blob: 4746a3abde922f4875a803369de61adbe2dc33c9 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_dsubexp.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/decoder/vp9_read_bit_buffer.h"
#include "vp9/decoder/vp9_thread.h"
#include "vp9/decoder/vp9_treereader.h"
typedef struct TileWorkerData {
VP9_COMMON *cm;
vp9_reader bit_reader;
DECLARE_ALIGNED(16, MACROBLOCKD, xd);
DECLARE_ALIGNED(16, unsigned char, token_cache[1024]);
} TileWorkerData;
static int read_be32(const uint8_t *p) {
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
}
static int is_compound_prediction_allowed(const VP9_COMMON *cm) {
int i;
for (i = 1; i < ALLOWED_REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1])
return 1;
return 0;
}
static void setup_compound_prediction(VP9_COMMON *cm) {
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
}
// len == 0 is not allowed
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return start + len > start && start + len <= end;
}
static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) {
const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static TX_MODE read_tx_mode(vp9_reader *r) {
TX_MODE tx_mode = vp9_read_literal(r, 2);
if (tx_mode == ALLOW_32X32)
tx_mode += vp9_read_bit(r);
return tx_mode;
}
static void read_tx_probs(struct tx_probs *tx_probs, vp9_reader *r) {
int i, j;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 3; ++j)
vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 2; ++j)
vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 1; ++j)
vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
}
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
}
static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < INTER_MODES - 1; ++j)
vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
}
static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) {
COMPPREDMODE_TYPE mode = vp9_read_bit(r);
if (mode)
mode += vp9_read_bit(r);
return mode;
}
static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) {
int i;
const int compound_allowed = is_compound_prediction_allowed(cm);
cm->comp_pred_mode = compound_allowed ? read_comp_pred_mode(r)
: SINGLE_PREDICTION_ONLY;
if (compound_allowed)
setup_compound_prediction(cm);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]);
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++) {
vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]);
vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]);
}
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++)
vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]);
}
static void update_mv(vp9_reader *r, vp9_prob *p) {
if (vp9_read(r, NMV_UPDATE_PROB))
*p = (vp9_read_literal(r, 7) << 1) | 1;
}
static void read_mv_probs(vp9_reader *r, nmv_context *mvc, int allow_hp) {
int i, j, k;
for (j = 0; j < MV_JOINTS - 1; ++j)
update_mv(r, &mvc->joints[j]);
for (i = 0; i < 2; ++i) {
nmv_component *const comp = &mvc->comps[i];
update_mv(r, &comp->sign);
for (j = 0; j < MV_CLASSES - 1; ++j)
update_mv(r, &comp->classes[j]);
for (j = 0; j < CLASS0_SIZE - 1; ++j)
update_mv(r, &comp->class0[j]);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_mv(r, &comp->bits[j]);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp = &mvc->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j)
for (k = 0; k < 3; ++k)
update_mv(r, &comp->class0_fp[j][k]);
for (j = 0; j < 3; ++j)
update_mv(r, &comp->fp[j]);
}
if (allow_hp) {
for (i = 0; i < 2; ++i) {
update_mv(r, &mvc->comps[i].class0_hp);
update_mv(r, &mvc->comps[i].hp);
}
}
}
static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) {
int i;
xd->plane[0].dequant = cm->y_dequant[q_index];
for (i = 1; i < MAX_MB_PLANE; i++)
xd->plane[i].dequant = cm->uv_dequant[q_index];
}
// Allocate storage for each tile column.
// TODO(jzern): when max_threads <= 1 the same storage could be used for each
// tile.
static void alloc_tile_storage(VP9D_COMP *pbi, int tile_cols) {
VP9_COMMON *const cm = &pbi->common;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
int i, tile_col;
CHECK_MEM_ERROR(cm, pbi->mi_streams,
vpx_realloc(pbi->mi_streams, tile_cols *
sizeof(*pbi->mi_streams)));
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileInfo tile;
vp9_tile_init(&tile, cm, 0, tile_col);
pbi->mi_streams[tile_col] =
&cm->mi[cm->mi_rows * tile.mi_col_start];
}
// 2 contexts per 'mi unit', so that we have one context per 4x4 txfm
// block where mi unit size is 8x8.
