blob: a3382c3a3da7d0b897edfb5946984187106294b0 [file] [log] [blame]
/******************************************************************************
* *
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <ixheaacd_type_def.h>
#include "ixheaacd_error_standards.h"
#include "ixheaacd_sbr_const.h"
#include "ixheaacd_sbrdecsettings.h"
#include "ixheaacd_bitbuffer.h"
#include "ixheaacd_sbr_common.h"
#include "ixheaacd_drc_data_struct.h"
#include "ixheaacd_drc_dec.h"
#include "ixheaacd_sbrdecoder.h"
#include "ixheaacd_bitbuffer.h"
#include "ixheaacd_env_extr_part.h"
#include <ixheaacd_sbr_rom.h>
#include "ixheaacd_common_rom.h"
#include "ixheaacd_hybrid.h"
#include "ixheaacd_sbr_scale.h"
#include "ixheaacd_ps_dec.h"
#include "ixheaacd_freq_sca.h"
#include "ixheaacd_lpp_tran.h"
#include "ixheaacd_env_extr.h"
#include "ixheaacd_esbr_rom.h"
VOID ixheaacd_shellsort(WORD32 *in, WORD32 n) {
WORD32 i, j, v;
WORD32 inc = 1;
do
inc = 3 * inc + 1;
while (inc <= n);
do {
inc = inc / 3;
for (i = inc + 1; i <= n; i++) {
v = in[i - 1];
j = i;
while (in[j - inc - 1] > v) {
in[j - 1] = in[j - inc - 1];
j -= inc;
if (j <= inc) break;
}
in[j - 1] = v;
}
} while (inc > 1);
}
WORD32 ixheaacd_sbr_env_calc(ia_sbr_frame_info_data_struct *frame_data,
FLOAT32 input_real[][64], FLOAT32 input_imag[][64],
FLOAT32 input_real1[][64],
FLOAT32 input_imag1[][64],
WORD32 x_over_qmf[MAX_NUM_PATCHES],
FLOAT32 *scratch_buff, FLOAT32 *env_out) {
WORD8 harmonics[64];
FLOAT32(*env_tmp)[48];
FLOAT32(*noise_level_pvc)[48];
FLOAT32(*nrg_est_pvc)[48];
FLOAT32(*nrg_ref_pvc)[48];
FLOAT32(*nrg_gain_pvc)[48];
FLOAT32(*nrg_tone_pvc)[48];
WORD32 n, c, li, ui, i, j, k = 0, l, m = 0, kk = 0, o, next = -1, ui2, flag,
tmp, noise_absc_flag, smooth_length;
WORD32 upsamp_4_flag = frame_data->pstr_sbr_header->is_usf_4;
FLOAT32 *ptr_real_buf, *ptr_imag_buf, nrg = 0, p_ref, p_est, avg_gain, g_max,
p_adj, boost_gain, sb_gain, sb_noise,
temp[64];
WORD32 t;
WORD32 start_pos = 0;
WORD32 end_pos = 0;
WORD32 slot_idx;
FLOAT32 *prev_env_noise_level = frame_data->prev_noise_level;
FLOAT32 *nrg_tone = scratch_buff;
FLOAT32 *noise_level = scratch_buff + 64;
FLOAT32 *nrg_est = scratch_buff + 128;
FLOAT32 *nrg_ref = scratch_buff + 192;
FLOAT32 *nrg_gain = scratch_buff + 256;
const FLOAT32 *smooth_filt;
FLOAT32 *sfb_nrg = frame_data->flt_env_sf_arr;
FLOAT32 *noise_floor = frame_data->flt_noise_floor;
ia_frame_info_struct *p_frame_info = &frame_data->str_frame_info_details;
ia_frame_info_struct *pvc_frame_info = &frame_data->str_pvc_frame_info;
WORD32 smoothing_length = frame_data->pstr_sbr_header->smoothing_mode ? 0 : 4;
WORD32 int_mode = frame_data->pstr_sbr_header->interpol_freq;
WORD32 limiter_band = frame_data->pstr_sbr_header->limiter_bands;
WORD32 limiter_gains = frame_data->pstr_sbr_header->limiter_gains;
WORD32 *add_harmonics = frame_data->add_harmonics;
WORD32 sub_band_start =
frame_data->pstr_sbr_header->pstr_freq_band_data->sub_band_start;
WORD32 sub_band_end =
frame_data->pstr_sbr_header->pstr_freq_band_data->sub_band_end;
WORD32 reset = frame_data->reset_flag;
WORD32 num_subbands = sub_band_end - sub_band_start;
WORD32 bs_num_env = p_frame_info->num_env;
WORD32 trans_env = p_frame_info->transient_env;
WORD32 sbr_mode = frame_data->sbr_mode;
WORD32 prev_sbr_mode = frame_data->prev_sbr_mode;
WORD16 *freq_band_table[2];
