X86::BLSI64rm, 0 },
{ X86::BLSIC32rr, X86::BLSIC32rm, 0 },
{ X86::BLSIC64rr, X86::BLSIC64rm, 0 },
{ X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
{ X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
{ X86::BLSR32rr, X86::BLSR32rm, 0 },
{ X86::BLSR64rr, X86::BLSR64rm, 0 },
{ X86::BZHI32rr, X86::BZHI32rm, 0 },
{ X86::BZHI64rr, X86::BZHI64rm, 0 },
{ X86::LZCNT16rr, X86::LZCNT16rm, 0 },
{ X86::LZCNT32rr, X86::LZCNT32rm, 0 },
{ X86::LZCNT64rr, X86::LZCNT64rm, 0 },
{ X86::POPCNT16rr, X86::POPCNT16rm, 0 },
{ X86::POPCNT32rr, X86::POPCNT32rm, 0 },
{ X86::POPCNT64rr, X86::POPCNT64rm, 0 },
{ X86::RORX32ri, X86::RORX32mi, 0 },
{ X86::RORX64ri, X86::RORX64mi, 0 },
{ X86::SARX32rr, X86::SARX32rm, 0 },
{ X86::SARX64rr, X86::SARX64rm, 0 },
{ X86::SHRX32rr, X86::SHRX32rm, 0 },
{ X86::SHRX64rr, X86::SHRX64rm, 0 },
{ X86::SHLX32rr, X86::SHLX32rm, 0 },
{ X86::SHLX64rr, X86::SHLX64rm, 0 },
{ X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
{ X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
{ X86::TZCNT16rr, X86::TZCNT16rm, 0 },
{ X86::TZCNT32rr, X86::TZCNT32rm, 0 },
{ X86::TZCNT64rr, X86::TZCNT64rm, 0 },
{ X86::TZMSK32rr, X86::TZMSK32rm, 0 },
{ X86::TZMSK64rr, X86::TZMSK64rm, 0 },
// AVX-512 foldable instructions
{ X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
{ X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
{ X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
{ X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
{ X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
{ X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
{ X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
{ X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
{ X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
{ X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
{ X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
{ X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
{ X86::VPABSDZrr, X86::VPABSDZrm, 0 },
{ X86::VPABSQZrr, X86::VPABSQZrm, 0 },
{ X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
{ X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
// AVX-512 foldable instructions (256-bit versions)
{ X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
{ X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
{ X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
{ X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
{ X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
{ X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
{ X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
{ X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
{ X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
{ X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
{ X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
{ X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
// AVX-512 foldable instructions (256-bit versions)
{ X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
{ X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
{ X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
{ X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
{ X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
{ X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
{ X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
{ X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
{ X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
{ X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
{ X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
// F16C foldable instructions
{ X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
{ X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
// AES foldable instructions
{ X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
{ X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
{ X86::VAESIMCrr, X86::VAESIMCrm, 0 },
{ X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
};
for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
unsigned RegOp = MemoryFoldTable1[i].RegOp;
unsigned MemOp = MemoryFoldTable1[i].MemOp;
unsigned Flags = MemoryFoldTable1[i].Flags;
AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
RegOp, MemOp,
// Index 1, folded load
Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
}
static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
{ X86::ADC32rr, X86::ADC32rm, 0 },
{ X86::ADC64rr, X86::ADC64rm, 0 },
{ X86::ADD16rr, X86::ADD16rm, 0 },
{ X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
{ X86::ADD32rr, X86::ADD32rm, 0 },
{ X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
{ X86::ADD64rr, X86::ADD64rm, 0 },
{ X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
{ X86::ADD8rr, X86::ADD8rm, 0 },
{ X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
{ X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
{ X86::ADDSDrr, X86::ADDSDrm, 0 },
{ X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 },
{ X86::ADDSSrr, X86::ADDSSrm, 0 },
{ X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 },
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
{ X86::AND16rr, X86::AND16rm, 0 },
{ X86::AND32rr, X86::AND32rm, 0 },
{ X86::AND64rr, X86::AND64rm, 0 },
{ X86::AND8rr, X86::AND8rm, 0 },
{ X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
{ X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
{ X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
{ X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
{ X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
{ X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
{ X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
{ X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
{ X86::CMOVA16rr, X86::CMOVA16rm, 0 },
{ X86::CMOVA32rr, X86::CMOVA32rm, 0 },
{ X86::CMOVA64rr, X86::CMOVA64rm, 0 },
{ X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
{ X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
{ X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
{ X86::CMOVB16rr, X86::CMOVB16rm, 0 },
{ X86::CMOVB32rr, X86::CMOVB32rm, 0 },
{ X86::CMOVB64rr, X86::CMOVB64rm, 0 },
{ X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
{ X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
{ X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
{ X86::CMOVE16rr, X86::CMOVE16rm, 0 },
{ X86::CMOVE32rr, X86::CMOVE32rm, 0 },
{ X86::CMOVE64rr, X86::CMOVE64rm, 0 },
{ X86::CMOVG16rr, X86::CMOVG16rm, 0 },
{ X86::CMOVG32rr, X86::CMOVG32rm, 0 },
{ X86::CMOVG64rr, X86::CMOVG64rm, 0 },
{ X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
{ X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
{ X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
{ X86::CMOVL16rr, X86::CMOVL16rm, 0 },
{ X86::CMOVL32rr, X86::CMOVL32rm, 0 },
{ X86::CMOVL64rr, X86::CMOVL64rm, 0 },
{ X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
{ X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
{ X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
{ X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
{ X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
{ X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
{ X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
{ X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
{ X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
{ X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
{ X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
{ X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
{ X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
{ X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
{ X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
{ X86::CMOVO16rr, X86::CMOVO16rm, 0 },
{ X86::CMOVO32rr, X86::CMOVO32rm, 0 },
{ X86::CMOVO64rr, X86::CMOVO64rm, 0 },
{ X86::CMOVP16rr, X86::CMOVP16rm, 0 },
{ X86::CMOVP32rr, X86::CMOVP32rm, 0 },
{ X86::CMOVP64rr, X86::CMOVP64rm, 0 },
{ X86::CMOVS16rr, X86::CMOVS16rm, 0 },
{ X86::CMOVS32rr, X86::CMOVS32rm, 0 },
{ X86::CMOVS64rr, X86::CMOVS64rm, 0 },
{ X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
{ X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
{ X86::CMPSDrr, X86::CMPSDrm, 0 },
{ X86::CMPSSrr, X86::CMPSSrm, 0 },
{ X86::CRC32r32r32, X86::CRC32r32m32, 0 },
{ X86::CRC32r64r64, X86::CRC32r64m64, 0 },
{ X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
{ X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
{ X86::DIVSDrr, X86::DIVSDrm, 0 },
{ X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 },
{ X86::DIVSSrr, X86::DIVSSrm, 0 },
{ X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 },
{ X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
{ X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
// FIXME: We should not be folding Fs* scalar loads into vector
// instructions because the vector instructions require vector-sized
// loads. Lowering should create vector-sized instructions (the Fv*
// variants below) to allow load folding.
{ X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
{ X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
{ X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
{ X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
{ X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
{ X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
{ X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
{ X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
{ X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 },
{ X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 },
{ X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 },
{ X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 },
{ X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 },
{ X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 },
{ X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 },
{ X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 },
{ X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
{ X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
{ X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
{ X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
{ X86::IMUL16rr, X86::IMUL16rm, 0 },
{ X86::IMUL32rr, X86::IMUL32rm, 0 },
{ X86::IMUL64rr, X86::IMUL64rm, 0 },
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
{ X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
{ X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
{ X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
{ X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
{ X86::MAXSDrr, X86::MAXSDrm, 0 },
{ X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
{ X86::MAXSSrr, X86::MAXSSrm, 0 },
{ X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
{ X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
{ X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
{ X86::MINSDrr, X86::MINSDrm, 0 },
{ X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
{ X86::MINSSrr, X86::MINSSrm, 0 },
{ X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
{ X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
{ X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
{ X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
{ X86::MULSDrr, X86::MULSDrm, 0 },
{ X86::MULSDrr_Int, X86::MULSDrm_Int, 0 },
{ X86::MULSSrr, X86::MULSSrm, 0 },
{ X86::MULSSrr_Int, X86::MULSSrm_Int, 0 },
{ X86::OR16rr, X86::OR16rm, 0 },
{ X86::OR32rr, X86::OR32rm, 0 },
{ X86::OR64rr, X86::OR64rm, 0 },
{ X86::OR8rr, X86::OR8rm, 0 },
{ X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
{ X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
{ X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
{ X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
{ X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
{ X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
{ X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
{ X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
{ X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
{ X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
{ X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
{ X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
{ X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
{ X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
{ X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
{ X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
{ X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
{ X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
{ X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
{ X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
{ X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
{ X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
{ X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
{ X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
{ X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
{ X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
{ X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
{ X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
{ X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
{ X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
{ X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
{ X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
{ X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
{ X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
{ X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
{ X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
{ X86::PINSRBrr, X86::PINSRBrm, 0 },
{ X86::PINSRDrr, X86::PINSRDrm, 0 },
{ X86::PINSRQrr, X86::PINSRQrm, 0 },
{ X86::PINSRWrri, X86::PINSRWrmi, 0 },
{ X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
{ X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
{ X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
{ X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
{ X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
{ X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
{ X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
{ X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
{ X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
{ X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
{ X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
{ X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
{ X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
{ X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
{ X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
{ X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
{ X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
{ X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
{ X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
{ X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
{ X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
{ X86::PORrr, X86::PORrm, TB_ALIGN_16 },
{ X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
{ X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
{ X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
{ X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
{ X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
{ X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
{ X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
{ X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
{ X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
{ X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
{ X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
{ X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
{ X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
{ X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
{ X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
{ X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
{ X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
{ X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
{ X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
{ X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
{ X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
{ X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
{ X86::SBB32rr, X86::SBB32rm, 0 },
{ X86::SBB64rr, X86::SBB64rm, 0 },
{ X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
{ X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
{ X86::SUB16rr, X86::SUB16rm, 0 },
{ X86::SUB32rr, X86::SUB32rm, 0 },
{ X86::SUB64rr, X86::SUB64rm, 0 },
{ X86::SUB8rr, X86::SUB8rm, 0 },
{ X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
{ X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
{ X86::SUBSDrr, X86::SUBSDrm, 0 },
{ X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 },
{ X86::SUBSSrr, X86::SUBSSrm, 0 },
{ X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 },
// FIXME: TEST*rr -> swapped operand of TEST*mr.
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
{ X86::XOR16rr, X86::XOR16rm, 0 },
{ X86::XOR32rr, X86::XOR32rm, 0 },
{ X86::XOR64rr, X86::XOR64rm, 0 },
{ X86::XOR8rr, X86::XOR8rm, 0 },
{ X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
{ X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
// MMX version of foldable instructions
{ X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 },
{ X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 },
{ X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 },
{ X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 },
{ X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 },
{ X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 },
{ X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 },
{ X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 },
{ X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 },
{ X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 },
{ X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 },
{ X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 },
{ X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 },
{ X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 },
{ X86::MMX_PANDirr, X86::MMX_PANDirm, 0 },
{ X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 },
{ X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 },
{ X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 },
{ X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 },
{ X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 },
{ X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 },
{ X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 },
{ X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 },
{ X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 },
{ X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 },
{ X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 },
{ X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 },
{ X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 },
{ X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 },
{ X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 },
{ X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
{ X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 },
{ X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 },
{ X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 },
{ X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 },
{ X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 },
{ X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 },
{ X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 },
{ X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 },
{ X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 },
{ X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 },
{ X86::MMX_PORirr, X86::MMX_PORirm, 0 },
{ X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 },
{ X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 },
{ X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 },
{ X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 },
{ X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 },
{ X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 },
{ X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 },
{ X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 },
{ X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 },
{ X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 },
{ X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 },
{ X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 },
{ X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 },
{ X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 },
{ X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 },
{ X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 },
{ X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 },
{ X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 },
{ X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 },
{ X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 },
{ X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 },
{ X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 },
{ X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 },
{ X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 },
{ X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 },
{ X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 },
{ X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 },
{ X86::MMX_PXORirr, X86::MMX_PXORirm, 0 },
// 3DNow! version of foldable instructions
{ X86::PAVGUSBrr, X86::PAVGUSBrm, 0 },
{ X86::PFACCrr, X86::PFACCrm, 0 },
{ X86::PFADDrr, X86::PFADDrm, 0 },
{ X86::PFCMPEQrr, X86::PFCMPEQrm, 0 },
{ X86::PFCMPGErr, X86::PFCMPGErm, 0 },
{ X86::PFCMPGTrr, X86::PFCMPGTrm, 0 },
{ X86::PFMAXrr, X86::PFMAXrm, 0 },
{ X86::PFMINrr, X86::PFMINrm, 0 },
{ X86::PFMULrr, X86::PFMULrm, 0 },
{ X86::PFNACCrr, X86::PFNACCrm, 0 },
{ X86::PFPNACCrr, X86::PFPNACCrm, 0 },
{ X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 },
{ X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 },
{ X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 },
{ X86::PFSUBrr, X86::PFSUBrm, 0 },
{ X86::PFSUBRrr, X86::PFSUBRrm, 0 },
{ X86::PMULHRWrr, X86::PMULHRWrm, 0 },
// AVX 128-bit versions of foldable instructions
{ X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
{ X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
{ X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
{ X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
{ X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
{ X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
{ X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
{ X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
{ X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
{ X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
{ X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
{ X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
{ X86::VRCPSSr, X86::VRCPSSm, 0 },
{ X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
{ X86::VSQRTSDr, X86::VSQRTSDm, 0 },
{ X86::VSQRTSSr, X86::VSQRTSSm, 0 },
{ X86::VADDPDrr, X86::VADDPDrm, 0 },
{ X86::VADDPSrr, X86::VADDPSrm, 0 },
{ X86::VADDSDrr, X86::VADDSDrm, 0 },
{ X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 },
{ X86::VADDSSrr, X86::VADDSSrm, 0 },
{ X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 },
{ X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
{ X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
{ X86::VANDNPDrr, X86::VANDNPDrm, 0 },
{ X86::VANDNPSrr, X86::VANDNPSrm, 0 },
{ X86::VANDPDrr, X86::VANDPDrm, 0 },
{ X86::VANDPSrr, X86::VANDPSrm, 0 },
{ X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
{ X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
{ X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
{ X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
{ X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
{ X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
{ X86::VCMPSDrr, X86::VCMPSDrm, 0 },
{ X86::VCMPSSrr, X86::VCMPSSrm, 0 },
{ X86::VDIVPDrr, X86::VDIVPDrm, 0 },
{ X86::VDIVPSrr, X86::VDIVPSrm, 0 },
{ X86::VDIVSDrr, X86::VDIVSDrm, 0 },
{ X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 },
{ X86::VDIVSSrr, X86::VDIVSSrm, 0 },
{ X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 },
{ X86::VDPPDrri, X86::VDPPDrmi, 0 },
{ X86::VDPPSrri, X86::VDPPSrmi, 0 },
// Do not fold VFs* loads because there are no scalar load variants for
// these instructions. When folded, the load is required to be 128-bits, so
// the load size would not match.