CHECK_MEM_ERROR(cm, pbi->above_context[0],
vpx_realloc(pbi->above_context[0],
sizeof(*pbi->above_context[0]) * MAX_MB_PLANE *
2 * aligned_mi_cols));
for (i = 1; i < MAX_MB_PLANE; ++i) {
pbi->above_context[i] = pbi->above_context[0] +
i * sizeof(*pbi->above_context[0]) *
2 * aligned_mi_cols;
}
// This is sized based on the entire frame. Each tile operates within its
// column bounds.
CHECK_MEM_ERROR(cm, pbi->above_seg_context,
vpx_realloc(pbi->above_seg_context,
sizeof(*pbi->above_seg_context) *
aligned_mi_cols));
}
static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t* const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int stride = pd->dst.stride;
const int eob = pd->eobs[block];
if (eob > 0) {
TX_TYPE tx_type;
const int raster_block = txfrm_block_to_raster_block(plane_bsize, tx_size,
block);
uint8_t* const dst = raster_block_offset_uint8(plane_bsize, raster_block,
pd->dst.buf, stride);
switch (tx_size) {
case TX_4X4:
tx_type = get_tx_type_4x4(pd->plane_type, xd, raster_block);
if (tx_type == DCT_DCT)
xd->itxm_add(dqcoeff, dst, stride, eob);
else
vp9_iht4x4_16_add(dqcoeff, dst, stride, tx_type);
break;
case TX_8X8:
tx_type = get_tx_type_8x8(pd->plane_type, xd);
vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_16X16:
tx_type = get_tx_type_16x16(pd->plane_type, xd);
vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_32X32:
tx_type = DCT_DCT;
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
break;
default:
assert(!"Invalid transform size");
}
if (eob == 1) {
vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0]));
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
}
}
struct intra_args {
VP9_COMMON *cm;
MACROBLOCKD *xd;
vp9_reader *r;
unsigned char* token_cache;
};
static void predict_and_reconstruct_intra_block(int plane, int block,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct intra_args *const args = arg;
VP9_COMMON *const cm = args->cm;
MACROBLOCKD *const xd = args->xd;
struct macroblockd_plane *const pd = &xd->plane[plane];
MODE_INFO *const mi = xd->mi_8x8[0];
const int raster_block = txfrm_block_to_raster_block(plane_bsize, tx_size,
block);
uint8_t* const dst = raster_block_offset_uint8(plane_bsize, raster_block,
pd->dst.buf, pd->dst.stride);
const MB_PREDICTION_MODE mode = (plane == 0)
? ((mi->mbmi.sb_type < BLOCK_8X8) ? mi->bmi[raster_block].as_mode
: mi->mbmi.mode)
: mi->mbmi.uv_mode;
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0)
extend_for_intra(xd, plane_bsize, plane, block, tx_size);
vp9_predict_intra_block(xd, raster_block >> tx_size,
b_width_log2(plane_bsize), tx_size, mode,
dst, pd->dst.stride, dst, pd->dst.stride);
if (!mi->mbmi.skip_coeff) {
vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, tx_size,
args->r, args->token_cache);
inverse_transform_block(xd, plane, block, plane_bsize, tx_size);
}
}
struct inter_args {
VP9_COMMON *cm;
MACROBLOCKD *xd;
vp9_reader *r;
int *eobtotal;
unsigned char* token_cache;
};
static void reconstruct_inter_block(int plane, int block,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct inter_args *args = arg;
VP9_COMMON *const cm = args->cm;
MACROBLOCKD *const xd = args->xd;
*args->eobtotal += vp9_decode_block_tokens(cm, xd, plane, block,
plane_bsize, tx_size,
args->r, args->token_cache);
inverse_transform_block(xd, plane, block, plane_bsize, tx_size);
}
static void set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bh = num_8x8_blocks_high_lookup[bsize];
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int offset = mi_row * cm->mode_info_stride + mi_col;
xd->mode_info_stride = cm->mode_info_stride;
xd->mi_8x8 = cm->mi_grid_visible + offset;
xd->prev_mi_8x8 = cm->prev_mi_grid_visible + offset;
// we are using the mode info context stream here
xd->mi_8x8[0] = xd->mi_stream;
xd->mi_8x8[0]->mbmi.sb_type = bsize;
++xd->mi_stream;
// Special case: if prev_mi is NULL, the previous mode info context
// cannot be used.
xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL;
set_skip_context(xd, xd->above_context, xd->left_context, mi_row, mi_col);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col);
}
static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int idx, int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
const int ref = mbmi->ref_frame[idx] - LAST_FRAME;
const YV12_BUFFER_CONFIG *cfg = get_frame_ref_buffer(cm, ref);
const struct scale_factors_common *sfc = &cm->active_ref_scale_comm[ref];
if (!vp9_is_valid_scale(sfc))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid scale factors");
xd->scale_factor[idx].sfc = sfc;
setup_pre_planes(xd, idx, cfg, mi_row, mi_col, &xd->scale_factor[idx]);
xd->corrupted |= cfg->corrupted;
}
static void decode_modes_b(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE bsize,
unsigned char *token_cache) {
const int less8x8 = bsize < BLOCK_8X8;
MB_MODE_INFO *mbmi;
set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r);
if (less8x8)
bsize = BLOCK_8X8;
// Has to be called after set_offsets
mbmi = &xd->mi_8x8[0]->mbmi;
if (mbmi->skip_coeff) {
reset_skip_context(xd, bsize);
} else {
if (cm->seg.enabled)
setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id,
cm->base_qindex));
}
if (!is_inter_block(mbmi)) {
struct intra_args arg = { cm, xd, r, token_cache };
foreach_transformed_block(xd, bsize, predict_and_reconstruct_intra_block,
&arg);
} else {
// Setup
set_ref(cm, xd, 0, mi_row, mi_col);
if (has_second_ref(mbmi))
set_ref(cm, xd, 1, mi_row, mi_col);
xd->subpix.filter_x = xd->subpix.filter_y =
vp9_get_filter_kernel(mbmi->interp_filter);
// Prediction
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
// Reconstruction
if (!mbmi->skip_coeff) {
int eobtotal = 0;
struct inter_args arg = { cm, xd, r, &eobtotal, token_cache };
foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
if (!less8x8 && eobtotal == 0)
mbmi->skip_coeff = 1; // skip loopfilter
}
}
xd->corrupted |= vp9_reader_has_error(r);
}
static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs,
int mi_row, int mi_col, BLOCK_SIZE bsize,
vp9_reader *r) {
const int ctx = partition_plane_context(xd->above_seg_context,
xd->left_seg_context,
mi_row, mi_col, bsize);
const vp9_prob *const probs = get_partition_probs(cm, ctx);
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
PARTITION_TYPE p;
if (has_rows && has_cols)
p = treed_read(r, vp9_partition_tree, probs);
else if (!has_rows && has_cols)
p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
else if (has_rows && !has_cols)
p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
else
p = PARTITION_SPLIT;
if (!cm->frame_parallel_decoding_mode)
++cm->counts.partition[ctx][p];
return p;
}
static void decode_modes_sb(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
vp9_reader* r, BLOCK_SIZE bsize,
unsigned char *token_cache) {
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r);
subsize = get_subsize(bsize, partition);
if (subsize < BLOCK_8X8) {
decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache);
} else {
switch (partition) {
case PARTITION_NONE:
decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache);
break;
case PARTITION_HORZ:
decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache);
if (mi_row + hbs < cm->mi_rows)
decode_modes_b(cm, xd, tile, mi_row + hbs, mi_col, r, subsize,
token_cache);
break;
case PARTITION_VERT:
decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache);
if (mi_col + hbs < cm->mi_cols)
decode_modes_b(cm, xd, tile, mi_row, mi_col + hbs, r, subsize,
token_cache);
break;
case PARTITION_SPLIT:
decode_modes_sb(cm, xd, tile, mi_row, mi_col, r, subsize,
token_cache);
decode_modes_sb(cm, xd, tile, mi_row, mi_col + hbs, r, subsize,
token_cache);
decode_modes_sb(cm, xd, tile, mi_row + hbs, mi_col, r, subsize,
token_cache);
decode_modes_sb(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize,
token_cache);
break;
default:
assert(!"Invalid partition type");
}
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd->above_seg_context, xd->left_seg_context,
mi_row, mi_col, subsize, bsize);
}
static void setup_token_decoder(const uint8_t *data,
const uint8_t *data_end,
size_t read_size,
struct vpx_internal_error_info *error_info,
vp9_reader *r) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (vp9_reader_init(r, data, read_size))
vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
vp9_reader *r) {
int i, j, k, l, m;
if (vp9_read_bit(r))
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < REF_TYPES; j++)