const WORD16 *num_sf_bands =
frame_data->pstr_sbr_header->pstr_freq_band_data->num_sf_bands;
WORD16 *freq_band_table_noise =
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_noise;
WORD32 num_nf_bands =
frame_data->pstr_sbr_header->pstr_freq_band_data->num_nf_bands;
WORD32 harm_index = frame_data->harm_index;
WORD32 phase_index = frame_data->phase_index;
WORD32 esbr_start_up = frame_data->pstr_sbr_header->esbr_start_up;
WORD32 esbr_start_up_pvc = frame_data->pstr_sbr_header->esbr_start_up_pvc;
WORD8(*harm_flag_prev)[64] = &frame_data->harm_flag_prev;
FLOAT32(*e_gain)[5][64] = &frame_data->e_gain;
FLOAT32(*noise_buf)[5][64] = &frame_data->noise_buf;
WORD32(*lim_table)[4][12 + 1] = &frame_data->lim_table;
WORD32(*gate_mode)[4] = &frame_data->gate_mode;
WORD32 freq_inv = 1;
WORD8(*harm_flag_varlen_prev)[64] = &frame_data->harm_flag_varlen_prev;
WORD8(*harm_flag_varlen)[64] = &frame_data->harm_flag_varlen;
WORD32 band_loop_end;
WORD32 rate = upsamp_4_flag ? 4 : 2;
env_tmp = frame_data->env_tmp;
noise_level_pvc = frame_data->noise_level_pvc;
nrg_est_pvc = frame_data->nrg_est_pvc;
nrg_ref_pvc = frame_data->nrg_ref_pvc;
nrg_gain_pvc = frame_data->nrg_gain_pvc;
nrg_tone_pvc = frame_data->nrg_tone_pvc;
freq_band_table[0] =
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_table[0];
freq_band_table[1] =
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_table[1];
if (reset) {
esbr_start_up = 1;
esbr_start_up_pvc = 1;
phase_index = 0;
if (ixheaacd_createlimiterbands(
(*lim_table), (*gate_mode),
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_lo,
num_sf_bands[LOW], x_over_qmf, frame_data->sbr_patching_mode,
upsamp_4_flag, &frame_data->patch_param))
return IA_FATAL_ERROR;
}
if (frame_data->sbr_patching_mode != frame_data->prev_sbr_patching_mode) {
if (ixheaacd_createlimiterbands(
(*lim_table), (*gate_mode),
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_lo,
num_sf_bands[LOW], x_over_qmf, frame_data->sbr_patching_mode,
upsamp_4_flag, &frame_data->patch_param))
return IA_FATAL_ERROR;
frame_data->prev_sbr_patching_mode = frame_data->sbr_patching_mode;
}
memset(harmonics, 0, 64 * sizeof(WORD8));
if (sbr_mode == PVC_SBR) {
for (i = 0; i < num_sf_bands[HIGH]; i++) {
li =
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_hi[i];
ui = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_hi[i + 1];
tmp = ((ui + li) - (sub_band_start << 1)) >> 1;
if ((tmp >= 64) || (tmp < 0)) return -1;
harmonics[tmp] = add_harmonics[i];
}
for (t = 0; t < p_frame_info->border_vec[0]; t++) {
for (c = 0; c < 64; c++) {
frame_data->qmapped_pvc[c][t] = frame_data->qmapped_pvc[c][t + 16];
}
}
for (i = 0; i < bs_num_env; i++) {
if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk])
kk++, next++;
start_pos = p_frame_info->border_vec[i];
end_pos = p_frame_info->border_vec[i + 1];
for (t = start_pos; t < end_pos; t++) {
band_loop_end = num_sf_bands[p_frame_info->freq_res[i]];
for (c = 0, o = 0, j = 0; j < band_loop_end; j++) {
li = freq_band_table[p_frame_info->freq_res[i]][j];
ui = freq_band_table[p_frame_info->freq_res[i]][j + 1];
ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_noise[o + 1];
for (k = 0; k < ui - li; k++) {
o = (k + li >= ui2) ? o + 1 : o;
ui2 = freq_band_table_noise[o + 1];
frame_data->qmapped_pvc[c][t] =
noise_floor[next * num_nf_bands + o];