{ X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 },
{ X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 },
{ X86::VFvANDPDrr, X86::VFvANDPDrm, 0 },
{ X86::VFvANDPSrr, X86::VFvANDPSrm, 0 },
{ X86::VFvORPDrr, X86::VFvORPDrm, 0 },
{ X86::VFvORPSrr, X86::VFvORPSrm, 0 },
{ X86::VFvXORPDrr, X86::VFvXORPDrm, 0 },
{ X86::VFvXORPSrr, X86::VFvXORPSrm, 0 },
{ X86::VHADDPDrr, X86::VHADDPDrm, 0 },
{ X86::VHADDPSrr, X86::VHADDPSrm, 0 },
{ X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
{ X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
{ X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
{ X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
{ X86::VMAXPDrr, X86::VMAXPDrm, 0 },
{ X86::VMAXPSrr, X86::VMAXPSrm, 0 },
{ X86::VMAXSDrr, X86::VMAXSDrm, 0 },
{ X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
{ X86::VMAXSSrr, X86::VMAXSSrm, 0 },
{ X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
{ X86::VMINPDrr, X86::VMINPDrm, 0 },
{ X86::VMINPSrr, X86::VMINPSrm, 0 },
{ X86::VMINSDrr, X86::VMINSDrm, 0 },
{ X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
{ X86::VMINSSrr, X86::VMINSSrm, 0 },
{ X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
{ X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
{ X86::VMULPDrr, X86::VMULPDrm, 0 },
{ X86::VMULPSrr, X86::VMULPSrm, 0 },
{ X86::VMULSDrr, X86::VMULSDrm, 0 },
{ X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 },
{ X86::VMULSSrr, X86::VMULSSrm, 0 },
{ X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 },
{ X86::VORPDrr, X86::VORPDrm, 0 },
{ X86::VORPSrr, X86::VORPSrm, 0 },
{ X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
{ X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
{ X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
{ X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
{ X86::VPADDBrr, X86::VPADDBrm, 0 },
{ X86::VPADDDrr, X86::VPADDDrm, 0 },
{ X86::VPADDQrr, X86::VPADDQrm, 0 },
{ X86::VPADDSBrr, X86::VPADDSBrm, 0 },
{ X86::VPADDSWrr, X86::VPADDSWrm, 0 },
{ X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
{ X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
{ X86::VPADDWrr, X86::VPADDWrm, 0 },
{ X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
{ X86::VPANDNrr, X86::VPANDNrm, 0 },
{ X86::VPANDrr, X86::VPANDrm, 0 },
{ X86::VPAVGBrr, X86::VPAVGBrm, 0 },
{ X86::VPAVGWrr, X86::VPAVGWrm, 0 },
{ X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
{ X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
{ X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
{ X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
{ X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
{ X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
{ X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
{ X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
{ X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
{ X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
{ X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
{ X86::VPHADDDrr, X86::VPHADDDrm, 0 },
{ X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
{ X86::VPHADDWrr, X86::VPHADDWrm, 0 },
{ X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
{ X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
{ X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
{ X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
{ X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
{ X86::VPINSRBrr, X86::VPINSRBrm, 0 },
{ X86::VPINSRDrr, X86::VPINSRDrm, 0 },
{ X86::VPINSRQrr, X86::VPINSRQrm, 0 },
{ X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
{ X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
{ X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
{ X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
{ X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
{ X86::VPMINSWrr, X86::VPMINSWrm, 0 },
{ X86::VPMINUBrr, X86::VPMINUBrm, 0 },
{ X86::VPMINSBrr, X86::VPMINSBrm, 0 },
{ X86::VPMINSDrr, X86::VPMINSDrm, 0 },
{ X86::VPMINUDrr, X86::VPMINUDrm, 0 },
{ X86::VPMINUWrr, X86::VPMINUWrm, 0 },
{ X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
{ X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
{ X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
{ X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
{ X86::VPMULDQrr, X86::VPMULDQrm, 0 },
{ X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
{ X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
{ X86::VPMULHWrr, X86::VPMULHWrm, 0 },
{ X86::VPMULLDrr, X86::VPMULLDrm, 0 },
{ X86::VPMULLWrr, X86::VPMULLWrm, 0 },
{ X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
{ X86::VPORrr, X86::VPORrm, 0 },
{ X86::VPSADBWrr, X86::VPSADBWrm, 0 },
{ X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
{ X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
{ X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
{ X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
{ X86::VPSLLDrr, X86::VPSLLDrm, 0 },
{ X86::VPSLLQrr, X86::VPSLLQrm, 0 },
{ X86::VPSLLWrr, X86::VPSLLWrm, 0 },
{ X86::VPSRADrr, X86::VPSRADrm, 0 },
{ X86::VPSRAWrr, X86::VPSRAWrm, 0 },
{ X86::VPSRLDrr, X86::VPSRLDrm, 0 },
{ X86::VPSRLQrr, X86::VPSRLQrm, 0 },
{ X86::VPSRLWrr, X86::VPSRLWrm, 0 },
{ X86::VPSUBBrr, X86::VPSUBBrm, 0 },
{ X86::VPSUBDrr, X86::VPSUBDrm, 0 },
{ X86::VPSUBQrr, X86::VPSUBQrm, 0 },
{ X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
{ X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
{ X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
{ X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
{ X86::VPSUBWrr, X86::VPSUBWrm, 0 },
{ X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
{ X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
{ X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
{ X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
{ X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
{ X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
{ X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
{ X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
{ X86::VPXORrr, X86::VPXORrm, 0 },
{ X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
{ X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
{ X86::VSUBPDrr, X86::VSUBPDrm, 0 },
{ X86::VSUBPSrr, X86::VSUBPSrm, 0 },
{ X86::VSUBSDrr, X86::VSUBSDrm, 0 },
{ X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 },
{ X86::VSUBSSrr, X86::VSUBSSrm, 0 },
{ X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 },
{ X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
{ X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
{ X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
{ X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
{ X86::VXORPDrr, X86::VXORPDrm, 0 },
{ X86::VXORPSrr, X86::VXORPSrm, 0 },
// AVX 256-bit foldable instructions
{ X86::VADDPDYrr, X86::VADDPDYrm, 0 },
{ X86::VADDPSYrr, X86::VADDPSYrm, 0 },
{ X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
{ X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
{ X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
{ X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
{ X86::VANDPDYrr, X86::VANDPDYrm, 0 },
{ X86::VANDPSYrr, X86::VANDPSYrm, 0 },
{ X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
{ X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
{ X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
{ X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
{ X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
{ X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
{ X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
{ X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
{ X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
{ X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
{ X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
{ X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
{ X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
{ X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
{ X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
{ X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
{ X86::VMINPDYrr, X86::VMINPDYrm, 0 },
{ X86::VMINPSYrr, X86::VMINPSYrm, 0 },
{ X86::VMULPDYrr, X86::VMULPDYrm, 0 },
{ X86::VMULPSYrr, X86::VMULPSYrm, 0 },
{ X86::VORPDYrr, X86::VORPDYrm, 0 },
{ X86::VORPSYrr, X86::VORPSYrm, 0 },
{ X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
{ X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
{ X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
{ X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
{ X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
{ X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
{ X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
{ X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
{ X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
{ X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
{ X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
{ X86::VXORPDYrr, X86::VXORPDYrm, 0 },
{ X86::VXORPSYrr, X86::VXORPSYrm, 0 },
// AVX2 foldable instructions
{ X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
{ X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
{ X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
{ X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
{ X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
{ X86::VPADDBYrr, X86::VPADDBYrm, 0 },
{ X86::VPADDDYrr, X86::VPADDDYrm, 0 },
{ X86::VPADDQYrr, X86::VPADDQYrm, 0 },
{ X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
{ X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
{ X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
{ X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
{ X86::VPADDWYrr, X86::VPADDWYrm, 0 },
{ X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
{ X86::VPANDNYrr, X86::VPANDNYrm, 0 },
{ X86::VPANDYrr, X86::VPANDYrm, 0 },
{ X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
{ X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
{ X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
{ X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
{ X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 },
{ X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
{ X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
{ X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
{ X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
{ X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
{ X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
{ X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
{ X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
{ X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
{ X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
{ X86::VPERMDYrr, X86::VPERMDYrm, 0 },
{ X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
{ X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
{ X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
{ X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
{ X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
{ X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
{ X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
{ X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
{ X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
{ X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
{ X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
{ X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
{ X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
{ X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
{ X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
{ X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
{ X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
{ X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
{ X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
{ X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
{ X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
{ X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
{ X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
{ X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
{ X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
{ X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
{ X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
{ X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
{ X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
{ X86::VPORYrr, X86::VPORYrm, 0 },
{ X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
{ X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
{ X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
{ X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
{ X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
{ X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
{ X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
{ X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
{ X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
{ X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
{ X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
{ X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
{ X86::VPSRADYrr, X86::VPSRADYrm, 0 },
{ X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
{ X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
{ X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
{ X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
{ X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
{ X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
{ X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
{ X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
{ X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
{ X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
{ X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
{ X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
{ X86::VPSUBQYrr, X86::VPSUBQYrm, 0 },
{ X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
{ X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
{ X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 },
{ X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 },
{ X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
{ X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
{ X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
{ X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
{ X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
{ X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
{ X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
{ X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
{ X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
{ X86::VPXORYrr, X86::VPXORYrm, 0 },
// FMA4 foldable patterns
{ X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
{ X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
{ X86::VFMADDPS4rr, X86::VFMADDPS4mr, 0 },
{ X86::VFMADDPD4rr, X86::VFMADDPD4mr, 0 },
{ X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, 0 },
{ X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, 0 },
{ X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
{ X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
{ X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, 0 },
{ X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, 0 },
{ X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, 0 },
{ X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, 0 },
{ X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
{ X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
{ X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, 0 },
{ X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, 0 },
{ X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, 0 },
{ X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, 0 },
{ X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
{ X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
{ X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, 0 },
{ X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, 0 },
{ X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, 0 },
{ X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, 0 },
{ X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, 0 },
{ X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, 0 },
{ X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, 0 },
{ X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, 0 },
{ X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, 0 },
{ X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, 0 },
{ X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, 0 },
{ X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, 0 },
// XOP foldable instructions
{ X86::VPCMOVrr, X86::VPCMOVmr, 0 },
{ X86::VPCMOVrrY, X86::VPCMOVmrY, 0 },
{ X86::VPCOMBri, X86::VPCOMBmi, 0 },
{ X86::VPCOMDri, X86::VPCOMDmi, 0 },
{ X86::VPCOMQri, X86::VPCOMQmi, 0 },
{ X86::VPCOMWri, X86::VPCOMWmi, 0 },
{ X86::VPCOMUBri, X86::VPCOMUBmi, 0 },
{ X86::VPCOMUDri, X86::VPCOMUDmi, 0 },
{ X86::VPCOMUQri, X86::VPCOMUQmi, 0 },
{ X86::VPCOMUWri, X86::VPCOMUWmi, 0 },
{ X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 },
{ X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 },
{ X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 },
{ X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 },
{ X86::VPMACSDDrr, X86::VPMACSDDrm, 0 },
{ X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 },
{ X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 },
{ X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 },
{ X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 },
{ X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 },
{ X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 },
{ X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 },
{ X86::VPMACSWDrr, X86::VPMACSWDrm, 0 },
{ X86::VPMACSWWrr, X86::VPMACSWWrm, 0 },
{ X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 },
{ X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 },
{ X86::VPPERMrr, X86::VPPERMmr, 0 },
{ X86::VPROTBrr, X86::VPROTBrm, 0 },
{ X86::VPROTDrr, X86::VPROTDrm, 0 },
{ X86::VPROTQrr, X86::VPROTQrm, 0 },
{ X86::VPROTWrr, X86::VPROTWrm, 0 },
{ X86::VPSHABrr, X86::VPSHABrm, 0 },
{ X86::VPSHADrr, X86::VPSHADrm, 0 },
{ X86::VPSHAQrr, X86::VPSHAQrm, 0 },
{ X86::VPSHAWrr, X86::VPSHAWrm, 0 },
{ X86::VPSHLBrr, X86::VPSHLBrm, 0 },
{ X86::VPSHLDrr, X86::VPSHLDrm, 0 },
{ X86::VPSHLQrr, X86::VPSHLQrm, 0 },
{ X86::VPSHLWrr, X86::VPSHLWrm, 0 },
// BMI/BMI2 foldable instructions
{ X86::ANDN32rr, X86::ANDN32rm, 0 },
{ X86::ANDN64rr, X86::ANDN64rm, 0 },
{ X86::MULX32rr, X86::MULX32rm, 0 },
{ X86::MULX64rr, X86::MULX64rm, 0 },
{ X86::PDEP32rr, X86::PDEP32rm, 0 },
{ X86::PDEP64rr, X86::PDEP64rm, 0 },
{ X86::PEXT32rr, X86::PEXT32rm, 0 },
{ X86::PEXT64rr, X86::PEXT64rm, 0 },
// AVX-512 foldable instructions
{ X86::VADDPSZrr, X86::VADDPSZrm, 0 },
{ X86::VADDPDZrr, X86::VADDPDZrm, 0 },
{ X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
{ X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
{ X86::VMULPSZrr, X86::VMULPSZrm, 0 },
{ X86::VMULPDZrr, X86::VMULPDZrm, 0 },
{ X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
{ X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
{ X86::VMINPSZrr, X86::VMINPSZrm, 0 },
{ X86::VMINPDZrr, X86::VMINPDZrm, 0 },
{ X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
{ X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
{ X86::VPADDDZrr, X86::VPADDDZrm, 0 },
{ X86::VPADDQZrr, X86::VPADDQZrm, 0 },
{ X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
{ X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
{ X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
{ X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
{ X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
{ X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
{ X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
{ X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
{ X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
{ X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
{ X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
{ X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
{ X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
{ X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
{ X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
{ X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
{ X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
{ X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
{ X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
{ X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
{ X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
{ X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
{ X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
{ X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
{ X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
// AVX-512{F,VL} foldable instructions
{ X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
{ X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
{ X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
// AVX-512{F,VL} foldable instructions
{ X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
{ X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
{ X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
{ X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
// AES foldable instructions
{ X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
{ X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
{ X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
{ X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
{ X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
{ X86::VAESDECrr, X86::VAESDECrm, 0 },
{ X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
{ X86::VAESENCrr, X86::VAESENCrm, 0 },
// SHA foldable instructions
{ X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
{ X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
{ X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
{ X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
{ X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
{ X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
{ X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }
};
for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
unsigned RegOp = MemoryFoldTable2[i].RegOp;
unsigned MemOp = MemoryFoldTable2[i].MemOp;
unsigned Flags = MemoryFoldTable2[i].Flags;
AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
RegOp, MemOp,
// Index 2, folded load
Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
}
static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
// FMA foldable instructions
{ X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
{ X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
{ X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
{ X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
{ X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
{ X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
{ X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
{ X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
{ X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
{ X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
{ X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
{ X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
{ X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
{ X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
{ X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
{ X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
{ X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
{ X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
{ X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
{ X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
{ X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
{ X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
{ X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
{ X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
{ X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
{ X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
{ X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
{ X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
{ X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
{ X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
{ X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
{ X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
{ X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
{ X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
{ X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
{ X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
{ X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
{ X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
{ X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
{ X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
{ X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
{ X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
{ X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
{ X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
{ X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
{ X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
{ X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
{ X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
{ X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
{ X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
{ X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
{ X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
{ X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
{ X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
{ X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
{ X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
{ X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
{ X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
{ X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
{ X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
{ X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
{ X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
{ X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
{ X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
{ X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
{ X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
{ X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
{ X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
{ X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
{ X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
{ X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
{ X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
{ X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
{ X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
{ X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
{ X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
{ X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
{ X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
{ X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
{ X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
{ X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
{ X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
{ X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
{ X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
{ X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
{ X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
{ X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
{ X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
{ X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
{ X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
{ X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
{ X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
{ X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
{ X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
{ X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
{ X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
// FMA4 foldable patterns
{ X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
{ X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
{ X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
{ X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
{ X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
{ X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
{ X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
{ X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
{ X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
{ X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
{ X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
{ X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
{ X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
{ X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
{ X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
{ X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
{ X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
{ X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
{ X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
{ X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
{ X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
{ X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
{ X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
{ X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
{ X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
{ X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
{ X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
{ X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
{ X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
{ X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
{ X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
{ X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
// XOP foldable instructions
{ X86::VPCMOVrr, X86::VPCMOVrm, 0 },
{ X86::VPCMOVrrY, X86::VPCMOVrmY, 0 },
{ X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 },
{ X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 },
{ X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 },
{ X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 },
{ X86::VPPERMrr, X86::VPPERMrm, 0 },
// AVX-512 VPERMI instructions with 3 source operands.