for (k = 0; k < COEF_BANDS; k++)
for (l = 0; l < PREV_COEF_CONTEXTS; l++)
if (k > 0 || l < 3)
for (m = 0; m < UNCONSTRAINED_NODES; m++)
vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
}
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode,
vp9_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
}
static void setup_segmentation(struct segmentation *seg,
struct vp9_read_bit_buffer *rb) {
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = vp9_rb_read_bit(rb);
if (!seg->enabled)
return;
// Segmentation map update
seg->update_map = vp9_rb_read_bit(rb);
if (seg->update_map) {
for (i = 0; i < SEG_TREE_PROBS; i++)
seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
: MAX_PROB;
seg->temporal_update = vp9_rb_read_bit(rb);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++)
seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
: MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
seg->pred_probs[i] = MAX_PROB;
}
}
// Segmentation data update
seg->update_data = vp9_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = vp9_rb_read_bit(rb);
vp9_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_rb_read_bit(rb);
if (feature_enabled) {
vp9_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_rb_read_bit(rb) ? -data : data;
}
vp9_set_segdata(seg, i, j, data);
}
}
}
}
static void setup_loopfilter(struct loopfilter *lf,
struct vp9_read_bit_buffer *rb) {
lf->filter_level = vp9_rb_read_literal(rb, 6);
lf->sharpness_level = vp9_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = vp9_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
if (vp9_rb_read_bit(rb))
lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (vp9_rb_read_bit(rb))
lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
}
}
}
static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) {
const int old = *delta_q;
*delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0;
return old != *delta_q;
}
static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
struct vp9_read_bit_buffer *rb) {
int update = 0;
cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS);
update |= read_delta_q(rb, &cm->y_dc_delta_q);
update |= read_delta_q(rb, &cm->uv_dc_delta_q);
update |= read_delta_q(rb, &cm->uv_ac_delta_q);
if (update)
vp9_init_dequantizer(cm);
xd->lossless = cm->base_qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
xd->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
}
static INTERPOLATION_TYPE read_interp_filter_type(
struct vp9_read_bit_buffer *rb) {
const INTERPOLATION_TYPE literal_to_type[] = { EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR };
return vp9_rb_read_bit(rb) ? SWITCHABLE
: literal_to_type[vp9_rb_read_literal(rb, 2)];
}
static void read_frame_size(struct vp9_read_bit_buffer *rb,
int *width, int *height) {
const int w = vp9_rb_read_literal(rb, 16) + 1;
const int h = vp9_rb_read_literal(rb, 16) + 1;
*width = w;
*height = h;
}
static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
cm->display_width = cm->width;
cm->display_height = cm->height;
if (vp9_rb_read_bit(rb))
read_frame_size(rb, &cm->display_width, &cm->display_height);
}
static void apply_frame_size(VP9D_COMP *pbi, int width, int height) {
VP9_COMMON *cm = &pbi->common;
if (cm->width != width || cm->height != height) {
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
cm->width = width;
cm->height = height;
vp9_update_frame_size(cm);
}
vp9_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS);
}
static void setup_frame_size(VP9D_COMP *pbi,
struct vp9_read_bit_buffer *rb) {
int width, height;
read_frame_size(rb, &width, &height);
apply_frame_size(pbi, width, height);
setup_display_size(&pbi->common, rb);
}
static void setup_frame_size_with_refs(VP9D_COMP *pbi,
struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
int width, height;
int found = 0, i;
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
if (vp9_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const cfg = get_frame_ref_buffer(cm, i);
width = cfg->y_crop_width;
height = cfg->y_crop_height;
found = 1;
break;
}
}
if (!found)
read_frame_size(rb, &width, &height);
if (!width || !height)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame with invalid size");
apply_frame_size(pbi, width, height);
setup_display_size(cm, rb);
}
static void setup_tile_context(VP9D_COMP *const pbi, MACROBLOCKD *const xd,
int tile_col) {
int i;
xd->mi_stream = pbi->mi_streams[tile_col];
for (i = 0; i < MAX_MB_PLANE; ++i) {
xd->above_context[i] = pbi->above_context[i];
}
// see note in alloc_tile_storage().