c++;
}
}
}
}
kk = 0;
next = -1;
for (i = 0; i < bs_num_env; i++) {
if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk])
kk++, next++;
start_pos = pvc_frame_info->border_vec[i];
end_pos = pvc_frame_info->border_vec[i + 1];
for (t = start_pos; t < end_pos; t++) {
for (c = 0; c < 64; c++) {
env_tmp[c][t] = env_out[64 * t + c];
}
}
noise_absc_flag =
(i == trans_env || i == frame_data->env_short_flag_prev) ? 1 : 0;
if (prev_sbr_mode == ORIG_SBR) noise_absc_flag = 0;
smooth_length = (noise_absc_flag ? 0 : smoothing_length);
smooth_filt = *ixheaacd_fir_table[smooth_length];
for (t = start_pos; t < frame_data->sin_len_for_cur_top; t++) {
band_loop_end =
num_sf_bands[frame_data->str_frame_info_prev
.freq_res[frame_data->var_len_id_prev]];
for (c = 0, o = 0, j = 0; j < band_loop_end; j++) {
double tmp;
li = freq_band_table[frame_data->str_frame_info_prev
.freq_res[frame_data->var_len_id_prev]][j];
ui = freq_band_table[frame_data->str_frame_info_prev
.freq_res[frame_data->var_len_id_prev]]
[j + 1];
ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_noise[o + 1];
for (flag = 0, k = li; k < ui; k++) {
flag = ((*harm_flag_varlen)[c] &&
(t >= frame_data->sin_start_for_cur_top ||
(*harm_flag_varlen_prev)[c + sub_band_start]))
? 1
: flag;
nrg_ref_pvc[c][t] = env_tmp[k][t];
for (nrg = 0, l = 0; l < rate; l++) {
nrg +=
(input_real[rate * t + l][k] * input_real[rate * t + l][k]) +
(input_imag[rate * t + l][k] * input_imag[rate * t + l][k]);
}
nrg_est_pvc[c][t] = nrg / rate;
c++;
}
if (!int_mode) {
for (nrg = 0, k = c - (ui - li); k < c; k++) {
nrg += nrg_est_pvc[k][t];
}
nrg /= (ui - li);
}
c -= (ui - li);
for (k = 0; k < ui - li; k++) {
o = (k + li >= ui2) ? o + 1 : o;
ui2 = freq_band_table_noise[o + 1];
nrg_est_pvc[c][t] = (!int_mode) ? nrg : nrg_est_pvc[c][t];
nrg_tone_pvc[c][t] = 0.0f;
tmp = frame_data->qmapped_pvc[c][t] /
(1 + frame_data->qmapped_pvc[c][t]);
if (flag) {
nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp /
(nrg_est_pvc[c][t] + 1));
nrg_tone_pvc[c][t] = (FLOAT32)(
(harmonics[c] && (t >= frame_data->sine_position ||
(*harm_flag_prev)[c + sub_band_start]))
? sqrt(nrg_ref_pvc[c][t] * tmp /
frame_data->qmapped_pvc[c][t])
: nrg_tone_pvc[c][t]);
nrg_tone_pvc[c][t] = (FLOAT32)(
((*harm_flag_varlen)[c] &&
(t >= frame_data->sin_start_for_cur_top ||
(*harm_flag_varlen_prev)[c + sub_band_start]))
? sqrt(nrg_ref_pvc[c][t] * tmp / prev_env_noise_level[o])
: nrg_tone_pvc[c][t]);
} else {
if (noise_absc_flag) {
nrg_gain_pvc[c][t] =
(FLOAT32)sqrt(nrg_ref_pvc[c][t] / (nrg_est_pvc[c][t] + 1));
} else {
nrg_gain_pvc[c][t] = (FLOAT32)sqrt(
nrg_ref_pvc[c][t] * tmp /
((nrg_est_pvc[c][t] + 1) * frame_data->qmapped_pvc[c][t]));
}
}
noise_level_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp);
c++;
}
}
for (c = 0; c < (*gate_mode)[limiter_band]; c++) {
p_ref = p_est = 0.0f;
p_adj = 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
p_ref += nrg_ref_pvc[k][t];
p_est += nrg_est_pvc[k][t];
}
avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS));
g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains];
g_max > 1.0e5f ? g_max = 1.0e5f : 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
if (g_max <= nrg_gain_pvc[k][t]) {
noise_level_pvc[k][t] =
noise_level_pvc[k][t] * (g_max / nrg_gain_pvc[k][t]);
nrg_gain_pvc[k][t] = g_max;
}
p_adj +=