{ X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
{ X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
{ X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
{ X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
{ X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
{ X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
{ X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
{ X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
{ X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
{ X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
{ X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
{ X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
{ X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
// AVX-512 arithmetic instructions
{ X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
{ X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
{ X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
{ X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
{ X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
{ X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
{ X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
{ X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
{ X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
{ X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
{ X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
{ X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
// AVX-512{F,VL} arithmetic instructions 256-bit
{ X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
{ X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
{ X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
{ X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
{ X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
{ X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
{ X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
{ X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
{ X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
{ X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
{ X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
{ X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
// AVX-512{F,VL} arithmetic instructions 128-bit
{ X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
{ X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
{ X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
{ X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
{ X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
{ X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
{ X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
{ X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
{ X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
{ X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
{ X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
{ X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
};
for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
unsigned RegOp = MemoryFoldTable3[i].RegOp;
unsigned MemOp = MemoryFoldTable3[i].MemOp;
unsigned Flags = MemoryFoldTable3[i].Flags;
AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
RegOp, MemOp,
// Index 3, folded load
Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
}
static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
// AVX-512 foldable instructions
{ X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
{ X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
{ X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
{ X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
{ X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
{ X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
{ X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
{ X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
{ X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
{ X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
{ X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
{ X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
// AVX-512{F,VL} foldable instructions 256-bit
{ X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
{ X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
{ X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
{ X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
{ X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
{ X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
{ X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
{ X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
{ X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
{ X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
{ X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
{ X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
// AVX-512{F,VL} foldable instructions 128-bit
{ X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
{ X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
{ X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
{ X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
{ X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
{ X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
{ X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
{ X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
{ X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
{ X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
{ X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
{ X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
};
for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
unsigned RegOp = MemoryFoldTable4[i].RegOp;
unsigned MemOp = MemoryFoldTable4[i].MemOp;
unsigned Flags = MemoryFoldTable4[i].Flags;
AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
RegOp, MemOp,
// Index 4, folded load
Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
}
}
void
X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
MemOp2RegOpTableType &M2RTable,
unsigned RegOp, unsigned MemOp, unsigned Flags) {
if ((Flags & TB_NO_FORWARD) == 0) {
assert(!R2MTable.count(RegOp) && "Duplicate entry!");
R2MTable[RegOp] = std::make_pair(MemOp, Flags);
}
if ((Flags & TB_NO_REVERSE) == 0) {
assert(!M2RTable.count(MemOp) &&
"Duplicated entries in unfolding maps?");
M2RTable[MemOp] = std::make_pair(RegOp, Flags);
}
}
bool
X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
switch (MI.getOpcode()) {
default: break;
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
if (!Subtarget.is64Bit())
// It's not always legal to reference the low 8-bit of the larger
// register in 32-bit mode.
return false;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
case X86::MOVSX64rr32: {
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
// Be conservative.
return false;
SrcReg = MI.getOperand(1).getReg();
DstReg = MI.getOperand(0).getReg();
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
SubIdx = X86::sub_8bit;
break;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
SubIdx = X86::sub_16bit;
break;
case X86::MOVSX64rr32:
SubIdx = X86::sub_32bit;
break;
}
return true;
}
}
return false;
}
int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
const MachineFunction *MF = MI->getParent()->getParent();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
if (MI->getOpcode() == getCallFrameSetupOpcode() ||
MI->getOpcode() == getCallFrameDestroyOpcode()) {
unsigned StackAlign = TFI->getStackAlignment();
int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
StackAlign;
SPAdj -= MI->getOperand(1).getImm();
if (MI->getOpcode() == getCallFrameSetupOpcode())
return SPAdj;
else
return -SPAdj;
}
// To know whether a call adjusts the stack, we need information
// that is bound to the following ADJCALLSTACKUP pseudo.
// Look for the next ADJCALLSTACKUP that follows the call.
if (MI->isCall()) {
const MachineBasicBlock* MBB = MI->getParent();
auto I = ++MachineBasicBlock::const_iterator(MI);
for (auto E = MBB->end(); I != E; ++I) {
if (I->getOpcode() == getCallFrameDestroyOpcode() ||
I->isCall())
break;
}
// If we could not find a frame destroy opcode, then it has already
// been simplified, so we don't care.
if (I->getOpcode() != getCallFrameDestroyOpcode())
return 0;
return -(I->getOperand(1).getImm());
}
// Currently handle only PUSHes we can reasonably expect to see
// in call sequences
switch (MI->getOpcode()) {
default:
return 0;
case X86::PUSH32i8:
case X86::PUSH32r:
case X86::PUSH32rmm:
case X86::PUSH32rmr:
case X86::PUSHi32:
return 4;
}
}
/// Return true and the FrameIndex if the specified
/// operand and follow operands form a reference to the stack frame.
bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
int &FrameIndex) const {
if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
MI->getOperand(Op+X86::AddrDisp).isImm() &&
MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
return true;
}
return false;
}
static bool isFrameLoadOpcode(int Opcode) {
switch (Opcode) {
default:
return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::VMOVAPSrm:
case X86::VMOVAPDrm:
case X86::VMOVDQArm:
case X86::VMOVUPSYrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPDYrm:
case X86::VMOVAPDYrm:
case X86::VMOVDQUYrm:
case X86::VMOVDQAYrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::VMOVAPSZrm:
case X86::VMOVUPSZrm:
return true;
}
}
static bool isFrameStoreOpcode(int Opcode) {
switch (Opcode) {
default: break;
case X86::MOV8mr:
case X86::MOV16mr:
case X86::MOV32mr:
case X86::MOV64mr:
case X86::ST_FpP64m:
case X86::MOVSSmr:
case X86::MOVSDmr:
case X86::MOVAPSmr:
case X86::MOVAPDmr:
case X86::MOVDQAmr:
case X86::VMOVSSmr:
case X86::VMOVSDmr:
case X86::VMOVAPSmr:
case X86::VMOVAPDmr:
case X86::VMOVDQAmr:
case X86::VMOVUPSYmr:
case X86::VMOVAPSYmr:
case X86::VMOVUPDYmr:
case X86::VMOVAPDYmr:
case X86::VMOVDQUYmr:
case X86::VMOVDQAYmr:
case X86::VMOVUPSZmr:
case X86::VMOVAPSZmr:
case X86::MMX_MOVD64mr:
case X86::MMX_MOVQ64mr:
case X86::MMX_MOVNTQmr:
return true;
}
return false;
}
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameLoadOpcode(MI->getOpcode()))
if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
return MI->getOperand(0).getReg();
return 0;
}
unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameLoadOpcode(MI->getOpcode())) {
unsigned Reg;
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameStoreOpcode(MI->getOpcode()))
if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
isFrameOperand(MI, 0, FrameIndex))
return MI->getOperand(X86::AddrNumOperands).getReg();
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameStoreOpcode(MI->getOpcode())) {
unsigned Reg;
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasStoreToStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
// Don't waste compile time scanning use-def chains of physregs.
if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
return false;
bool isPICBase = false;
for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
E = MRI.def_instr_end(); I != E; ++I) {
MachineInstr *DefMI = &*I;
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
bool
X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::FsVMOVAPSrm:
case X86::FsVMOVAPDrm:
case X86::FsMOVAPSrm:
case X86::FsMOVAPDrm: {
// Loads from constant pools are trivially rematerializable.
if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
MI->getOperand(1+X86::AddrIndexReg).isReg() &&
MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
MI->isInvariantLoad(AA)) {
unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
if (BaseReg == 0 || BaseReg == X86::RIP)
return true;
// Allow re-materialization of PIC load.
if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
return false;
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
case X86::LEA32r:
case X86::LEA64r: {
if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
MI->getOperand(1+X86::AddrIndexReg).isReg() &&
MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
!MI->getOperand(1+X86::AddrDisp).isReg()) {
// lea fi#, lea GV, etc. are all rematerializable.
if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
return true;
unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
if (BaseReg == 0)
return true;
// Allow re-materialization of lea PICBase + x.
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
}
// All other instructions marked M_REMATERIALIZABLE are always trivially
// rematerializable.
return true;
}
bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
MachineBasicBlock::iterator E = MBB.end();
// For compile time consideration, if we are not able to determine the
// safety after visiting 4 instructions in each direction, we will assume
// it's not safe.
MachineBasicBlock::iterator Iter = I;
for (unsigned i = 0; Iter != E && i < 4; ++i) {
bool SeenDef = false;
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
MachineOperand &MO = Iter->getOperand(j);
if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
SeenDef = true;
if (!MO.isReg())
continue;
if (MO.getReg() == X86::EFLAGS) {
if (MO.isUse())
return false;
SeenDef = true;
}
}
if (SeenDef)
// This instruction defines EFLAGS, no need to look any further.
return true;
++Iter;
// Skip over DBG_VALUE.
while (Iter != E && Iter->isDebugValue())
++Iter;
}
// It is safe to clobber EFLAGS at the end of a block of no successor has it
// live in.
if (Iter == E) {
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
SE = MBB.succ_end(); SI != SE; ++SI)
if ((*SI)->isLiveIn(X86::EFLAGS))
return false;
return true;
}
MachineBasicBlock::iterator B = MBB.begin();
Iter = I;
for (unsigned i = 0; i < 4; ++i) {
// If we make it to the beginning of the block, it's safe to clobber
// EFLAGS iff EFLAGS is not live-in.
if (Iter == B)
return !MBB.isLiveIn(X86::EFLAGS);
--Iter;
// Skip over DBG_VALUE.
while (Iter != B && Iter->isDebugValue())
--Iter;
bool SawKill = false;
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
MachineOperand &MO = Iter->getOperand(j);
// A register mask may clobber EFLAGS, but we should still look for a
// live EFLAGS def.
if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
SawKill = true;
if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
if (MO.isDef()) return MO.isDead();
if (MO.isKill()) SawKill = true;
}
}
if (SawKill)
// This instruction kills EFLAGS and doesn't redefine it, so
// there's no need to look further.
return true;
}
// Conservative answer.
return false;
}
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig,
const TargetRegisterInfo &TRI) const {
// MOV32r0 is implemented with a xor which clobbers condition code.
// Re-materialize it as movri instructions to avoid side effects.
unsigned Opc = Orig->getOpcode();
if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
DebugLoc DL = Orig->getDebugLoc();
BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
.addImm(0);
} else {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
MBB.insert(I, MI);
}
MachineInstr *NewMI = std::prev(I);
NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
}
/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
static bool hasLiveCondCodeDef(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
return true;
}
}
return false;
}
/// Check whether the shift count for a machine operand is non-zero.
inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
unsigned ShiftAmtOperandIdx) {
// The shift count is six bits with the REX.W prefix and five bits without.
unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
return Imm & ShiftCountMask;
}
/// Check whether the given shift count is appropriate
/// can be represented by a LEA instruction.
inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
// Left shift instructions can be transformed into load-effective-address
// instructions if we can encode them appropriately.
// A LEA instruction utilizes a SIB byte to encode it's scale factor.
// The SIB.scale field is two bits wide which means that we can encode any
// shift amount less than 4.
return ShAmt < 4 && ShAmt > 0;
}
bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
unsigned Opc, bool AllowSP,
unsigned &NewSrc, bool &isKill, bool &isUndef,
MachineOperand &ImplicitOp) const {
MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterClass *RC;
if (AllowSP) {
RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
} else {
RC = Opc != X86::LEA32r ?
&X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
}
unsigned SrcReg = Src.getReg();
// For both LEA64 and LEA32 the register already has essentially the right
// type (32-bit or 64-bit) we may just need to forbid SP.
if (Opc != X86::LEA64_32r) {
NewSrc = SrcReg;
isKill = Src.isKill();
isUndef = Src.isUndef();
if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
!MF.getRegInfo().constrainRegClass(NewSrc, RC))
return false;
return true;
}
// This is for an LEA64_32r and incoming registers are 32-bit. One way or
// another we need to add 64-bit registers to the final MI.
if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
ImplicitOp = Src;
ImplicitOp.setImplicit();
NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
MachineBasicBlock::LivenessQueryResult LQR =
MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
switch (LQR) {
case MachineBasicBlock::LQR_Unknown:
// We can't give sane liveness flags to the instruction, abandon LEA
// formation.
return false;
case MachineBasicBlock::LQR_Live:
isKill = MI->killsRegister(SrcReg);
isUndef = false;
break;
default:
// The physreg itself is dead, so we have to use it as an <undef>.
isKill = false;
isUndef = true;
break;
}
} else {
// Virtual register of the wrong class, we have to create a temporary 64-bit
// vreg to feed into the LEA.
NewSrc = MF.getRegInfo().createVirtualRegister(RC);
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
get(TargetOpcode::COPY))
.addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
.addOperand(Src);
// Which is obviously going to be dead after we're done with it.
isKill = true;
isUndef = false;
}
// We've set all the parameters without issue.
return true;
}
/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
/// LEA to form 3-address code by promoting to a 32-bit superregister and then
/// truncating back down to a 16-bit subregister.
MachineInstr *
X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
MachineInstr *MI = MBBI;
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
bool isDead = MI->getOperand(0).isDead();
bool isKill = MI->getOperand(1).isKill();
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
unsigned Opc, leaInReg;
if (Subtarget.is64Bit()) {
Opc = X86::LEA64_32r;
leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
} else {
Opc = X86::LEA32r;
leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
}
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
// This has the potential to cause partial register stall. e.g.
// movw (%rbp,%rcx,2), %dx
// leal -65(%rdx), %esi
// But testing has shown this *does* help performance in 64-bit mode (at
// least on modern x86 machines).
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
MachineInstr *InsMI =
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg, RegState::Define, X86::sub_16bit)
.addReg(Src, getKillRegState(isKill));
MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
get(Opc), leaOutReg);
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::SHL16ri: {
unsigned ShAmt = MI->getOperand(2).getImm();
MIB.addReg(0).addImm(1 << ShAmt)
.addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
break;
}
case X86::INC16r:
addRegOffset(MIB, leaInReg, true, 1);
break;
case X86::DEC16r:
addRegOffset(MIB, leaInReg, true, -1);
break;
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
break;
case X86::ADD16rr:
case X86::ADD16rr_DB: {
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
unsigned leaInReg2 = 0;
MachineInstr *InsMI2 = nullptr;
if (Src == Src2) {
// ADD16rr %reg1028<kill>, %reg1028
// just a single insert_subreg.
addRegReg(MIB, leaInReg, true, leaInReg, false);
} else {
if (Subtarget.is64Bit())
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
else
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
InsMI2 =
BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg2, RegState::Define, X86::sub_16bit)
.addReg(Src2, getKillRegState(isKill2));
addRegReg(MIB, leaInReg, true, leaInReg2, true);
}
if (LV && isKill2 && InsMI2)
LV->replaceKillInstruction(Src2, MI, InsMI2);
break;
}
}
MachineInstr *NewMI = MIB;
MachineInstr *ExtMI =
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
.addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
if (LV) {
// Update live variables
LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
if (isKill)
LV->replaceKillInstruction(Src, MI, InsMI);
if (isDead)
LV->replaceKillInstruction(Dest, MI, ExtMI);
}
return ExtMI;
}
/// This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
MachineInstr *MI = MBBI;
// The following opcodes also sets the condition code register(s). Only
// convert them to equivalent lea if the condition code register def's
// are dead!
if (hasLiveCondCodeDef(MI))
return nullptr;
MachineFunction &MF = *MI->getParent()->getParent();
// All instructions input are two-addr instructions. Get the known operands.
const MachineOperand &Dest = MI->getOperand(0);
const MachineOperand &Src = MI->getOperand(1);
MachineInstr *NewMI = nullptr;
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
// we have better subtarget support, enable the 16-bit LEA generation here.