xd->above_seg_context = pbi->above_seg_context;
}
static void decode_tile(VP9D_COMP *pbi, const TileInfo *const tile,
vp9_reader *r) {
const int num_threads = pbi->oxcf.max_threads;
VP9_COMMON *const cm = &pbi->common;
int mi_row, mi_col;
MACROBLOCKD *xd = &pbi->mb;
if (pbi->do_loopfilter_inline) {
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
lf_data->frame_buffer = get_frame_new_buffer(cm);
lf_data->cm = cm;
lf_data->xd = pbi->mb;
lf_data->stop = 0;
lf_data->y_only = 0;
vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
}
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
// For a SB there are 2 left contexts, each pertaining to a MB row within
vp9_zero(xd->left_context);
vp9_zero(xd->left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
decode_modes_sb(cm, xd, tile, mi_row, mi_col, r, BLOCK_64X64,
pbi->token_cache);
if (pbi->do_loopfilter_inline) {
const int lf_start = mi_row - MI_BLOCK_SIZE;
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
// delay the loopfilter by 1 macroblock row.
if (lf_start < 0) continue;
// decoding has completed: finish up the loop filter in this thread.
if (mi_row + MI_BLOCK_SIZE >= tile->mi_row_end) continue;
vp9_worker_sync(&pbi->lf_worker);
lf_data->start = lf_start;
lf_data->stop = mi_row;
if (num_threads > 1) {
vp9_worker_launch(&pbi->lf_worker);
} else {
vp9_worker_execute(&pbi->lf_worker);
}
}
}
if (pbi->do_loopfilter_inline) {
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
vp9_worker_sync(&pbi->lf_worker);
lf_data->start = lf_data->stop;
lf_data->stop = cm->mi_rows;
vp9_worker_execute(&pbi->lf_worker);
}
}
static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
int min_log2_tile_cols, max_log2_tile_cols, max_ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
max_ones = max_log2_tile_cols - min_log2_tile_cols;
cm->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && vp9_rb_read_bit(rb))
cm->log2_tile_cols++;
// rows
cm->log2_tile_rows = vp9_rb_read_bit(rb);
if (cm->log2_tile_rows)
cm->log2_tile_rows += vp9_rb_read_bit(rb);
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static size_t get_tile(const uint8_t *const data_end,
int is_last,
struct vpx_internal_error_info *error_info,
const uint8_t **data) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, 4, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
size = read_be32(*data);
*data += 4;
} else {
size = data_end - *data;
}
return size;
}
static const uint8_t *decode_tiles(VP9D_COMP *pbi, const uint8_t *data) {
vp9_reader residual_bc;
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *const data_end = pbi->source + pbi->source_sz;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_row, tile_col;
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(pbi->above_context[0], 0,
sizeof(*pbi->above_context[0]) * MAX_MB_PLANE *
2 * aligned_mi_cols);
vpx_memset(pbi->above_seg_context, 0,
sizeof(*pbi->above_seg_context) * aligned_mi_cols);
if (pbi->oxcf.inv_tile_order) {
const uint8_t *data_ptr2[4][1 << 6];
vp9_reader bc_bak = {0};
// pre-initialize the offsets, we're going to decode in inverse order
data_ptr2[0][0] = data;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const int last_tile =
tile_row == tile_rows - 1 && tile_col == tile_cols - 1;
const size_t size = get_tile(data_end, last_tile, &cm->error, &data);
data_ptr2[tile_row][tile_col] = data;
data += size;
}
}
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = tile_cols - 1; tile_col >= 0; tile_col--) {
TileInfo tile;
vp9_tile_init(&tile, cm, tile_row, tile_col);
setup_token_decoder(data_ptr2[tile_row][tile_col], data_end,
data_end - data_ptr2[tile_row][tile_col],
&cm->error, &residual_bc);
setup_tile_context(pbi, xd, tile_col);
decode_tile(pbi, &tile, &residual_bc);
if (tile_row == tile_rows - 1 && tile_col == tile_cols - 1)
bc_bak = residual_bc;
}
}
residual_bc = bc_bak;
} else {
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const int last_tile =
tile_row == tile_rows - 1 && tile_col == tile_cols - 1;
const size_t size = get_tile(data_end, last_tile, &cm->error, &data);
TileInfo tile;