nrg_gain_pvc[k][t] * nrg_gain_pvc[k][t] * nrg_est_pvc[k][t];
if (nrg_tone_pvc[k][t]) {
p_adj += nrg_tone_pvc[k][t] * nrg_tone_pvc[k][t];
} else if (!noise_absc_flag) {
p_adj += noise_level_pvc[k][t] * noise_level_pvc[k][t];
}
}
boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS));
boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
nrg_gain_pvc[k][t] *= boost_gain;
noise_level_pvc[k][t] *= boost_gain;
nrg_tone_pvc[k][t] *= boost_gain;
}
}
}
for (; t < end_pos; t++) {
band_loop_end = num_sf_bands[pvc_frame_info->freq_res[i]];
for (c = 0, o = 0, j = 0; j < band_loop_end; j++) {
double tmp;
li = freq_band_table[pvc_frame_info->freq_res[i]][j];
ui = freq_band_table[pvc_frame_info->freq_res[i]][j + 1];
ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_noise[o + 1];
for (flag = 0, k = li; k < ui; k++) {
flag = (harmonics[c] && (t >= frame_data->sine_position ||
(*harm_flag_prev)[c + sub_band_start]))
? 1
: flag;
nrg_ref_pvc[c][t] = env_tmp[k][t];
for (nrg = 0, l = 0; l < rate; l++) {
nrg +=
(input_real[rate * t + l][k] * input_real[rate * t + l][k]) +
(input_imag[rate * t + l][k] * input_imag[rate * t + l][k]);
}
nrg_est_pvc[c][t] = nrg / rate;
c++;
}
if (!int_mode) {
for (nrg = 0, k = c - (ui - li); k < c; k++) {
nrg += nrg_est_pvc[k][t];
}
nrg /= (ui - li);
}
c -= (ui - li);
for (k = 0; k < ui - li; k++) {
o = (k + li >= ui2) ? o + 1 : o;
ui2 = freq_band_table_noise[o + 1];
nrg_est_pvc[c][t] = (!int_mode) ? nrg : nrg_est_pvc[c][t];
nrg_tone_pvc[c][t] = 0.0f;
tmp = frame_data->qmapped_pvc[c][t] /
(1 + frame_data->qmapped_pvc[c][t]);
if (flag) {
nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp /
(nrg_est_pvc[c][t] + 1));
nrg_tone_pvc[c][t] = (FLOAT32)(
(harmonics[c] && (t >= frame_data->sine_position ||
(*harm_flag_prev)[c + sub_band_start]))
? sqrt(nrg_ref_pvc[c][t] * tmp /
frame_data->qmapped_pvc[c][t])
: nrg_tone_pvc[c][t]);
} else {
if (noise_absc_flag) {
nrg_gain_pvc[c][t] =
(FLOAT32)sqrt(nrg_ref_pvc[c][t] / (nrg_est_pvc[c][t] + 1));
} else {
nrg_gain_pvc[c][t] = (FLOAT32)sqrt(
nrg_ref_pvc[c][t] * tmp /
((nrg_est_pvc[c][t] + 1) * frame_data->qmapped_pvc[c][t]));
}
}
noise_level_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp);
c++;
}
}
for (c = 0; c < (*gate_mode)[limiter_band]; c++) {
p_ref = p_est = 0.0f;
p_adj = 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
p_ref += nrg_ref_pvc[k][t];
p_est += nrg_est_pvc[k][t];
}
avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS));
g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains];
g_max > 1.0e5f ? g_max = 1.0e5f : 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
if (g_max <= nrg_gain_pvc[k][t]) {
noise_level_pvc[k][t] =
noise_level_pvc[k][t] * (g_max / nrg_gain_pvc[k][t]);
nrg_gain_pvc[k][t] = g_max;
}
p_adj +=
nrg_gain_pvc[k][t] * nrg_gain_pvc[k][t] * nrg_est_pvc[k][t];
if (nrg_tone_pvc[k][t]) {
p_adj += nrg_tone_pvc[k][t] * nrg_tone_pvc[k][t];
} else if (!noise_absc_flag) {
p_adj += noise_level_pvc[k][t] * noise_level_pvc[k][t];
}
}
boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS));
boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
nrg_gain_pvc[k][t] *= boost_gain;
noise_level_pvc[k][t] *= boost_gain;
nrg_tone_pvc[k][t] *= boost_gain;
}
}
}
if (esbr_start_up_pvc) {
for (n = 0; n < 4; n++) {
for (c = 0; c < num_subbands; c++) {