// 16-bit LEA is also slow on Core2.
bool DisableLEA16 = true;
bool is64Bit = Subtarget.is64Bit();
unsigned MIOpc = MI->getOpcode();
switch (MIOpc) {
default: return nullptr;
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
// LEA can't handle RSP.
if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
!MF.getRegInfo().constrainRegClass(Src.getReg(),
&X86::GR64_NOSPRegClass))
return nullptr;
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
.addOperand(Dest)
.addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
break;
}
case X86::SHL32ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
// LEA can't handle ESP.
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
SrcReg, isKill, isUndef, ImplicitOp))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addOperand(Dest)
.addReg(0).addImm(1 << ShAmt)
.addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
.addImm(0).addReg(0);
if (ImplicitOp.getReg() != 0)
MIB.addOperand(ImplicitOp);
NewMI = MIB;
break;
}
case X86::SHL16ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addOperand(Dest)
.addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
break;
}
case X86::INC64r:
case X86::INC32r: {
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
SrcReg, isKill, isUndef, ImplicitOp))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addOperand(Dest)
.addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
if (ImplicitOp.getReg() != 0)
MIB.addOperand(ImplicitOp);
NewMI = addOffset(MIB, 1);
break;
}
case X86::INC16r:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
: nullptr;
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addOperand(Dest).addOperand(Src), 1);
break;
case X86::DEC64r:
case X86::DEC32r: {
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
SrcReg, isKill, isUndef, ImplicitOp))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addOperand(Dest)
.addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.addOperand(ImplicitOp);
NewMI = addOffset(MIB, -1);
break;
}
case X86::DEC16r:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
: nullptr;
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addOperand(Dest).addOperand(Src), -1);
break;
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD32rr:
case X86::ADD32rr_DB: {
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc;
if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
Opc = X86::LEA64r;
else
Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
SrcReg, isKill, isUndef, ImplicitOp))
return nullptr;
const MachineOperand &Src2 = MI->getOperand(2);
bool isKill2, isUndef2;
unsigned SrcReg2;
MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
SrcReg2, isKill2, isUndef2, ImplicitOp2))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addOperand(Dest);
if (ImplicitOp.getReg() != 0)
MIB.addOperand(ImplicitOp);
if (ImplicitOp2.getReg() != 0)
MIB.addOperand(ImplicitOp2);
NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
// Preserve undefness of the operands.
NewMI->getOperand(1).setIsUndef(isUndef);
NewMI->getOperand(3).setIsUndef(isUndef2);
if (LV && Src2.isKill())
LV->replaceKillInstruction(SrcReg2, MI, NewMI);
break;
}
case X86::ADD16rr:
case X86::ADD16rr_DB: {
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
: nullptr;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addOperand(Dest),
Src.getReg(), Src.isKill(), Src2, isKill2);
// Preserve undefness of the operands.
bool isUndef = MI->getOperand(1).isUndef();
bool isUndef2 = MI->getOperand(2).isUndef();
NewMI->getOperand(1).setIsUndef(isUndef);
NewMI->getOperand(3).setIsUndef(isUndef2);
if (LV && isKill2)
LV->replaceKillInstruction(Src2, MI, NewMI);
break;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
.addOperand(Dest).addOperand(Src),
MI->getOperand(2).getImm());
break;
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB: {
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
SrcReg, isKill, isUndef, ImplicitOp))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addOperand(Dest)
.addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.addOperand(ImplicitOp);
NewMI = addOffset(MIB, MI->getOperand(2).getImm());
break;
}
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
: nullptr;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addOperand(Dest).addOperand(Src),
MI->getOperand(2).getImm());
break;
}
if (!NewMI) return nullptr;
if (LV) { // Update live variables
if (Src.isKill())
LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
if (Dest.isDead())
LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
}
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
/// We have a few instructions that must be hacked on to commute them.
///
MachineInstr *
X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
switch (MI->getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
unsigned Opc;
unsigned Size;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
}
unsigned Amt = MI->getOperand(3).getImm();
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->setDesc(get(Opc));
MI->getOperand(3).setImm(Size-Amt);
return TargetInstrInfo::commuteInstruction(MI, NewMI);
}
case X86::BLENDPDrri:
case X86::BLENDPSrri:
case X86::PBLENDWrri:
case X86::VBLENDPDrri:
case X86::VBLENDPSrri:
case X86::VBLENDPDYrri:
case X86::VBLENDPSYrri:
case X86::VPBLENDDrri:
case X86::VPBLENDWrri:
case X86::VPBLENDDYrri:
case X86::VPBLENDWYrri:{
unsigned Mask;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::BLENDPDrri: Mask = 0x03; break;
case X86::BLENDPSrri: Mask = 0x0F; break;
case X86::PBLENDWrri: Mask = 0xFF; break;
case X86::VBLENDPDrri: Mask = 0x03; break;
case X86::VBLENDPSrri: Mask = 0x0F; break;
case X86::VBLENDPDYrri: Mask = 0x0F; break;
case X86::VBLENDPSYrri: Mask = 0xFF; break;
case X86::VPBLENDDrri: Mask = 0x0F; break;
case X86::VPBLENDWrri: Mask = 0xFF; break;
case X86::VPBLENDDYrri: Mask = 0xFF; break;
case X86::VPBLENDWYrri: Mask = 0xFF; break;
}
// Only the least significant bits of Imm are used.
unsigned Imm = MI->getOperand(3).getImm() & Mask;
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->getOperand(3).setImm(Mask ^ Imm);
return TargetInstrInfo::commuteInstruction(MI, NewMI);
}
case X86::PCLMULQDQrr:
case X86::VPCLMULQDQrr:{
// SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
// SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
unsigned Imm = MI->getOperand(3).getImm();
unsigned Src1Hi = Imm & 0x01;
unsigned Src2Hi = Imm & 0x10;
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
return TargetInstrInfo::commuteInstruction(MI, NewMI);
}
case X86::CMPPDrri:
case X86::CMPPSrri:
case X86::VCMPPDrri:
case X86::VCMPPSrri:
case X86::VCMPPDYrri:
case X86::VCMPPSYrri: {
// Float comparison can be safely commuted for
// Ordered/Unordered/Equal/NotEqual tests
unsigned Imm = MI->getOperand(3).getImm() & 0x7;
switch (Imm) {
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
return TargetInstrInfo::commuteInstruction(MI, NewMI);
default:
return nullptr;
}
}
case X86::VPCOMBri: case X86::VPCOMUBri:
case X86::VPCOMDri: case X86::VPCOMUDri:
case X86::VPCOMQri: case X86::VPCOMUQri:
case X86::VPCOMWri: case X86::VPCOMUWri: {
// Flip comparison mode immediate (if necessary).
unsigned Imm = MI->getOperand(3).getImm() & 0x7;
switch (Imm) {
case 0x00: Imm = 0x02; break; // LT -> GT
case 0x01: Imm = 0x03; break; // LE -> GE
case 0x02: Imm = 0x00; break; // GT -> LT
case 0x03: Imm = 0x01; break; // GE -> LE
case 0x04: // EQ
case 0x05: // NE
case 0x06: // FALSE
case 0x07: // TRUE
default:
break;
}
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->getOperand(3).setImm(Imm);
return TargetInstrInfo::commuteInstruction(MI, NewMI);
}
case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
unsigned Opc;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
}
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->setDesc(get(Opc));
// Fallthrough intended.
}
default:
return TargetInstrInfo::commuteInstruction(MI, NewMI);
}
}
bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
switch (MI->getOpcode()) {
case X86::CMPPDrri:
case X86::CMPPSrri:
case X86::VCMPPDrri:
case X86::VCMPPSrri:
case X86::VCMPPDYrri:
case X86::VCMPPSYrri: {
// Float comparison can be safely commuted for
// Ordered/Unordered/Equal/NotEqual tests
unsigned Imm = MI->getOperand(3).getImm() & 0x7;
switch (Imm) {
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
SrcOpIdx1 = 1;
SrcOpIdx2 = 2;
return true;
}
return false;
}
case X86::VFMADDPDr231r:
case X86::VFMADDPSr231r:
case X86::VFMADDSDr231r:
case X86::VFMADDSSr231r:
case X86::VFMSUBPDr231r:
case X86::VFMSUBPSr231r:
case X86::VFMSUBSDr231r:
case X86::VFMSUBSSr231r:
case X86::VFNMADDPDr231r:
case X86::VFNMADDPSr231r:
case X86::VFNMADDSDr231r:
case X86::VFNMADDSSr231r:
case X86::VFNMSUBPDr231r:
case X86::VFNMSUBPSr231r:
case X86::VFNMSUBSDr231r:
case X86::VFNMSUBSSr231r:
case X86::VFMADDPDr231rY:
case X86::VFMADDPSr231rY:
case X86::VFMSUBPDr231rY:
case X86::VFMSUBPSr231rY:
case X86::VFNMADDPDr231rY:
case X86::VFNMADDPSr231rY:
case X86::VFNMSUBPDr231rY:
case X86::VFNMSUBPSr231rY:
SrcOpIdx1 = 2;
SrcOpIdx2 = 3;
return true;
default:
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
}
}
static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
case X86::JE_1: return X86::COND_E;
case X86::JNE_1: return X86::COND_NE;
case X86::JL_1: return X86::COND_L;
case X86::JLE_1: return X86::COND_LE;
case X86::JG_1: return X86::COND_G;
case X86::JGE_1: return X86::COND_GE;
case X86::JB_1: return X86::COND_B;
case X86::JBE_1: return X86::COND_BE;
case X86::JA_1: return X86::COND_A;
case X86::JAE_1: return X86::COND_AE;
case X86::JS_1: return X86::COND_S;
case X86::JNS_1: return X86::COND_NS;
case X86::JP_1: return X86::COND_P;
case X86::JNP_1: return X86::COND_NP;
case X86::JO_1: return X86::COND_O;
case X86::JNO_1: return X86::COND_NO;
}
}
/// Return condition code of a SET opcode.
static X86::CondCode getCondFromSETOpc(unsigned Opc) {
switch (Opc) {
default: return X86::COND_INVALID;
case X86::SETAr: case X86::SETAm: return X86::COND_A;
case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
case X86::SETBr: case X86::SETBm: return X86::COND_B;
case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
case X86::SETEr: case X86::SETEm: return X86::COND_E;
case X86::SETGr: case X86::SETGm: return X86::COND_G;
case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
case X86::SETLr: case X86::SETLm: return X86::COND_L;
case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
case X86::SETOr: case X86::SETOm: return X86::COND_O;
case X86::SETPr: case X86::SETPm: return X86::COND_P;
case X86::SETSr: case X86::SETSm: return X86::COND_S;
}
}
/// Return condition code of a CMov opcode.
X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
switch (Opc) {
default: return X86::COND_INVALID;
case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
return X86::COND_A;
case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
return X86::COND_AE;
case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
return X86::COND_B;
case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
return X86::COND_BE;
case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
return X86::COND_E;
case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
return X86::COND_G;
case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
return X86::COND_GE;
case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
return X86::COND_L;
case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
return X86::COND_LE;
case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
return X86::COND_NE;
case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
return X86::COND_NO;
case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
return X86::COND_NP;
case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
return X86::COND_NS;
case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
return X86::COND_O;
case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
return X86::COND_P;
case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
return X86::COND_S;
}
}
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::JE_1;
case X86::COND_NE: return X86::JNE_1;
case X86::COND_L: return X86::JL_1;
case X86::COND_LE: return X86::JLE_1;
case X86::COND_G: return X86::JG_1;
case X86::COND_GE: return X86::JGE_1;
case X86::COND_B: return X86::JB_1;
case X86::COND_BE: return X86::JBE_1;
case X86::COND_A: return X86::JA_1;
case X86::COND_AE: return X86::JAE_1;
case X86::COND_S: return X86::JS_1;
case X86::COND_NS: return X86::JNS_1;
case X86::COND_P: return X86::JP_1;
case X86::COND_NP: return X86::JNP_1;
case X86::COND_O: return X86::JO_1;
case X86::COND_NO: return X86::JNO_1;
}
}
/// Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
case X86::COND_LE: return X86::COND_G;
case X86::COND_G: return X86::COND_LE;
case X86::COND_GE: return X86::COND_L;
case X86::COND_B: return X86::COND_AE;
case X86::COND_BE: return X86::COND_A;
case X86::COND_A: return X86::COND_BE;
case X86::COND_AE: return X86::COND_B;
case X86::COND_S: return X86::COND_NS;
case X86::COND_NS: return X86::COND_S;
case X86::COND_P: return X86::COND_NP;
case X86::COND_NP: return X86::COND_P;
case X86::COND_O: return X86::COND_NO;
case X86::COND_NO: return X86::COND_O;
}
}
/// Assuming the flags are set by MI(a,b), return the condition code if we
/// modify the instructions such that flags are set by MI(b,a).
static X86::CondCode getSwappedCondition(X86::CondCode CC) {
switch (CC) {
default: return X86::COND_INVALID;
case X86::COND_E: return X86::COND_E;
case X86::COND_NE: return X86::COND_NE;
case X86::COND_L: return X86::COND_G;
case X86::COND_LE: return X86::COND_GE;
case X86::COND_G: return X86::COND_L;
case X86::COND_GE: return X86::COND_LE;
case X86::COND_B: return X86::COND_A;
case X86::COND_BE: return X86::COND_AE;
case X86::COND_A: return X86::COND_B;
case X86::COND_AE: return X86::COND_BE;
}
}
/// Return a set opcode for the given condition and
/// whether it has memory operand.
unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
static const uint16_t Opc[16][2] = {
{ X86::SETAr, X86::SETAm },
{ X86::SETAEr, X86::SETAEm },
{ X86::SETBr, X86::SETBm },
{ X86::SETBEr, X86::SETBEm },
{ X86::SETEr, X86::SETEm },
{ X86::SETGr, X86::SETGm },
{ X86::SETGEr, X86::SETGEm },
{ X86::SETLr, X86::SETLm },
{ X86::SETLEr, X86::SETLEm },
{ X86::SETNEr, X86::SETNEm },
{ X86::SETNOr, X86::SETNOm },
{ X86::SETNPr, X86::SETNPm },
{ X86::SETNSr, X86::SETNSm },
{ X86::SETOr, X86::SETOm },
{ X86::SETPr, X86::SETPm },
{ X86::SETSr, X86::SETSm }
};
assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
return Opc[CC][HasMemoryOperand ? 1 : 0];
}
/// Return a cmov opcode for the given condition,
/// register size in bytes, and operand type.
unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
bool HasMemoryOperand) {
static const uint16_t Opc[32][3] = {
{ X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
{ X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
{ X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
{ X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
{ X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
{ X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
{ X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
{ X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
{ X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
{ X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
{ X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
{ X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
{ X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
{ X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
{ X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
{ X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
{ X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
{ X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
{ X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
{ X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
{ X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
{ X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
{ X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
{ X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
{ X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
{ X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
{ X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
{ X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
{ X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
{ X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
{ X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
{ X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
};
assert(CC < 16 && "Can only handle standard cond codes");
unsigned Idx = HasMemoryOperand ? 16+CC : CC;
switch(RegBytes) {
default: llvm_unreachable("Illegal register size!");
case 2: return Opc[Idx][0];
case 4: return Opc[Idx][1];
case 8: return Opc[Idx][2];
}
}
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
if (!MI->isTerminator()) return false;
// Conditional branch is a special case.
if (MI->isBranch() && !MI->isBarrier())
return true;
if (!MI->isPredicable())
return true;
return !isPredicated(MI);
}
bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
MachineBasicBlock::iterator UnCondBrIter = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator instruction, we're
// done.
if (!isUnpredicatedTerminator(I))
break;
// A terminator that isn't a branch can't easily be handled by this
// analysis.
if (!I->isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == X86::JMP_1) {
UnCondBrIter = I;
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (std::next(I) != MBB.end())
std::next(I)->eraseFromParent();
Cond.clear();
FBB = nullptr;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = nullptr;
I->eraseFromParent();
I = MBB.end();
UnCondBrIter = MBB.end();
continue;
}
// TBB is used to indicate the unconditional destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
if (AllowModify && UnCondBrIter != MBB.end() &&
MBB.isLayoutSuccessor(TargetBB)) {
// If we can modify the code and it ends in something like:
//
// jCC L1
// jmp L2
// L1:
// ...