vp9_tile_init(&tile, cm, tile_row, tile_col);
setup_token_decoder(data, data_end, size, &cm->error, &residual_bc);
setup_tile_context(pbi, xd, tile_col);
decode_tile(pbi, &tile, &residual_bc);
data += size;
}
}
}
return vp9_reader_find_end(&residual_bc);
}
static int tile_worker_hook(void *arg1, void *arg2) {
TileWorkerData *tile_data = (TileWorkerData*)arg1;
const TileInfo *const tile = (TileInfo*)arg2;
int mi_row, mi_col;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
vp9_zero(tile_data->xd.left_context);
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_modes_sb(tile_data->cm, &tile_data->xd, tile,
mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64,
tile_data->token_cache);
}
}
return !tile_data->xd.corrupted;
}
static const uint8_t *decode_tiles_mt(VP9D_COMP *pbi, const uint8_t *data) {
VP9_COMMON *const cm = &pbi->common;
const uint8_t *const data_end = pbi->source + pbi->source_sz;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
const int num_workers = MIN(pbi->oxcf.max_threads & ~1, tile_cols);
int tile_col = 0;
assert(tile_rows == 1);
(void)tile_rows;
if (num_workers > pbi->num_tile_workers) {
int i;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
vpx_realloc(pbi->tile_workers,
num_workers * sizeof(*pbi->tile_workers)));
for (i = pbi->num_tile_workers; i < num_workers; ++i) {
VP9Worker *const worker = &pbi->tile_workers[i];
++pbi->num_tile_workers;
vp9_worker_init(worker);
worker->hook = (VP9WorkerHook)tile_worker_hook;
CHECK_MEM_ERROR(cm, worker->data1,
vpx_memalign(32, sizeof(TileWorkerData)));
CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo)));
if (i < num_workers - 1 && !vp9_worker_reset(worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Tile decoder thread creation failed");
}
}
}
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(pbi->above_context[0], 0,
sizeof(*pbi->above_context[0]) * MAX_MB_PLANE *
2 * aligned_mi_cols);
vpx_memset(pbi->above_seg_context, 0,
sizeof(*pbi->above_seg_context) * aligned_mi_cols);
while (tile_col < tile_cols) {
int i;
for (i = 0; i < num_workers && tile_col < tile_cols; ++i) {
VP9Worker *const worker = &pbi->tile_workers[i];
TileWorkerData *const tile_data = (TileWorkerData*)worker->data1;
TileInfo *const tile = (TileInfo*)worker->data2;
const size_t size =
get_tile(data_end, tile_col == tile_cols - 1, &cm->error, &data);
tile_data->cm = cm;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
vp9_tile_init(tile, tile_data->cm, 0, tile_col);
setup_token_decoder(data, data_end, size, &cm->error,
&tile_data->bit_reader);
setup_tile_context(pbi, &tile_data->xd, tile_col);
worker->had_error = 0;
if (i == num_workers - 1 || tile_col == tile_cols - 1) {
vp9_worker_execute(worker);
} else {
vp9_worker_launch(worker);
}
data += size;
++tile_col;
}
for (; i > 0; --i) {
VP9Worker *const worker = &pbi->tile_workers[i - 1];
pbi->mb.corrupted |= !vp9_worker_sync(worker);
}
}
{
const int final_worker = (tile_cols + num_workers - 1) % num_workers;
TileWorkerData *const tile_data =
(TileWorkerData*)pbi->tile_workers[final_worker].data1;
return vp9_reader_find_end(&tile_data->bit_reader);
}
}
static void check_sync_code(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
if (vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_0 ||
vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_1 ||
vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_2) {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
}
static void error_handler(void *data, size_t bit_offset) {
VP9_COMMON *const cm = (VP9_COMMON *)data;
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
}
#define RESERVED \
if (vp9_rb_read_bit(rb)) \
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, \
"Reserved bit must be unset")
static size_t read_uncompressed_header(VP9D_COMP *pbi,
struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
size_t sz;
int i;
cm->last_frame_type = cm->frame_type;
if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->version = vp9_rb_read_bit(rb);
RESERVED;
if (vp9_rb_read_bit(rb)) {
// show an existing frame directly