(*e_gain)[n][c] = nrg_gain_pvc[c][start_pos];
(*noise_buf)[n][c] = noise_level_pvc[c][start_pos];
}
}
esbr_start_up_pvc = 0;
esbr_start_up = 0;
}
for (l = rate * pvc_frame_info->border_vec[i];
l < rate * pvc_frame_info->border_vec[1 + i]; l++) {
ptr_real_buf = *(input_real + l) + sub_band_start;
ptr_imag_buf = *(input_imag + l) + sub_band_start;
slot_idx = (WORD32)l / rate;
if (sub_band_start & 1) {
freq_inv = -1;
}
for (k = 0; k < num_subbands; k++) {
(*e_gain)[4][k] = nrg_gain_pvc[k][slot_idx];
(*noise_buf)[4][k] = noise_level_pvc[k][slot_idx];
c = 0, sb_gain = 0, sb_noise = 0;
for (n = 4 - smooth_length; n <= 4; n++) {
sb_gain += (*e_gain)[n][k] * smooth_filt[c];
sb_noise += (*noise_buf)[n][k] * smooth_filt[c++];
}
phase_index = (phase_index + 1) & 511;
sb_noise = (nrg_tone_pvc[k][slot_idx] != 0 || noise_absc_flag)
? 0
: sb_noise;
*ptr_real_buf =
*ptr_real_buf * sb_gain +
sb_noise * ixheaacd_random_phase[phase_index][0] +
nrg_tone_pvc[k][slot_idx] * ixheaacd_hphase_tbl[0][harm_index];
*ptr_imag_buf = *ptr_imag_buf * sb_gain +
sb_noise * ixheaacd_random_phase[phase_index][1] +
nrg_tone_pvc[k][slot_idx] * freq_inv *
ixheaacd_hphase_tbl[1][harm_index];
ptr_real_buf++;
ptr_imag_buf++;
freq_inv = -freq_inv;
}
harm_index = (harm_index + 1) & 3;
memcpy(temp, (*e_gain)[0], 64 * sizeof(FLOAT32));
for (n = 0; n < 4; n++) {
memcpy((*e_gain)[n], (*e_gain)[n + 1], 64 * sizeof(FLOAT32));
}
memcpy((*e_gain)[4], temp, 64 * sizeof(FLOAT32));
memcpy(temp, (*noise_buf)[0], 64 * sizeof(FLOAT32));
for (n = 0; n < 4; n++) {
memcpy((*noise_buf)[n], (*noise_buf)[n + 1], 64 * sizeof(FLOAT32));
}
memcpy((*noise_buf)[4], temp, 64 * sizeof(FLOAT32));
}
}
} else {
for (i = 0; i < num_sf_bands[HIGH]; i++) {
li =
frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_hi[i];
ui = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_hi[i + 1];
tmp = ((ui + li) - (sub_band_start << 1)) >> 1;
if ((tmp >= 64) || (tmp < 0)) return -1;
harmonics[tmp] = add_harmonics[i];
}
for (i = 0; i < bs_num_env; i++) {
if (kk > MAX_NOISE_ENVELOPES) return IA_FATAL_ERROR;
if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk])
kk++, next++;
noise_absc_flag =
(i == trans_env || i == frame_data->env_short_flag_prev) ? 1 : 0;
smooth_length = (noise_absc_flag ? 0 : smoothing_length);
smooth_filt = *ixheaacd_fir_table[smooth_length];
if (sbr_mode == ORIG_SBR) {
for (c = 0, o = 0, j = 0; j < num_sf_bands[p_frame_info->freq_res[i]];
j++) {
double tmp;
li = freq_band_table[p_frame_info->freq_res[i]][j];
ui = freq_band_table[p_frame_info->freq_res[i]][j + 1];
ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_noise[o + 1];
for (flag = 0, k = li; k < ui; k++) {
for (nrg = 0, l = rate * p_frame_info->border_vec[i];
l < rate * p_frame_info->border_vec[i + 1]; l++) {
nrg += (input_real[l][k] * input_real[l][k]) +
(input_imag[l][k] * input_imag[l][k]);
}
flag = (harmonics[c] &&
(i >= trans_env || (*harm_flag_prev)[c + sub_band_start]))
? 1
: flag;
nrg_est[c++] = nrg / (rate * p_frame_info->border_vec[i + 1] -
rate * p_frame_info->border_vec[i]);
}
if (!int_mode) {
for (nrg = 0, k = c - (ui - li); k < c; k++) {
nrg += nrg_est[k];
}
nrg /= (ui - li);
}
c -= (ui - li);
for (k = 0; k < ui - li; k++) {
o = (k + li >= ui2) ? o + 1 : o;
ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
->freq_band_tbl_noise[o + 1];
nrg_ref[c] = sfb_nrg[m];