// L2:
//
// Then we can change this to:
//
// jnCC L2
// L1:
// ...
// L2:
//
// Which is a bit more efficient.
// We conditionally jump to the fall-through block.
BranchCode = GetOppositeBranchCondition(BranchCode);
unsigned JNCC = GetCondBranchFromCond(BranchCode);
MachineBasicBlock::iterator OldInst = I;
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
.addMBB(UnCondBrIter->getOperand(0).getMBB());
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
.addMBB(TargetBB);
OldInst->eraseFromParent();
UnCondBrIter->eraseFromParent();
// Restart the analysis.
UnCondBrIter = MBB.end();
I = MBB.end();
continue;
}
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination and their condition
// opcodes fit one of the special multi-branch idioms.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to the same
// destination.
if (TBB != I->getOperand(0).getMBB())
return true;
// If the conditions are the same, we can leave them alone.
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
if (OldBranchCode == BranchCode)
continue;
// If they differ, see if they fit one of the known patterns. Theoretically,
// we could handle more patterns here, but we shouldn't expect to see them
// if instruction selection has done a reasonable job.
if ((OldBranchCode == X86::COND_NP &&
BranchCode == X86::COND_E) ||
(OldBranchCode == X86::COND_E &&
BranchCode == X86::COND_NP))
BranchCode = X86::COND_NP_OR_E;
else if ((OldBranchCode == X86::COND_P &&
BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_NE &&
BranchCode == X86::COND_P))
BranchCode = X86::COND_NE_OR_P;
else
return true;
// Update the MachineOperand.
Cond[0].setImm(BranchCode);
}
return false;
}
unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != X86::JMP_1 &&
getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned
X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"X86 branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
switch (CC) {
case X86::COND_NP_OR_E:
// Synthesize NP_OR_E with two branches.
BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
++Count;
BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
++Count;
break;
case X86::COND_NE_OR_P:
// Synthesize NE_OR_P with two branches.
BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
++Count;
BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
++Count;
break;
default: {
unsigned Opc = GetCondBranchFromCond(CC);
BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
++Count;
}
}
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
++Count;
}
return Count;
}
bool X86InstrInfo::
canInsertSelect(const MachineBasicBlock &MBB,
const SmallVectorImpl<MachineOperand> &Cond,
unsigned TrueReg, unsigned FalseReg,
int &CondCycles, int &TrueCycles, int &FalseCycles) const {
// Not all subtargets have cmov instructions.
if (!Subtarget.hasCMov())
return false;
if (Cond.size() != 1)
return false;
// We cannot do the composite conditions, at least not in SSA form.
if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
return false;
// Check register classes.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
if (!RC)
return false;
// We have cmov instructions for 16, 32, and 64 bit general purpose registers.
if (X86::GR16RegClass.hasSubClassEq(RC) ||
X86::GR32RegClass.hasSubClassEq(RC) ||
X86::GR64RegClass.hasSubClassEq(RC)) {
// This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
// Bridge. Probably Ivy Bridge as well.
CondCycles = 2;
TrueCycles = 2;
FalseCycles = 2;
return true;
}
// Can't do vectors.
return false;
}
void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DstReg,
const SmallVectorImpl<MachineOperand> &Cond,
unsigned TrueReg, unsigned FalseReg) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
assert(Cond.size() == 1 && "Invalid Cond array");
unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
MRI.getRegClass(DstReg)->getSize(),
false/*HasMemoryOperand*/);
BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
}
/// Test if the given register is a physical h register.
static bool isHReg(unsigned Reg) {
return X86::GR8_ABCD_HRegClass.contains(Reg);
}
// Try and copy between VR128/VR64 and GR64 registers.
static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
const X86Subtarget &Subtarget) {
// SrcReg(VR128) -> DestReg(GR64)
// SrcReg(VR64) -> DestReg(GR64)
// SrcReg(GR64) -> DestReg(VR128)
// SrcReg(GR64) -> DestReg(VR64)
bool HasAVX = Subtarget.hasAVX();
bool HasAVX512 = Subtarget.hasAVX512();
if (X86::GR64RegClass.contains(DestReg)) {
if (X86::VR128XRegClass.contains(SrcReg))
// Copy from a VR128 register to a GR64 register.
return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
X86::MOVPQIto64rr);
if (X86::VR64RegClass.contains(SrcReg))
// Copy from a VR64 register to a GR64 register.
return X86::MOVSDto64rr;
} else if (X86::GR64RegClass.contains(SrcReg)) {
// Copy from a GR64 register to a VR128 register.
if (X86::VR128XRegClass.contains(DestReg))
return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
X86::MOV64toPQIrr);
// Copy from a GR64 register to a VR64 register.
if (X86::VR64RegClass.contains(DestReg))
return X86::MOV64toSDrr;
}
// SrcReg(FR32) -> DestReg(GR32)
// SrcReg(GR32) -> DestReg(FR32)
if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
// Copy from a FR32 register to a GR32 register.
return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
// Copy from a GR32 register to a FR32 register.
return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
return 0;
}
inline static bool MaskRegClassContains(unsigned Reg) {
return X86::VK8RegClass.contains(Reg) ||
X86::VK16RegClass.contains(Reg) ||
X86::VK32RegClass.contains(Reg) ||
X86::VK64RegClass.contains(Reg) ||
X86::VK1RegClass.contains(Reg);
}
static
unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
X86::VR256XRegClass.contains(DestReg, SrcReg) ||
X86::VR512RegClass.contains(DestReg, SrcReg)) {
DestReg = get512BitSuperRegister(DestReg);
SrcReg = get512BitSuperRegister(SrcReg);
return X86::VMOVAPSZrr;
}
if (MaskRegClassContains(DestReg) &&
MaskRegClassContains(SrcReg))
return X86::KMOVWkk;
if (MaskRegClassContains(DestReg) &&
(X86::GR32RegClass.contains(SrcReg) ||
X86::GR16RegClass.contains(SrcReg) ||
X86::GR8RegClass.contains(SrcReg))) {
SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
return X86::KMOVWkr;
}
if ((X86::GR32RegClass.contains(DestReg) ||
X86::GR16RegClass.contains(DestReg) ||
X86::GR8RegClass.contains(DestReg)) &&
MaskRegClassContains(SrcReg)) {
DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
return X86::KMOVWrk;
}
return 0;
}
void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// First deal with the normal symmetric copies.
bool HasAVX = Subtarget.hasAVX();
bool HasAVX512 = Subtarget.hasAVX512();
unsigned Opc = 0;
if (X86::GR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV64rr;
else if (X86::GR32RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV32rr;
else if (X86::GR16RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV16rr;
else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Subtarget.is64Bit()) {
Opc = X86::MOV8rr_NOREX;
// Both operands must be encodable without an REX prefix.
assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
"8-bit H register can not be copied outside GR8_NOREX");
} else
Opc = X86::MOV8rr;
}
else if (X86::VR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MMX_MOVQ64rr;
else if (HasAVX512)
Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
else if (X86::VR256RegClass.contains(DestReg, SrcReg))
Opc = X86::VMOVAPSYrr;
if (!Opc)
Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
// Moving EFLAGS to / from another register requires a push and a pop.
// Notice that we have to adjust the stack if we don't want to clobber the
// first frame index. See X86FrameLowering.cpp - clobbersTheStack.
if (SrcReg == X86::EFLAGS) {
if (X86::GR64RegClass.contains(DestReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSHF64));
BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
return;
}
if (X86::GR32RegClass.contains(DestReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSHF32));
BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
return;
}
}
if (DestReg == X86::EFLAGS) {
if (X86::GR64RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSH64r))
.addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(X86::POPF64));
return;
}
if (X86::GR32RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSH32r))
.addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(X86::POPF32));
return;
}
}
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
<< " to " << RI.getName(DestReg) << '\n');
llvm_unreachable("Cannot emit physreg copy instruction");
}
static unsigned getLoadStoreRegOpcode(unsigned Reg,
const TargetRegisterClass *RC,
bool isStackAligned,
const X86Subtarget &STI,
bool load) {
if (STI.hasAVX512()) {
if (X86::VK8RegClass.hasSubClassEq(RC) ||
X86::VK16RegClass.hasSubClassEq(RC))
return load ? X86::KMOVWkm : X86::KMOVWmk;
if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
if (X86::VR512RegClass.hasSubClassEq(RC))
return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
}
bool HasAVX = STI.hasAVX();
switch (RC->getSize()) {
default:
llvm_unreachable("Unknown spill size");
case 1:
assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
if (STI.is64Bit())
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
return load ? X86::MOV8rm : X86::MOV8mr;
case 2:
assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
return load ? X86::MOV16rm : X86::MOV16mr;
case 4:
if (X86::GR32RegClass.hasSubClassEq(RC))
return load ? X86::MOV32rm : X86::MOV32mr;
if (X86::FR32RegClass.hasSubClassEq(RC))
return load ?
(HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
(HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
if (X86::RFP32RegClass.hasSubClassEq(RC))
return load ? X86::LD_Fp32m : X86::ST_Fp32m;
llvm_unreachable("Unknown 4-byte regclass");
case 8:
if (X86::GR64RegClass.hasSubClassEq(RC))
return load ? X86::MOV64rm : X86::MOV64mr;
if (X86::FR64RegClass.hasSubClassEq(RC))
return load ?
(HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
(HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
if (X86::VR64RegClass.hasSubClassEq(RC))
return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
if (X86::RFP64RegClass.hasSubClassEq(RC))
return load ? X86::LD_Fp64m : X86::ST_Fp64m;
llvm_unreachable("Unknown 8-byte regclass");
case 10:
assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
return load ? X86::LD_Fp80m : X86::ST_FpP80m;
case 16: {
assert((X86::VR128RegClass.hasSubClassEq(RC) ||
X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
// If stack is realigned we can use aligned stores.
if (isStackAligned)
return load ?
(HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
(HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
else
return load ?
(HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
(HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
}
case 32:
assert((X86::VR256RegClass.hasSubClassEq(RC) ||
X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
// If stack is realigned we can use aligned stores.
if (isStackAligned)
return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
else
return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
case 64:
assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
if (isStackAligned)
return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
else
return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
}
}
static unsigned getStoreRegOpcode(unsigned SrcReg,
const TargetRegisterClass *RC,
bool isStackAligned,
const X86Subtarget &STI) {
return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
}
static unsigned getLoadRegOpcode(unsigned DestReg,
const TargetRegisterClass *RC,
bool isStackAligned,
const X86Subtarget &STI) {
return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
}
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
"Stack slot too small for store");
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned =
(Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
RI.canRealignStack(MF);
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
}
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned = MMOBegin != MMOEnd &&
(*MMOBegin)->getAlignment() >= Alignment;
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.addOperand(Addr[i]);
MIB.addReg(SrcReg, getKillRegState(isKill));
(*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned =
(Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
RI.canRealignStack(MF);
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
}
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned = MMOBegin != MMOEnd &&
(*MMOBegin)->getAlignment() >= Alignment;
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.addOperand(Addr[i]);
(*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
bool X86InstrInfo::
analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
int &CmpMask, int &CmpValue) const {
switch (MI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri:
SrcReg = MI->getOperand(0).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = MI->getOperand(1).getImm();
return true;
// A SUB can be used to perform comparison.
case X86::SUB64rm:
case X86::SUB32rm:
case X86::SUB16rm:
case X86::SUB8rm:
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = 0;
return true;
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr:
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = MI->getOperand(2).getReg();
CmpMask = ~0;
CmpValue = 0;
return true;
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = MI->getOperand(2).getImm();
return true;
case X86::CMP64rr:
case X86::CMP32rr:
case X86::CMP16rr:
case X86::CMP8rr:
SrcReg = MI->getOperand(0).getReg();
SrcReg2 = MI->getOperand(1).getReg();
CmpMask = ~0;
CmpValue = 0;
return true;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
SrcReg = MI->getOperand(0).getReg();
if (MI->getOperand(1).getReg() != SrcReg) return false;
// Compare against zero.
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = 0;
return true;
}
return false;
}
/// Check whether the first instruction, whose only
/// purpose is to update flags, can be made redundant.
/// CMPrr can be made redundant by SUBrr if the operands are the same.
/// This function can be extended later on.
/// SrcReg, SrcRegs: register operands for FlagI.
/// ImmValue: immediate for FlagI if it takes an immediate.
inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
unsigned SrcReg2, int ImmValue,
MachineInstr *OI) {
if (((FlagI->getOpcode() == X86::CMP64rr &&
OI->getOpcode() == X86::SUB64rr) ||
(FlagI->getOpcode() == X86::CMP32rr &&
OI->getOpcode() == X86::SUB32rr)||
(FlagI->getOpcode() == X86::CMP16rr &&
OI->getOpcode() == X86::SUB16rr)||
(FlagI->getOpcode() == X86::CMP8rr &&
OI->getOpcode() == X86::SUB8rr)) &&
((OI->getOperand(1).getReg() == SrcReg &&
OI->getOperand(2).getReg() == SrcReg2) ||
(OI->getOperand(1).getReg() == SrcReg2 &&
OI->getOperand(2).getReg() == SrcReg)))
return true;
if (((FlagI->getOpcode() == X86::CMP64ri32 &&
OI->getOpcode() == X86::SUB64ri32) ||
(FlagI->getOpcode() == X86::CMP64ri8 &&
OI->getOpcode() == X86::SUB64ri8) ||
(FlagI->getOpcode() == X86::CMP32ri &&
OI->getOpcode() == X86::SUB32ri) ||
(FlagI->getOpcode() == X86::CMP32ri8 &&
OI->getOpcode() == X86::SUB32ri8) ||
(FlagI->getOpcode() == X86::CMP16ri &&
OI->getOpcode() == X86::SUB16ri) ||
(FlagI->getOpcode() == X86::CMP16ri8 &&
OI->getOpcode() == X86::SUB16ri8) ||
(FlagI->getOpcode() == X86::CMP8ri &&
OI->getOpcode() == X86::SUB8ri)) &&
OI->getOperand(1).getReg() == SrcReg &&
OI->getOperand(2).getImm() == ImmValue)
return true;
return false;
}
/// Check whether the definition can be converted
/// to remove a comparison against zero.
inline static bool isDefConvertible(MachineInstr *MI) {
switch (MI->getOpcode()) {
default: return false;
// The shift instructions only modify ZF if their shift count is non-zero.