int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->new_fb_idx, frame_to_show);
pbi->refresh_frame_flags = 0;
cm->lf.filter_level = 0;
return 0;
}
cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb);
cm->show_frame = vp9_rb_read_bit(rb);
cm->error_resilient_mode = vp9_rb_read_bit(rb);
if (cm->frame_type == KEY_FRAME) {
check_sync_code(cm, rb);
cm->color_space = vp9_rb_read_literal(rb, 3); // colorspace
if (cm->color_space != SRGB) {
vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range
if (cm->version == 1) {
cm->subsampling_x = vp9_rb_read_bit(rb);
cm->subsampling_y = vp9_rb_read_bit(rb);
vp9_rb_read_bit(rb); // has extra plane
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
if (cm->version == 1) {
cm->subsampling_y = cm->subsampling_x = 0;
vp9_rb_read_bit(rb); // has extra plane
} else {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"RGB not supported in profile 0");
}
}
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
cm->active_ref_idx[i] = cm->new_fb_idx;
setup_frame_size(pbi, rb);
} else {
cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb);
cm->reset_frame_context = cm->error_resilient_mode ?
0 : vp9_rb_read_literal(rb, 2);
if (cm->intra_only) {
check_sync_code(cm, rb);
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES);
setup_frame_size(pbi, rb);
} else {
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES);
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
const int ref = vp9_rb_read_literal(rb, NUM_REF_FRAMES_LOG2);
cm->active_ref_idx[i] = cm->ref_frame_map[ref];
cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb);
}
setup_frame_size_with_refs(pbi, rb);
cm->allow_high_precision_mv = vp9_rb_read_bit(rb);
cm->mcomp_filter_type = read_interp_filter_type(rb);
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
vp9_setup_scale_factors(cm, i);
}
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = vp9_rb_read_bit(rb);
cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb);
} else {
cm->refresh_frame_context = 0;
cm->frame_parallel_decoding_mode = 1;
}
// This flag will be overridden by the call to vp9_setup_past_independence
// below, forcing the use of context 0 for those frame types.
cm->frame_context_idx = vp9_rb_read_literal(rb, NUM_FRAME_CONTEXTS_LOG2);
if (frame_is_intra_only(cm) || cm->error_resilient_mode)
vp9_setup_past_independence(cm);
setup_loopfilter(&cm->lf, rb);
setup_quantization(cm, &pbi->mb, rb);
setup_segmentation(&cm->seg, rb);
setup_tile_info(cm, rb);
sz = vp9_rb_read_literal(rb, 16);
if (sz == 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid header size");
return sz;
}
static int read_compressed_header(VP9D_COMP *pbi, const uint8_t *data,
size_t partition_size) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
FRAME_CONTEXT *const fc = &cm->fc;
vp9_reader r;
int k;
if (vp9_reader_init(&r, data, partition_size))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
if (cm->tx_mode == TX_MODE_SELECT)
read_tx_probs(&fc->tx_probs, &r);
read_coef_probs(fc, cm->tx_mode, &r);
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
vp9_diff_update_prob(&r, &fc->mbskip_probs[k]);
if (!frame_is_intra_only(cm)) {
nmv_context *const nmvc = &fc->nmvc;
int i, j;
read_inter_mode_probs(fc, &r);
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(fc, &r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
read_comp_pred(cm, &r);
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
for (j = 0; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
read_mv_probs(&r, nmvc, cm->allow_high_precision_mv);
}
return vp9_reader_has_error(&r);
}
void vp9_init_dequantizer(VP9_COMMON *cm) {
int q;
for (q = 0; q < QINDEX_RANGE; q++) {
cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q);
cm->y_dequant[q][1] = vp9_ac_quant(q, 0);
cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q);
cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q);
}
}
#ifdef NDEBUG
#define debug_check_frame_counts(cm) (void)0
#else // !NDEBUG
// Counts should only be incremented when frame_parallel_decoding_mode and
// error_resilient_mode are disabled.