nrg_est[c] = (!int_mode) ? nrg : nrg_est[c];
nrg_tone[c] = 0;
tmp = noise_floor[next * num_nf_bands + o] /
(1 + noise_floor[next * num_nf_bands + o]);
if (flag) {
nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp / (nrg_est[c] + 1));
nrg_tone[c] = (FLOAT32)(
(harmonics[c] &&
(i >= trans_env || (*harm_flag_prev)[c + sub_band_start]))
? sqrt(nrg_ref[c] * tmp /
noise_floor[next * num_nf_bands + o])
: nrg_tone[c]);
} else {
if (noise_absc_flag)
nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] / (nrg_est[c] + 1));
else
nrg_gain[c] =
(FLOAT32)sqrt(nrg_ref[c] * tmp /
((nrg_est[c] + 1) *
(noise_floor[next * num_nf_bands + o])));
}
noise_level[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp);
c++;
}
m++;
}
for (c = 0; c < (*gate_mode)[limiter_band]; c++) {
p_ref = p_est = 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
p_ref += nrg_ref[k];
p_est += nrg_est[k];
}
avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS));
g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains];
g_max > 1.0e5f ? g_max = 1.0e5f : 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
if (g_max <= nrg_gain[k]) {
noise_level[k] = noise_level[k] * (g_max / nrg_gain[k]);
nrg_gain[k] = g_max;
}
}
p_adj = 0;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
p_adj += nrg_gain[k] * nrg_gain[k] * nrg_est[k];
if (nrg_tone[k])
p_adj += nrg_tone[k] * nrg_tone[k];
else if (!noise_absc_flag)
p_adj += noise_level[k] * noise_level[k];
}
boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS));
boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain;
for (k = (*lim_table)[limiter_band][c];
k < (*lim_table)[limiter_band][c + 1]; k++) {
nrg_gain[k] *= boost_gain;
noise_level[k] *= boost_gain;
nrg_tone[k] *= boost_gain;
}
}
if (esbr_start_up) {
for (n = 0; n < 4; n++) {
memcpy((*e_gain)[n], nrg_gain, num_subbands * sizeof(FLOAT32));
memcpy((*noise_buf)[n], noise_level,
num_subbands * sizeof(FLOAT32));
}
esbr_start_up = 0;
esbr_start_up_pvc = 0;
}
for (l = rate * p_frame_info->border_vec[i];
l < rate * p_frame_info->border_vec[i + 1]; l++) {
ptr_real_buf = *(input_real + l) + sub_band_start;
ptr_imag_buf = *(input_imag + l) + sub_band_start;
for (k = 0; k < num_subbands; k++) {
(*e_gain)[4][k] = nrg_gain[k];
(*noise_buf)[4][k] = noise_level[k];
c = 0, sb_gain = 0, sb_noise = 0;
for (n = 4 - smooth_length; n <= 4; n++) {
sb_gain += (*e_gain)[n][k] * smooth_filt[c];
sb_noise += (*noise_buf)[n][k] * smooth_filt[c++];
}
phase_index = (phase_index + 1) & 511;
sb_noise = (nrg_tone[k] != 0 || noise_absc_flag) ? 0 : sb_noise;
*ptr_real_buf = *ptr_real_buf * sb_gain +
sb_noise * ixheaacd_random_phase[phase_index][0];
*ptr_imag_buf = *ptr_imag_buf * sb_gain +
sb_noise * ixheaacd_random_phase[phase_index][1];
ptr_real_buf++;
ptr_imag_buf++;
}
memcpy(temp, (*e_gain)[0], 64 * sizeof(FLOAT32));
for (n = 0; n < 4; n++)
memcpy((*e_gain)[n], (*e_gain)[n + 1], 64 * sizeof(FLOAT32));
memcpy((*e_gain)[4], temp, 64 * sizeof(FLOAT32));
memcpy(temp, (*noise_buf)[0], 64 * sizeof(FLOAT32));
for (n = 0; n < 4; n++)
memcpy((*noise_buf)[n], (*noise_buf)[n + 1], 64 * sizeof(FLOAT32));
memcpy((*noise_buf)[4], temp, 64 * sizeof(FLOAT32));
}
ixheaacd_apply_inter_tes(
*(input_real1 + rate * p_frame_info->border_vec[i]),
*(input_imag1 + rate * p_frame_info->border_vec[i]),