// N.B.: The processor truncates the shift count depending on the encoding.
case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
return getTruncatedShiftCount(MI, 2) != 0;
// Some left shift instructions can be turned into LEA instructions but only
// if their flags aren't used. Avoid transforming such instructions.
case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (isTruncatedShiftCountForLEA(ShAmt)) return false;
return ShAmt != 0;
}
case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
return getTruncatedShiftCount(MI, 3) != 0;
case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
case X86::ADC32ri: case X86::ADC32ri8:
case X86::ADC32rr: case X86::ADC64ri32:
case X86::ADC64ri8: case X86::ADC64rr:
case X86::SBB32ri: case X86::SBB32ri8:
case X86::SBB32rr: case X86::SBB64ri32:
case X86::SBB64ri8: case X86::SBB64rr:
case X86::ANDN32rr: case X86::ANDN32rm:
case X86::ANDN64rr: case X86::ANDN64rm:
case X86::BEXTR32rr: case X86::BEXTR64rr:
case X86::BEXTR32rm: case X86::BEXTR64rm:
case X86::BLSI32rr: case X86::BLSI32rm:
case X86::BLSI64rr: case X86::BLSI64rm:
case X86::BLSMSK32rr:case X86::BLSMSK32rm:
case X86::BLSMSK64rr:case X86::BLSMSK64rm:
case X86::BLSR32rr: case X86::BLSR32rm:
case X86::BLSR64rr: case X86::BLSR64rm:
case X86::BZHI32rr: case X86::BZHI32rm:
case X86::BZHI64rr: case X86::BZHI64rm:
case X86::LZCNT16rr: case X86::LZCNT16rm:
case X86::LZCNT32rr: case X86::LZCNT32rm:
case X86::LZCNT64rr: case X86::LZCNT64rm:
case X86::POPCNT16rr:case X86::POPCNT16rm:
case X86::POPCNT32rr:case X86::POPCNT32rm:
case X86::POPCNT64rr:case X86::POPCNT64rm:
case X86::TZCNT16rr: case X86::TZCNT16rm:
case X86::TZCNT32rr: case X86::TZCNT32rm:
case X86::TZCNT64rr: case X86::TZCNT64rm:
return true;
}
}
/// Check whether the use can be converted to remove a comparison against zero.
static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
switch (MI->getOpcode()) {
default: return X86::COND_INVALID;
case X86::LZCNT16rr: case X86::LZCNT16rm:
case X86::LZCNT32rr: case X86::LZCNT32rm:
case X86::LZCNT64rr: case X86::LZCNT64rm:
return X86::COND_B;
case X86::POPCNT16rr:case X86::POPCNT16rm:
case X86::POPCNT32rr:case X86::POPCNT32rm:
case X86::POPCNT64rr:case X86::POPCNT64rm:
return X86::COND_E;
case X86::TZCNT16rr: case X86::TZCNT16rm:
case X86::TZCNT32rr: case X86::TZCNT32rm:
case X86::TZCNT64rr: case X86::TZCNT64rm:
return X86::COND_B;
}
}
/// Check if there exists an earlier instruction that
/// operates on the same source operands and sets flags in the same way as
/// Compare; remove Compare if possible.
bool X86InstrInfo::
optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
int CmpMask, int CmpValue,
const MachineRegisterInfo *MRI) const {
// Check whether we can replace SUB with CMP.
unsigned NewOpcode = 0;
switch (CmpInstr->getOpcode()) {
default: break;
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
case X86::SUB64rm:
case X86::SUB32rm:
case X86::SUB16rm:
case X86::SUB8rm:
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr: {
if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
return false;
// There is no use of the destination register, we can replace SUB with CMP.
switch (CmpInstr->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
}
CmpInstr->setDesc(get(NewOpcode));
CmpInstr->RemoveOperand(0);
// Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
return false;
}
}
// Get the unique definition of SrcReg.
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
if (!MI) return false;
// CmpInstr is the first instruction of the BB.
MachineBasicBlock::iterator I = CmpInstr, Def = MI;
// If we are comparing against zero, check whether we can use MI to update
// EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
return false;
// If we have a use of the source register between the def and our compare
// instruction we can eliminate the compare iff the use sets EFLAGS in the
// right way.
bool ShouldUpdateCC = false;
X86::CondCode NewCC = X86::COND_INVALID;
if (IsCmpZero && !isDefConvertible(MI)) {
// Scan forward from the use until we hit the use we're looking for or the
// compare instruction.
for (MachineBasicBlock::iterator J = MI;; ++J) {
// Do we have a convertible instruction?
NewCC = isUseDefConvertible(J);
if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
J->getOperand(1).getReg() == SrcReg) {
assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
ShouldUpdateCC = true; // Update CC later on.
// This is not a def of SrcReg, but still a def of EFLAGS. Keep going
// with the new def.
MI = Def = J;
break;
}
if (J == I)
return false;
}
}
// We are searching for an earlier instruction that can make CmpInstr
// redundant and that instruction will be saved in Sub.
MachineInstr *Sub = nullptr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
// We iterate backward, starting from the instruction before CmpInstr and
// stop when reaching the definition of a source register or done with the BB.
// RI points to the instruction before CmpInstr.
// If the definition is in this basic block, RE points to the definition;
// otherwise, RE is the rend of the basic block.
MachineBasicBlock::reverse_iterator
RI = MachineBasicBlock::reverse_iterator(I),
RE = CmpInstr->getParent() == MI->getParent() ?
MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
CmpInstr->getParent()->rend();
MachineInstr *Movr0Inst = nullptr;
for (; RI != RE; ++RI) {
MachineInstr *Instr = &*RI;
// Check whether CmpInstr can be made redundant by the current instruction.
if (!IsCmpZero &&
isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
Sub = Instr;
break;
}
if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
Instr->readsRegister(X86::EFLAGS, TRI)) {
// This instruction modifies or uses EFLAGS.
// MOV32r0 etc. are implemented with xor which clobbers condition code.
// They are safe to move up, if the definition to EFLAGS is dead and
// earlier instructions do not read or write EFLAGS.
if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
Movr0Inst = Instr;
continue;
}
// We can't remove CmpInstr.
return false;
}
}
// Return false if no candidates exist.
if (!IsCmpZero && !Sub)
return false;
bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
Sub->getOperand(2).getReg() == SrcReg);
// Scan forward from the instruction after CmpInstr for uses of EFLAGS.
// It is safe to remove CmpInstr if EFLAGS is redefined or killed.
// If we are done with the basic block, we need to check whether EFLAGS is
// live-out.
bool IsSafe = false;
SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
for (++I; I != E; ++I) {
const MachineInstr &Instr = *I;
bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
// We should check the usage if this instruction uses and updates EFLAGS.
if (!UseEFLAGS && ModifyEFLAGS) {
// It is safe to remove CmpInstr if EFLAGS is updated again.
IsSafe = true;
break;
}
if (!UseEFLAGS && !ModifyEFLAGS)
continue;
// EFLAGS is used by this instruction.
X86::CondCode OldCC = X86::COND_INVALID;
bool OpcIsSET = false;
if (IsCmpZero || IsSwapped) {
// We decode the condition code from opcode.
if (Instr.isBranch())
OldCC = getCondFromBranchOpc(Instr.getOpcode());
else {
OldCC = getCondFromSETOpc(Instr.getOpcode());
if (OldCC != X86::COND_INVALID)
OpcIsSET = true;
else
OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
}
if (OldCC == X86::COND_INVALID) return false;
}
if (IsCmpZero) {
switch (OldCC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO:
// CF and OF are used, we can't perform this optimization.
return false;
}
// If we're updating the condition code check if we have to reverse the
// condition.
if (ShouldUpdateCC)
switch (OldCC) {
default:
return false;
case X86::COND_E:
break;
case X86::COND_NE:
NewCC = GetOppositeBranchCondition(NewCC);
break;
}
} else if (IsSwapped) {
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
// to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
// We swap the condition code and synthesize the new opcode.
NewCC = getSwappedCondition(OldCC);
if (NewCC == X86::COND_INVALID) return false;
}
if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
// Synthesize the new opcode.
bool HasMemoryOperand = Instr.hasOneMemOperand();
unsigned NewOpc;
if (Instr.isBranch())
NewOpc = GetCondBranchFromCond(NewCC);
else if(OpcIsSET)
NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
else {
unsigned DstReg = Instr.getOperand(0).getReg();
NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
HasMemoryOperand);
}
// Push the MachineInstr to OpsToUpdate.
// If it is safe to remove CmpInstr, the condition code of these
// instructions will be modified.
OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
}
if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
// It is safe to remove CmpInstr if EFLAGS is updated again or killed.
IsSafe = true;
break;
}
}
// If EFLAGS is not killed nor re-defined, we should check whether it is
// live-out. If it is live-out, do not optimize.
if ((IsCmpZero || IsSwapped) && !IsSafe) {
MachineBasicBlock *MBB = CmpInstr->getParent();
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if ((*SI)->isLiveIn(X86::EFLAGS))
return false;
}
// The instruction to be updated is either Sub or MI.
Sub = IsCmpZero ? MI : Sub;
// Move Movr0Inst to the appropriate place before Sub.
if (Movr0Inst) {
// Look backwards until we find a def that doesn't use the current EFLAGS.
Def = Sub;
MachineBasicBlock::reverse_iterator
InsertI = MachineBasicBlock::reverse_iterator(++Def),
InsertE = Sub->getParent()->rend();
for (; InsertI != InsertE; ++InsertI) {
MachineInstr *Instr = &*InsertI;
if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
Instr->modifiesRegister(X86::EFLAGS, TRI)) {
Sub->getParent()->remove(Movr0Inst);
Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
Movr0Inst);
break;
}
}
if (InsertI == InsertE)
return false;
}
// Make sure Sub instruction defines EFLAGS and mark the def live.
unsigned i = 0, e = Sub->getNumOperands();
for (; i != e; ++i) {
MachineOperand &MO = Sub->getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
MO.setIsDead(false);
break;
}
}
assert(i != e && "Unable to locate a def EFLAGS operand");
CmpInstr->eraseFromParent();
// Modify the condition code of instructions in OpsToUpdate.
for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
return true;
}
/// Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if load defines a virtual
/// register, the virtual register is used once in the same BB, and the
/// instructions in-between do not load or store, and have no side effects.
MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
const MachineRegisterInfo *MRI,
unsigned &FoldAsLoadDefReg,
MachineInstr *&DefMI) const {
if (FoldAsLoadDefReg == 0)
return nullptr;
// To be conservative, if there exists another load, clear the load candidate.
if (MI->mayLoad()) {
FoldAsLoadDefReg = 0;
return nullptr;
}
// Check whether we can move DefMI here.
DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
assert(DefMI);
bool SawStore = false;
if (!DefMI->isSafeToMove(this, nullptr, SawStore))
return nullptr;
// Collect information about virtual register operands of MI.
unsigned SrcOperandId = 0;
bool FoundSrcOperand = false;
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg != FoldAsLoadDefReg)
continue;
// Do not fold if we have a subreg use or a def or multiple uses.
if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
return nullptr;
SrcOperandId = i;
FoundSrcOperand = true;
}
if (!FoundSrcOperand)
return nullptr;
// Check whether we can fold the def into SrcOperandId.
MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
if (FoldMI) {
FoldAsLoadDefReg = 0;
return FoldMI;
}
return nullptr;
}
/// Expand a single-def pseudo instruction to a two-addr
/// instruction with two undef reads of the register being defined.
/// This is used for mapping:
/// %xmm4 = V_SET0
/// to:
/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
///
static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc) {
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
unsigned Reg = MIB->getOperand(0).getReg();
MIB->setDesc(Desc);
// MachineInstr::addOperand() will insert explicit operands before any
// implicit operands.
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
// But we don't trust that.
assert(MIB->getOperand(1).getReg() == Reg &&
MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
return true;
}
// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
// code sequence is needed for other targets.
static void expandLoadStackGuard(MachineInstrBuilder &MIB,
const TargetInstrInfo &TII) {
MachineBasicBlock &MBB = *MIB->getParent();
DebugLoc DL = MIB->getDebugLoc();
unsigned Reg = MIB->getOperand(0).getReg();
const GlobalValue *GV =
cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
MachineMemOperand *MMO = MBB.getParent()->
getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
MachineBasicBlock::iterator I = MIB.getInstr();
BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
.addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
.addMemOperand(MMO);
MIB->setDebugLoc(DL);
MIB->setDesc(TII.get(X86::MOV64rm));
MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
}
bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
bool HasAVX = Subtarget.hasAVX();
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
switch (MI->getOpcode()) {
case X86::MOV32r0:
return Expand2AddrUndef(MIB, get(X86::XOR32rr));
case X86::SETB_C8r:
return Expand2AddrUndef(MIB, get(X86::SBB8rr));
case X86::SETB_C16r:
return Expand2AddrUndef(MIB, get(X86::SBB16rr));
case X86::SETB_C32r:
return Expand2AddrUndef(MIB, get(X86::SBB32rr));
case X86::SETB_C64r:
return Expand2AddrUndef(MIB, get(X86::SBB64rr));
case X86::V_SET0:
case X86::FsFLD0SS:
case X86::FsFLD0SD:
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
case X86::AVX_SET0:
assert(HasAVX && "AVX not supported");
return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
case X86::AVX512_512_SET0:
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
case X86::V_SETALLONES:
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
case X86::AVX2_SETALLONES:
return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
case X86::TEST8ri_NOREX:
MI->setDesc(get(X86::TEST8ri));
return true;
case X86::KSET0B:
case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
case X86::KSET1B:
case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
case TargetOpcode::LOAD_STACK_GUARD:
expandLoadStackGuard(MIB, *this);
return true;
}
return false;
}
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
ArrayRef<MachineOperand> MOs,
MachineInstr *MI,
const TargetInstrInfo &TII) {
// Create the base instruction with the memory operand as the first part.
// Omit the implicit operands, something BuildMI can't do.
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
MI->getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.addOperand(MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
addOffset(MIB, 0);
// Loop over the rest of the ri operands, converting them over.
unsigned NumOps = MI->getDesc().getNumOperands()-2;
for (unsigned i = 0; i != NumOps; ++i) {
MachineOperand &MO = MI->getOperand(i+2);
MIB.addOperand(MO);
}
for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
MIB.addOperand(MO);
}
return MIB;
}
static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
unsigned OpNo, ArrayRef<MachineOperand> MOs,
MachineInstr *MI, const TargetInstrInfo &TII) {
// Omit the implicit operands, something BuildMI can't do.
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
MI->getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (i == OpNo) {
assert(MO.isReg() && "Expected to fold into reg operand!");
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.addOperand(MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
addOffset(MIB, 0);
} else {
MIB.addOperand(MO);
}
}
return MIB;
}
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
ArrayRef<MachineOperand> MOs,
MachineInstr *MI) {
MachineFunction &MF = *MI->getParent()->getParent();
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.addOperand(MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
addOffset(MIB, 0);
return MIB.addImm(0);
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
unsigned OpNum,
ArrayRef<MachineOperand> MOs,
unsigned Size, unsigned Align,
bool AllowCommute) const {
const DenseMap<unsigned,
std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
bool isCallRegIndirect = Subtarget.callRegIndirect();
bool isTwoAddrFold = false;
// For CPUs that favor the register form of a call,
// do not fold loads into calls.
if (isCallRegIndirect &&
(MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
return nullptr;
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
// FIXME: AsmPrinter doesn't know how to handle
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
if (MI->getOpcode() == X86::ADD32ri &&
MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
return nullptr;
MachineInstr *NewMI = nullptr;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
MI->getOperand(0).isReg() &&
MI->getOperand(1).isReg() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
isTwoAddrFold = true;
} else if (OpNum == 0) {
if (MI->getOpcode() == X86::MOV32r0) {
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
if (NewMI)
return NewMI;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
} else if (OpNum == 3) {
OpcodeTablePtr = &RegOp2MemOpTable3;
} else if (OpNum == 4) {
OpcodeTablePtr = &RegOp2MemOpTable4;
}
// If table selected...