static void debug_check_frame_counts(const VP9_COMMON *const cm) {
FRAME_COUNTS zero_counts;
vp9_zero(zero_counts);
assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode);
assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
sizeof(cm->counts.y_mode)));
assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
sizeof(cm->counts.uv_mode)));
assert(!memcmp(cm->counts.partition, zero_counts.partition,
sizeof(cm->counts.partition)));
assert(!memcmp(cm->counts.coef, zero_counts.coef,
sizeof(cm->counts.coef)));
assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
sizeof(cm->counts.eob_branch)));
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
sizeof(cm->counts.switchable_interp)));
assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
sizeof(cm->counts.inter_mode)));
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
sizeof(cm->counts.intra_inter)));
assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
sizeof(cm->counts.comp_inter)));
assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
sizeof(cm->counts.single_ref)));
assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
sizeof(cm->counts.comp_ref)));
assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
assert(!memcmp(cm->counts.mbskip, zero_counts.mbskip,
sizeof(cm->counts.mbskip)));
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
}
#endif // NDEBUG
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
int i;
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *data = pbi->source;
const uint8_t *const data_end = pbi->source + pbi->source_sz;
struct vp9_read_bit_buffer rb = { data, data_end, 0, cm, error_handler };
const size_t first_partition_size = read_uncompressed_header(pbi, &rb);
const int keyframe = cm->frame_type == KEY_FRAME;
const int tile_rows = 1 << cm->log2_tile_rows;
const int tile_cols = 1 << cm->log2_tile_cols;
YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
if (!first_partition_size) {
// showing a frame directly
*p_data_end = data + 1;
return 0;
}
if (!pbi->decoded_key_frame && !keyframe)
return -1;
data += vp9_rb_bytes_read(&rb);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
pbi->do_loopfilter_inline =
(cm->log2_tile_rows | cm->log2_tile_cols) == 0 && cm->lf.filter_level;
if (pbi->do_loopfilter_inline && pbi->lf_worker.data1 == NULL) {
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_malloc(sizeof(LFWorkerData)));
pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker;
if (pbi->oxcf.max_threads > 1 && !vp9_worker_reset(&pbi->lf_worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Loop filter thread creation failed");
}
}
alloc_tile_storage(pbi, tile_cols);
xd->mi_8x8 = cm->mi_grid_visible;
xd->mode_info_stride = cm->mode_info_stride;
set_prev_mi(cm);
setup_plane_dequants(cm, xd, cm->base_qindex);
setup_block_dptrs(xd, cm->subsampling_x, cm->subsampling_y);
cm->fc = cm->frame_contexts[cm->frame_context_idx];
vp9_zero(cm->counts);
for (i = 0; i < MAX_MB_PLANE; ++i)
vp9_zero(xd->plane[i].dqcoeff);
xd->corrupted = 0;
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
// TODO(jzern): remove frame_parallel_decoding_mode restriction for
// single-frame tile decoding.
if (pbi->oxcf.max_threads > 1 && tile_rows == 1 && tile_cols > 1 &&
cm->frame_parallel_decoding_mode) {
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size);
} else {
*p_data_end = decode_tiles(pbi, data + first_partition_size);
}
cm->last_width = cm->width;
cm->last_height = cm->height;
new_fb->corrupted |= xd->corrupted;
if (!pbi->decoded_key_frame) {
if (keyframe && !new_fb->corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(cm);
if (!frame_is_intra_only(cm)) {
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
} else {
debug_check_frame_counts(cm);
}
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
return 0;
}