*(input_real + rate * p_frame_info->border_vec[i]),
*(input_imag + rate * p_frame_info->border_vec[i]),
rate * p_frame_info->border_vec[i + 1] -
rate * p_frame_info->border_vec[i],
sub_band_start, num_subbands, frame_data->inter_temp_shape_mode[i]);
for (l = rate * p_frame_info->border_vec[i];
l < rate * p_frame_info->border_vec[i + 1]; l++) {
ptr_real_buf = *(input_real + l) + sub_band_start;
ptr_imag_buf = *(input_imag + l) + sub_band_start;
if (sub_band_start & 1) {
freq_inv = -1;
}
for (k = 0; k < num_subbands; k++) {
*ptr_real_buf += nrg_tone[k] * ixheaacd_hphase_tbl[0][harm_index];
*ptr_imag_buf +=
nrg_tone[k] * freq_inv * ixheaacd_hphase_tbl[1][harm_index];
ptr_real_buf++;
ptr_imag_buf++;
freq_inv = -freq_inv;
}
harm_index = (harm_index + 1) & 3;
}
}
}
}
for (i = 0; i < 64; i++) {
(*harm_flag_varlen_prev)[i] = (*harm_flag_prev)[i];
(*harm_flag_varlen)[i] = harmonics[i];
}
memcpy(&((*harm_flag_prev)[0]) + sub_band_start, harmonics,
(64 - sub_band_start) * sizeof(WORD8));
if (trans_env == bs_num_env) {
frame_data->env_short_flag_prev = 0;
} else {
frame_data->env_short_flag_prev = -1;
}
memcpy((VOID *)&frame_data->str_frame_info_prev,
(VOID *)&frame_data->str_frame_info_details,
sizeof(ia_frame_info_struct));
if (frame_data->str_frame_info_details.num_env == 1) {
frame_data->var_len_id_prev = 0;
} else if (frame_data->str_frame_info_details.num_env == 2) {
frame_data->var_len_id_prev = 1;
}
for (i = 0; i < num_nf_bands; i++) {
prev_env_noise_level[i] =
frame_data->flt_noise_floor
[(frame_data->str_frame_info_details.num_noise_env - 1) *
num_nf_bands +
i];
}
frame_data->harm_index = harm_index;
frame_data->phase_index = phase_index;
frame_data->pstr_sbr_header->esbr_start_up = esbr_start_up;
frame_data->pstr_sbr_header->esbr_start_up_pvc = esbr_start_up_pvc;
return 0;
}
IA_ERRORCODE ixheaacd_createlimiterbands(
WORD32 lim_table[4][12 + 1], WORD32 gate_mode[4], WORD16 *freq_band_tbl,
WORD32 ixheaacd_num_bands, WORD32 x_over_qmf[MAX_NUM_PATCHES],
WORD32 b_patching_mode, WORD32 upsamp_4_flag,
struct ixheaacd_lpp_trans_patch *patch_param) {
WORD32 i, j, k, is_patch_border[2];
WORD32 patch_borders[MAX_NUM_PATCHES + 1];
WORD32 temp_limiter_band_calc[32 + MAX_NUM_PATCHES + 1];
double num_octave;
WORD32 num_patches;
WORD32 sub_band_start = freq_band_tbl[0];
WORD32 sub_band_end = freq_band_tbl[ixheaacd_num_bands];
const double log2 = log(2.0);
const double limbnd_per_oct[4] = {0, 1.2, 2.0, 3.0};
if (!b_patching_mode && (x_over_qmf != NULL)) {
num_patches = 0;
if (upsamp_4_flag) {
for (i = 1; i < MAX_NUM_PATCHES; i++)
if (x_over_qmf[i] != 0) num_patches++;
} else {
for (i = 1; i < 4; i++)
if (x_over_qmf[i] != 0) num_patches++;
}
for (i = 0; i < num_patches; i++) {
patch_borders[i] = x_over_qmf[i] - sub_band_start;
}
} else {
num_patches = patch_param->num_patches;
for (i = 0; i < num_patches; i++) {
patch_borders[i] = patch_param->start_subband[i] - sub_band_start;
}
}
patch_borders[i] = sub_band_end - sub_band_start;
lim_table[0][0] = freq_band_tbl[0] - sub_band_start;
lim_table[0][1] = freq_band_tbl[ixheaacd_num_bands] - sub_band_start;
gate_mode[0] = 1;
for (i = 1; i < 4; i++) {
for (k = 0; k <= ixheaacd_num_bands; k++) {
temp_limiter_band_calc[k] = freq_band_tbl[k] - sub_band_start;
}
for (k = 1; k < num_patches; k++) {
temp_limiter_band_calc[ixheaacd_num_bands + k] = patch_borders[k];