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
OpcodeTablePtr->find(MI->getOpcode());
if (I != OpcodeTablePtr->end()) {
unsigned Opcode = I->second.first;
unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
if (Align < MinAlign)
return nullptr;
bool NarrowToMOV32rm = false;
if (Size) {
unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
if (Size < RCSize) {
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
return nullptr;
// If this is a 64-bit load, but the spill slot is 32, then we can do
// a 32-bit load which is implicitly zero-extended. This likely is
// due to live interval analysis remat'ing a load from stack slot.
if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
return nullptr;
Opcode = X86::MOV32rm;
NarrowToMOV32rm = true;
}
}
if (isTwoAddrFold)
NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
else
NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
if (NarrowToMOV32rm) {
// If this is the special case where we use a MOV32rm to load a 32-bit
// value and zero-extend the top bits. Change the destination register
// to a 32-bit one.
unsigned DstReg = NewMI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
else
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
}
return NewMI;
}
}
// If the instruction and target operand are commutable, commute the
// instruction and try again.
if (AllowCommute) {
unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
bool HasDef = MI->getDesc().getNumDefs();
unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
bool Tied0 =
0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
bool Tied1 =
0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
// If either of the commutable operands are tied to the destination
// then we can not commute + fold.
if ((HasDef && Reg0 == Reg1 && Tied0) ||
(HasDef && Reg0 == Reg2 && Tied1))
return nullptr;
if ((CommuteOpIdx1 == OriginalOpIdx) ||
(CommuteOpIdx2 == OriginalOpIdx)) {
MachineInstr *CommutedMI = commuteInstruction(MI, false);
if (!CommutedMI) {
// Unable to commute.
return nullptr;
}
if (CommutedMI != MI) {
// New instruction. We can't fold from this.
CommutedMI->eraseFromParent();
return nullptr;
}
// Attempt to fold with the commuted version of the instruction.
unsigned CommuteOp =
(CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
/*AllowCommute=*/false);
if (NewMI)
return NewMI;
// Folding failed again - undo the commute before returning.
MachineInstr *UncommutedMI = commuteInstruction(MI, false);
if (!UncommutedMI) {
// Unable to commute.
return nullptr;
}
if (UncommutedMI != MI) {
// New instruction. It doesn't need to be kept.
UncommutedMI->eraseFromParent();
return nullptr;
}
// Return here to prevent duplicate fuse failure report.
return nullptr;
}
}
}
// No fusion
if (PrintFailedFusing && !MI->isCopy())
dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
return nullptr;
}
/// Return true for all instructions that only update
/// the first 32 or 64-bits of the destination register and leave the rest
/// unmodified. This can be used to avoid folding loads if the instructions
/// only update part of the destination register, and the non-updated part is
/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
/// instructions breaks the partial register dependency and it can improve
/// performance. e.g.:
///
/// movss (%rdi), %xmm0
/// cvtss2sd %xmm0, %xmm0
///
/// Instead of
/// cvtss2sd (%rdi), %xmm0
///
/// FIXME: This should be turned into a TSFlags.
///
static bool hasPartialRegUpdate(unsigned Opcode) {
switch (Opcode) {
case X86::CVTSI2SSrr:
case X86::CVTSI2SSrm:
case X86::CVTSI2SS64rr:
case X86::CVTSI2SS64rm:
case X86::CVTSI2SDrr:
case X86::CVTSI2SDrm:
case X86::CVTSI2SD64rr:
case X86::CVTSI2SD64rm:
case X86::CVTSD2SSrr:
case X86::CVTSD2SSrm:
case X86::Int_CVTSD2SSrr:
case X86::Int_CVTSD2SSrm:
case X86::CVTSS2SDrr:
case X86::CVTSS2SDrm:
case X86::Int_CVTSS2SDrr:
case X86::Int_CVTSS2SDrm:
case X86::RCPSSr:
case X86::RCPSSm:
case X86::RCPSSr_Int:
case X86::RCPSSm_Int:
case X86::ROUNDSDr:
case X86::ROUNDSDm:
case X86::ROUNDSDr_Int:
case X86::ROUNDSSr:
case X86::ROUNDSSm:
case X86::ROUNDSSr_Int:
case X86::RSQRTSSr:
case X86::RSQRTSSm:
case X86::RSQRTSSr_Int:
case X86::RSQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSm:
case X86::SQRTSSr_Int:
case X86::SQRTSSm_Int:
case X86::SQRTSDr:
case X86::SQRTSDm:
case X86::SQRTSDr_Int:
case X86::SQRTSDm_Int:
return true;
}
return false;
}
/// Inform the ExeDepsFix pass how many idle
/// instructions we would like before a partial register update.
unsigned X86InstrInfo::
getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
return 0;
// If MI is marked as reading Reg, the partial register update is wanted.
const MachineOperand &MO = MI->getOperand(0);
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (MO.readsReg() || MI->readsVirtualRegister(Reg))
return 0;
} else {
if (MI->readsRegister(Reg, TRI))
return 0;
}
// If any of the preceding 16 instructions are reading Reg, insert a
// dependency breaking instruction. The magic number is based on a few
// Nehalem experiments.
return 16;
}
// Return true for any instruction the copies the high bits of the first source
// operand into the unused high bits of the destination operand.
static bool hasUndefRegUpdate(unsigned Opcode) {
switch (Opcode) {
case X86::VCVTSI2SSrr:
case X86::VCVTSI2SSrm:
case X86::Int_VCVTSI2SSrr:
case X86::Int_VCVTSI2SSrm:
case X86::VCVTSI2SS64rr:
case X86::VCVTSI2SS64rm:
case X86::Int_VCVTSI2SS64rr:
case X86::Int_VCVTSI2SS64rm:
case X86::VCVTSI2SDrr:
case X86::VCVTSI2SDrm:
case X86::Int_VCVTSI2SDrr:
case X86::Int_VCVTSI2SDrm:
case X86::VCVTSI2SD64rr:
case X86::VCVTSI2SD64rm:
case X86::Int_VCVTSI2SD64rr:
case X86::Int_VCVTSI2SD64rm:
case X86::VCVTSD2SSrr:
case X86::VCVTSD2SSrm:
case X86::Int_VCVTSD2SSrr:
case X86::Int_VCVTSD2SSrm:
case X86::VCVTSS2SDrr:
case X86::VCVTSS2SDrm:
case X86::Int_VCVTSS2SDrr:
case X86::Int_VCVTSS2SDrm:
case X86::VRCPSSr:
case X86::VRCPSSm:
case X86::VRCPSSm_Int:
case X86::VROUNDSDr:
case X86::VROUNDSDm:
case X86::VROUNDSDr_Int:
case X86::VROUNDSSr:
case X86::VROUNDSSm:
case X86::VROUNDSSr_Int:
case X86::VRSQRTSSr:
case X86::VRSQRTSSm:
case X86::VRSQRTSSm_Int:
case X86::VSQRTSSr:
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSDr:
case X86::VSQRTSDm:
case X86::VSQRTSDm_Int:
// AVX-512
case X86::VCVTSD2SSZrr:
case X86::VCVTSD2SSZrm:
case X86::VCVTSS2SDZrr:
case X86::VCVTSS2SDZrm:
return true;
}
return false;
}
/// Inform the ExeDepsFix pass how many idle instructions we would like before
/// certain undef register reads.
///
/// This catches the VCVTSI2SD family of instructions:
///
/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
///
/// We should to be careful *not* to catch VXOR idioms which are presumably
/// handled specially in the pipeline:
///
/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
///
/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
/// high bits that are passed-through are not live.
unsigned X86InstrInfo::
getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
const TargetRegisterInfo *TRI) const {
if (!hasUndefRegUpdate(MI->getOpcode()))
return 0;
// Set the OpNum parameter to the first source operand.
OpNum = 1;
const MachineOperand &MO = MI->getOperand(OpNum);
if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
// Use the same magic number as getPartialRegUpdateClearance.
return 16;
}
return 0;
}
void X86InstrInfo::
breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
unsigned Reg = MI->getOperand(OpNum).getReg();
// If MI kills this register, the false dependence is already broken.
if (MI->killsRegister(Reg, TRI))
return;
if (X86::VR128RegClass.contains(Reg)) {
// These instructions are all floating point domain, so xorps is the best
// choice.
bool HasAVX = Subtarget.hasAVX();
unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
} else if (X86::VR256RegClass.contains(Reg)) {
// Use vxorps to clear the full ymm register.
// It wants to read and write the xmm sub-register.
unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
.addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
.addReg(Reg, RegState::ImplicitDefine);
} else
return;
MI->addRegisterKilled(Reg, TRI, true);
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
ArrayRef<unsigned> Ops,
int FrameIndex) const {
// Check switch flag
if (NoFusing) return nullptr;
// Unless optimizing for size, don't fold to avoid partial
// register update stalls
if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
hasPartialRegUpdate(MI->getOpcode()))
return nullptr;
const MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Size = MFI->getObjectSize(FrameIndex);
unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
// If the function stack isn't realigned we don't want to fold instructions
// that need increased alignment.
if (!RI.needsStackRealignment(MF))
Alignment =
std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
unsigned RCSize = 0;
switch (MI->getOpcode()) {
default: return nullptr;
case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
}
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Size < RCSize)
return nullptr;
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops[0],
MachineOperand::CreateFI(FrameIndex), Size,
Alignment, /*AllowCommute=*/true);
}
static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
const MachineFunction &MF) {
unsigned Opc = LoadMI.getOpcode();
unsigned RegSize =
MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
// These instructions only load 32 bits, we can't fold them if the
// destination register is wider than 32 bits (4 bytes).
return true;
if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
// These instructions only load 64 bits, we can't fold them if the
// destination register is wider than 64 bits (8 bytes).
return true;
return false;
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
ArrayRef<unsigned> Ops,
MachineInstr *LoadMI) const {
// If loading from a FrameIndex, fold directly from the FrameIndex.
unsigned NumOps = LoadMI->getDesc().getNumOperands();
int FrameIndex;
if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
if (isPartialRegisterLoad(*LoadMI, MF))
return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
}
// Check switch flag
if (NoFusing) return nullptr;
// Unless optimizing for size, don't fold to avoid partial
// register update stalls
if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
hasPartialRegUpdate(MI->getOpcode()))
return nullptr;
// Determine the alignment of the load.
unsigned Alignment = 0;
if (LoadMI->hasOneMemOperand())
Alignment = (*LoadMI->memoperands_begin())->getAlignment();
else
switch (LoadMI->getOpcode()) {
case X86::AVX2_SETALLONES:
case X86::AVX_SET0:
Alignment = 32;
break;
case X86::V_SET0:
case X86::V_SETALLONES:
Alignment = 16;
break;
case X86::FsFLD0SD:
Alignment = 8;
break;
case X86::FsFLD0SS:
Alignment = 4;
break;
default:
return nullptr;
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
default: return nullptr;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
}
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return nullptr;
// Make sure the subregisters match.
// Otherwise we risk changing the size of the load.
if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
return nullptr;
SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
switch (LoadMI->getOpcode()) {
case X86::V_SET0:
case X86::V_SETALLONES:
case X86::AVX2_SETALLONES:
case X86::AVX_SET0:
case X86::FsFLD0SD:
case X86::FsFLD0SS: {
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
// Medium and large mode can't fold loads this way.
if (MF.getTarget().getCodeModel() != CodeModel::Small &&
MF.getTarget().getCodeModel() != CodeModel::Kernel)
return nullptr;
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
if (Subtarget.is64Bit())
PICBase = X86::RIP;
else
// FIXME: PICBase = getGlobalBaseReg(&MF);
// This doesn't work for several reasons.
// 1. GlobalBaseReg may have been spilled.
// 2. It may not be live at MI.
return nullptr;
}
// Create a constant-pool entry.
MachineConstantPool &MCP = *MF.getConstantPool();
Type *Ty;
unsigned Opc = LoadMI->getOpcode();
if (Opc == X86::FsFLD0SS)
Ty = Type::getFloatTy(MF.getFunction()->getContext());
else if (Opc == X86::FsFLD0SD)
Ty = Type::getDoubleTy(MF.getFunction()->getContext());
else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
else
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
Constant::getNullValue(Ty);
unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
// Create operands to load from the constant pool entry.
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
MOs.push_back(MachineOperand::CreateImm(1));
MOs.push_back(MachineOperand::CreateReg(0, false));
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
MOs.push_back(MachineOperand::CreateReg(0, false));
break;
}
default: {
if (isPartialRegisterLoad(*LoadMI, MF))
return nullptr;
// Folding a normal load. Just copy the load's address operands.
MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
LoadMI->operands_begin() + NumOps);
break;
}
}
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
/*Size=*/0, Alignment, /*AllowCommute=*/true);
}
bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
ArrayRef<unsigned> Ops) const {
// Check switch flag
if (NoFusing) return 0;
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
switch (MI->getOpcode()) {
default: return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
return true;
case X86::ADD32ri:
// FIXME: AsmPrinter doesn't know how to handle
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
return false;
break;
}
}
if (Ops.size() != 1)
return false;
unsigned OpNum = Ops[0];
unsigned Opc = MI->getOpcode();
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
const DenseMap<unsigned,
std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
} else if (OpNum == 0) {
if (Opc == X86::MOV32r0)
return true;
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
} else if (OpNum == 3) {
OpcodeTablePtr = &RegOp2MemOpTable3;
}
if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
return true;
return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
}
bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
MemOp2RegOpTable.find(MI->getOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & TB_INDEX_MASK;
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const MCInstrDesc &MCID = get(Opc);
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
if (!MI->hasOneMemOperand() &&
RC == &X86::VR128RegClass &&
!Subtarget.isUnalignedMemAccessFast())
// Without memoperands, loadRegFromAddr and storeRegToStackSlot will
// conservatively assume the address is unaligned. That's bad for
// performance.
return false;
SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (i >= Index && i < Index + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (Op.isReg() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load instruction.
if (UnfoldLoad) {
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractLoadMemRefs(MI->memoperands_begin(),
MI->memoperands_end());
loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isReg())
MO.setIsKill(false);
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
MachineInstrBuilder MIB(MF, DataMI);
if (FoldedStore)
MIB.addReg(Reg, RegState::Define);
for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
MIB.addOperand(BeforeOps[i]);
if (FoldedLoad)
MIB.addReg(Reg);
for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
MIB.addOperand(AfterOps[i]);
for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
MachineOperand &MO = ImpOps[i];
MIB.addReg(MO.getReg(),
getDefRegState(MO.isDef()) |
RegState::Implicit |
getKillRegState(MO.isKill()) |
getDeadRegState(MO.isDead()) |
getUndefRegState(MO.isUndef()));
}
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri: {
MachineOperand &MO0 = DataMI->getOperand(0);
MachineOperand &MO1 = DataMI->getOperand(1);
if (MO1.getImm() == 0) {
unsigned NewOpc;
switch (DataMI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::CMP64ri8:
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
case X86::CMP32ri8:
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
case X86::CMP16ri8:
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
}
DataMI->setDesc(get(NewOpc));
MO1.ChangeToRegister(MO0.getReg(), false);
}
}
}
NewMIs.push_back(DataMI);
// Emit the store instruction.
if (UnfoldStore) {
const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractStoreMemRefs(MI->memoperands_begin(),
MI->memoperands_end());
storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
}
return true;
}
bool
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isMachineOpcode())
return false;
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
MemOp2RegOpTable.find(N->getMachineOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & TB_INDEX_MASK;
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
const MCInstrDesc &MCID = get(Opc);
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
unsigned NumDefs = MCID.NumDefs;
std::vector<SDValue> AddrOps;
std::vector<SDValue> BeforeOps;
std::vector<SDValue> AfterOps;
SDLoc dl(N);
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDValue Op = N->getOperand(i);
if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (i < Index-NumDefs)
BeforeOps.push_back(Op);
else if (i > Index-NumDefs)
AfterOps.push_back(Op);
}
SDValue Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = nullptr;
if (FoldedLoad) {
EVT VT = *RC->vt_begin();
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
cast<MachineSDNode>(N)->memoperands_end());
if (!(*MMOs.first) &&
RC == &X86::VR128RegClass &&
!Subtarget.isUnalignedMemAccessFast())
// Do not introduce a slow unaligned load.
return false;
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
bool isAligned = (*MMOs.first) &&
(*MMOs.first)->getAlignment() >= Alignment;
Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
VT, MVT::Other, AddrOps);
NewNodes.push_back(Load);
// Preserve memory reference information.
cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
}
// Emit the data processing instruction.