}
gate_mode[i] = ixheaacd_num_bands + num_patches - 1;
ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
for (j = 1; j <= gate_mode[i]; j++) {
num_octave = log((double)(temp_limiter_band_calc[j] + sub_band_start) /
(temp_limiter_band_calc[j - 1] + sub_band_start)) /
log2;
if (num_octave * limbnd_per_oct[i] < 0.49) {
if (temp_limiter_band_calc[j] == temp_limiter_band_calc[j - 1]) {
temp_limiter_band_calc[j] = sub_band_end;
ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
gate_mode[i]--;
j--;
continue;
}
is_patch_border[0] = is_patch_border[1] = 0;
for (k = 0; k <= num_patches; k++) {
if (temp_limiter_band_calc[j - 1] == patch_borders[k]) {
is_patch_border[0] = 1;
break;
}
}
for (k = 0; k <= num_patches; k++) {
if (temp_limiter_band_calc[j] == patch_borders[k]) {
is_patch_border[1] = 1;
break;
}
}
if (!is_patch_border[1]) {
temp_limiter_band_calc[j] = sub_band_end;
ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
gate_mode[i]--;
j--;
} else if (!is_patch_border[0]) {
temp_limiter_band_calc[j - 1] = sub_band_end;
ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
gate_mode[i]--;
j--;
}
}
}
if (gate_mode[i] > 12) return IA_FATAL_ERROR;
for (k = 0; k <= gate_mode[i]; k++) {
lim_table[i][k] = temp_limiter_band_calc[k];
}
}
return IA_NO_ERROR;
}
VOID ixheaacd_apply_inter_tes(FLOAT32 *qmf_real1, FLOAT32 *qmf_imag1,
FLOAT32 *qmf_real, FLOAT32 *qmf_imag,
WORD32 num_sample, WORD32 sub_band_start,
WORD32 num_subband, WORD32 gamma_idx) {
WORD32 sub_band_end = sub_band_start + num_subband;
FLOAT32 subsample_power_high[TIMESLOT_BUFFER_SIZE],
subsample_power_low[TIMESLOT_BUFFER_SIZE];
FLOAT32 total_power_high = 0.0f;
FLOAT32 total_power_low = 0.0f, total_power_high_after = 1.0e-6f;
FLOAT32 gain[TIMESLOT_BUFFER_SIZE];
FLOAT32 gain_adj, gain_adj_2;
FLOAT32 gamma = ixheaacd_q_gamma_table[gamma_idx];
WORD32 i, j;
if (gamma > 0) {
for (i = 0; i < num_sample; i++) {
memcpy(&qmf_real[64 * i], &qmf_real1[64 * i],
sub_band_start * sizeof(FLOAT32));
memcpy(&qmf_imag[64 * i], &qmf_imag1[64 * i],
sub_band_start * sizeof(FLOAT32));
}
for (i = 0; i < num_sample; i++) {
subsample_power_low[i] = 0.0f;
for (j = 0; j < sub_band_start; j++) {
subsample_power_low[i] += qmf_real[64 * i + j] * qmf_real[64 * i + j];
subsample_power_low[i] += qmf_imag[64 * i + j] * qmf_imag[64 * i + j];
}
subsample_power_high[i] = 0.0f;
for (j = sub_band_start; j < sub_band_end; j++) {
subsample_power_high[i] += qmf_real[64 * i + j] * qmf_real[64 * i + j];
subsample_power_high[i] += qmf_imag[64 * i + j] * qmf_imag[64 * i + j];
}
total_power_low += subsample_power_low[i];
total_power_high += subsample_power_high[i];
}
for (i = 0; i < num_sample; i++) {
gain[i] = (FLOAT32)(sqrt(subsample_power_low[i] * num_sample /
(total_power_low + 1.0e-6f)));
}
for (i = 0; i < num_sample; i++) {
gain[i] = (FLOAT32)(1.0f + gamma * (gain[i] - 1.0f));
}
for (i = 0; i < num_sample; i++) {
if (gain[i] < 0.2f) {
gain[i] = 0.2f;
}
subsample_power_high[i] *= gain[i] * gain[i];
total_power_high_after += subsample_power_high[i];
}
gain_adj_2 = total_power_high / total_power_high_after;
gain_adj = (FLOAT32)(sqrt(gain_adj_2));
for (i = 0; i < num_sample; i++) {
gain[i] *= gain_adj;
for (j = sub_band_start; j < sub_band_end; j++) {
qmf_real[64 * i + j] *= gain[i];
qmf_imag[64 * i + j] *= gain[i];
}
}
}
}