std::vector<EVT> VTs;
const TargetRegisterClass *DstRC = nullptr;
if (MCID.getNumDefs() > 0) {
DstRC = getRegClass(MCID, 0, &RI, MF);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDValue(Load, 0));
BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDValue(NewNode, 0));
AddrOps.push_back(Chain);
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
cast<MachineSDNode>(N)->memoperands_end());
if (!(*MMOs.first) &&
RC == &X86::VR128RegClass &&
!Subtarget.isUnalignedMemAccessFast())
// Do not introduce a slow unaligned store.
return false;
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
bool isAligned = (*MMOs.first) &&
(*MMOs.first)->getAlignment() >= Alignment;
SDNode *Store =
DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
dl, MVT::Other, AddrOps);
NewNodes.push_back(Store);
// Preserve memory reference information.
cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
}
return true;
}
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex) const {
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
MemOp2RegOpTable.find(Opc);
if (I == MemOp2RegOpTable.end())
return 0;
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
if (LoadRegIndex)
*LoadRegIndex = I->second.second & TB_INDEX_MASK;
return I->second.first;
}
bool
X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
switch (Opc1) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::FsMOVAPSrm:
case X86::FsMOVAPDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
// AVX load instructions
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::FsVMOVAPSrm:
case X86::FsVMOVAPDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
break;
}
switch (Opc2) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::FsMOVAPSrm:
case X86::FsMOVAPDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
// AVX load instructions
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::FsVMOVAPSrm:
case X86::FsVMOVAPDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
break;
}
// Check if chain operands and base addresses match.
if (Load1->getOperand(0) != Load2->getOperand(0) ||
Load1->getOperand(5) != Load2->getOperand(5))
return false;
// Segment operands should match as well.
if (Load1->getOperand(4) != Load2->getOperand(4))
return false;
// Scale should be 1, Index should be Reg0.
if (Load1->getOperand(1) == Load2->getOperand(1) &&
Load1->getOperand(2) == Load2->getOperand(2)) {
if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
return false;
// Now let's examine the displacements.
if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
isa<ConstantSDNode>(Load2->getOperand(3))) {
Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
return true;
}
}
return false;
}
bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
assert(Offset2 > Offset1);
if ((Offset2 - Offset1) / 8 > 64)
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
if (Opc1 != Opc2)
return false; // FIXME: overly conservative?
switch (Opc1) {
default: break;
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
return false;
}
EVT VT = Load1->getValueType(0);
switch (VT.getSimpleVT().SimpleTy) {
default:
// XMM registers. In 64-bit mode we can be a bit more aggressive since we
// have 16 of them to play with.
if (Subtarget.is64Bit()) {
if (NumLoads >= 3)
return false;
} else if (NumLoads) {
return false;
}
break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
if (NumLoads)
return false;
break;
}
return true;
}
bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
MachineInstr *Second) const {
// Check if this processor supports macro-fusion. Since this is a minor
// heuristic, we haven't specifically reserved a feature. hasAVX is a decent
// proxy for SandyBridge+.
if (!Subtarget.hasAVX())
return false;
enum {
FuseTest,
FuseCmp,
FuseInc
} FuseKind;
switch(Second->getOpcode()) {
default:
return false;
case X86::JE_1:
case X86::JNE_1:
case X86::JL_1:
case X86::JLE_1:
case X86::JG_1:
case X86::JGE_1:
FuseKind = FuseInc;
break;
case X86::JB_1:
case X86::JBE_1:
case X86::JA_1:
case X86::JAE_1:
FuseKind = FuseCmp;
break;
case X86::JS_1:
case X86::JNS_1:
case X86::JP_1:
case X86::JNP_1:
case X86::JO_1:
case X86::JNO_1:
FuseKind = FuseTest;
break;
}
switch (First->getOpcode()) {
default:
return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
case X86::TEST8ri:
case X86::TEST16ri:
case X86::TEST32ri:
case X86::TEST32i32:
case X86::TEST64i32:
case X86::TEST64ri32:
case X86::TEST8rm:
case X86::TEST16rm:
case X86::TEST32rm:
case X86::TEST64rm:
case X86::TEST8ri_NOREX:
case X86::AND16i16:
case X86::AND16ri:
case X86::AND16ri8:
case X86::AND16rm:
case X86::AND16rr:
case X86::AND32i32:
case X86::AND32ri:
case X86::AND32ri8:
case X86::AND32rm:
case X86::AND32rr:
case X86::AND64i32:
case X86::AND64ri32:
case X86::AND64ri8:
case X86::AND64rm:
case X86::AND64rr:
case X86::AND8i8:
case X86::AND8ri:
case X86::AND8rm:
case X86::AND8rr:
return true;
case X86::CMP16i16:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP16rm:
case X86::CMP16rr:
case X86::CMP32i32:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP32rm:
case X86::CMP32rr:
case X86::CMP64i32:
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP64rm:
case X86::CMP64rr:
case X86::CMP8i8:
case X86::CMP8ri:
case X86::CMP8rm:
case X86::CMP8rr:
case X86::ADD16i16:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri8_DB:
case X86::ADD16ri_DB:
case X86::ADD16rm:
case X86::ADD16rr:
case X86::ADD16rr_DB:
case X86::ADD32i32:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri8_DB:
case X86::ADD32ri_DB:
case X86::ADD32rm:
case X86::ADD32rr:
case X86::ADD32rr_DB:
case X86::ADD64i32:
case X86::ADD64ri32:
case X86::ADD64ri32_DB:
case X86::ADD64ri8:
case X86::ADD64ri8_DB:
case X86::ADD64rm:
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD8i8:
case X86::ADD8mi:
case X86::ADD8mr:
case X86::ADD8ri:
case X86::ADD8rm:
case X86::ADD8rr:
case X86::SUB16i16:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB16rm:
case X86::SUB16rr:
case X86::SUB32i32:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB32rm:
case X86::SUB32rr:
case X86::SUB64i32:
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB64rm:
case X86::SUB64rr:
case X86::SUB8i8:
case X86::SUB8ri:
case X86::SUB8rm:
case X86::SUB8rr:
return FuseKind == FuseCmp || FuseKind == FuseInc;
case X86::INC16r:
case X86::INC32r:
case X86::INC64r:
case X86::INC8r:
case X86::DEC16r:
case X86::DEC32r:
case X86::DEC64r:
case X86::DEC8r:
return FuseKind == FuseInc;
}
}
bool X86InstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
return true;
Cond[0].setImm(GetOppositeBranchCondition(CC));
return false;
}
bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// FIXME: Return false for x87 stack register classes for now. We can't
// allow any loads of these registers before FpGet_ST0_80.
return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
}
/// Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
///
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert(!Subtarget.is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Create the register. The code to initialize it is inserted
// later, by the CGBR pass (below).
MachineRegisterInfo &RegInfo = MF->getRegInfo();
GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}
// These are the replaceable SSE instructions. Some of these have Int variants
// that we don't include here. We don't want to replace instructions selected
// by intrinsics.
static const uint16_t ReplaceableInstrs[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
{ X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
{ X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
{ X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
{ X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
{ X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
{ X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
{ X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
{ X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
{ X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
{ X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
{ X86::ORPSrm, X86::ORPDrm, X86::PORrm },
{ X86::ORPSrr, X86::ORPDrr, X86::PORrr },
{ X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
{ X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
// AVX 128-bit support
{ X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
{ X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
{ X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
{ X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
{ X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
// TODO: Add the AVX versions of MOVLPSmr
{ X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
{ X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
{ X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
// AVX 256-bit support
{ X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
{ X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
{ X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
{ X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
{ X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
{ X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
};
static const uint16_t ReplaceableInstrsAVX2[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
{ X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
{ X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
{ X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
{ X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
{ X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
{ X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
{ X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
{ X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
{ X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
{ X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
};
// FIXME: Some shuffle and unpack instructions have equivalents in different
// domains, but they require a bit more work than just switching opcodes.
static const uint16_t *lookup(unsigned opcode, unsigned domain) {
for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
if (ReplaceableInstrs[i][domain-1] == opcode)
return ReplaceableInstrs[i];
return nullptr;
}
static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
return ReplaceableInstrsAVX2[i];
return nullptr;
}
std::pair<uint16_t, uint16_t>
X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
bool hasAVX2 = Subtarget.hasAVX2();
uint16_t validDomains = 0;
if (domain && lookup(MI->getOpcode(), domain))
validDomains = 0xe;
else if (domain && lookupAVX2(MI->getOpcode(), domain))
validDomains = hasAVX2 ? 0xe : 0x6;
return std::make_pair(domain, validDomains);
}
void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
assert(Domain>0 && Domain<4 && "Invalid execution domain");
uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
assert(dom && "Not an SSE instruction");
const uint16_t *table = lookup(MI->getOpcode(), dom);
if (!table) { // try the other table
assert((Subtarget.hasAVX2() || Domain < 3) &&
"256-bit vector operations only available in AVX2");
table = lookupAVX2(MI->getOpcode(), dom);
}
assert(table && "Cannot change domain");
MI->setDesc(get(table[Domain-1]));
}
/// Return the noop instruction to use for a noop.
void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(X86::NOOP);
}
// This code must remain in sync with getJumpInstrTableEntryBound in this class!
// In particular, getJumpInstrTableEntryBound must always return an upper bound
// on the encoding lengths of the instructions generated by
// getUnconditionalBranch and getTrap.
void X86InstrInfo::getUnconditionalBranch(
MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
Branch.setOpcode(X86::JMP_1);
Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
}
// This code must remain in sync with getJumpInstrTableEntryBound in this class!
// In particular, getJumpInstrTableEntryBound must always return an upper bound
// on the encoding lengths of the instructions generated by
// getUnconditionalBranch and getTrap.
void X86InstrInfo::getTrap(MCInst &MI) const {
MI.setOpcode(X86::TRAP);
}
// See getTrap and getUnconditionalBranch for conditions on the value returned
// by this function.
unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
// 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
// bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
return 5;
}
bool X86InstrInfo::isHighLatencyDef(int opc) const {
switch (opc) {
default: return false;
case X86::DIVSDrm:
case X86::DIVSDrm_Int:
case X86::DIVSDrr:
case X86::DIVSDrr_Int:
case X86::DIVSSrm:
case X86::DIVSSrm_Int:
case X86::DIVSSrr:
case X86::DIVSSrr_Int:
case X86::SQRTPDm:
case X86::SQRTPDr:
case X86::SQRTPSm:
case X86::SQRTPSr:
case X86::SQRTSDm:
case X86::SQRTSDm_Int:
case X86::SQRTSDr:
case X86::SQRTSDr_Int:
case X86::SQRTSSm:
case X86::SQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSr_Int:
// AVX instructions with high latency
case X86::VDIVSDrm:
case X86::VDIVSDrm_Int:
case X86::VDIVSDrr:
case X86::VDIVSDrr_Int:
case X86::VDIVSSrm:
case X86::VDIVSSrm_Int:
case X86::VDIVSSrr:
case X86::VDIVSSrr_Int:
case X86::VSQRTPDm:
case X86::VSQRTPDr:
case X86::VSQRTPSm:
case X86::VSQRTPSr:
case X86::VSQRTSDm:
case X86::VSQRTSDm_Int:
case X86::VSQRTSDr:
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSSr:
case X86::VSQRTPDZm:
case X86::VSQRTPDZr:
case X86::VSQRTPSZm:
case X86::VSQRTPSZr:
case X86::VSQRTSDZm:
case X86::VSQRTSDZm_Int:
case X86::VSQRTSDZr:
case X86::VSQRTSSZm_Int:
case X86::VSQRTSSZr:
case X86::VSQRTSSZm:
case X86::VDIVSDZrm:
case X86::VDIVSDZrr:
case X86::VDIVSSZrm:
case X86::VDIVSSZrr:
case X86::VGATHERQPSZrm:
case X86::VGATHERQPDZrm:
case X86::VGATHERDPDZrm:
case X86::VGATHERDPSZrm:
case X86::VPGATHERQDZrm:
case X86::VPGATHERQQZrm:
case X86::VPGATHERDDZrm:
case X86::VPGATHERDQZrm:
case X86::VSCATTERQPDZmr:
case X86::VSCATTERQPSZmr:
case X86::VSCATTERDPDZmr:
case X86::VSCATTERDPSZmr:
case X86::VPSCATTERQDZmr:
case X86::VPSCATTERQQZmr:
case X86::VPSCATTERDDZmr:
case X86::VPSCATTERDQZmr:
return true;
}
}
bool X86InstrInfo::
hasHighOperandLatency(const InstrItineraryData *ItinData,
const MachineRegisterInfo *MRI,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
return isHighLatencyDef(DefMI->getOpcode());
}
namespace {
/// Create Global Base Reg pass. This initializes the PIC
/// global base register for x86-32.
struct CGBR : public MachineFunctionPass {
static char ID;
CGBR() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF.getTarget());
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
// Don't do anything if this is 64-bit as 64-bit PIC
// uses RIP relative addressing.
if (STI.is64Bit())
return false;
// Only emit a global base reg in PIC mode.
if (TM->getRelocationModel() != Reloc::PIC_)
return false;
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
// If we didn't need a GlobalBaseReg, don't insert code.
if (GlobalBaseReg == 0)
return false;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF.front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
const X86InstrInfo *TII = STI.getInstrInfo();
unsigned PC;
if (STI.isPICStyleGOT())
PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
else
PC = GlobalBaseReg;
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (STI.isPICStyleGOT()) {
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
}
return true;
}
const char *getPassName() const override {
return "X86 PIC Global Base Reg Initialization";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char CGBR::ID = 0;
FunctionPass*
llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
namespace {
struct LDTLSCleanup : public MachineFunctionPass {
static char ID;
LDTLSCleanup() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
// No point folding accesses if there isn't at least two.
return false;
}
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
return VisitNode(DT->getRootNode(), 0);
}
// Visit the dominator subtree rooted at Node in pre-order.
// If TLSBaseAddrReg is non-null, then use that to replace any
// TLS_base_addr instructions. Otherwise, create the register
// when the first such instruction is seen, and then use it
// as we encounter more instructions.
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
MachineBasicBlock *BB = Node->getBlock();
bool Changed = false;
// Traverse the current block.
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
switch (I->getOpcode()) {
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
if (TLSBaseAddrReg)
I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
else
I = SetRegister(I, &TLSBaseAddrReg);
Changed = true;
break;
default:
break;
}
}
// Visit the children of this block in the dominator tree.
for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
I != E; ++I) {
Changed |= VisitNode(*I, TLSBaseAddrReg);
}
return Changed;
}
// Replace the TLS_base_addr instruction I with a copy from
// TLSBaseAddrReg, returning the new instruction.
MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
unsigned TLSBaseAddrReg) {
MachineFunction *MF = I->getParent()->getParent();
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
const bool is64Bit = STI.is64Bit();
const X86InstrInfo *TII = STI.getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to RAX/EAX.
MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
TII->get(TargetOpcode::COPY),
is64Bit ? X86::RAX : X86::EAX)
.addReg(TLSBaseAddrReg);
// Erase the TLS_base_addr instruction.
I->eraseFromParent();
return Copy;
}
// Create a virtal register in *TLSBaseAddrReg, and populate it by
// inserting a copy instruction after I. Returns the new instruction.
MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
MachineFunction *MF = I->getParent()->getParent();
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
const bool is64Bit = STI.is64Bit();
const X86InstrInfo *TII = STI.getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
*TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
? &X86::GR64RegClass
: &X86::GR32RegClass);
// Insert a copy from RAX/EAX to TLSBaseAddrReg.
MachineInstr *Next = I->getNextNode();
MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
TII->get(TargetOpcode::COPY),
*TLSBaseAddrReg)
.addReg(is64Bit ? X86::RAX : X86::EAX);
return Copy;
}
const char *getPassName() const override {
return "Local Dynamic TLS Access Clean-up";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char LDTLSCleanup::ID = 0;
FunctionPass*
llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }