blob: cc018fcbe640442be572b6b2b014fd398566f8d4 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_scan.h"
#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCK *x,
const MACROBLOCKD *xd,
const TileInfo *const tile,
MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
int_mv *mv_ref_list,
int mi_row, int mi_col) {
const int *ref_sign_bias = cm->ref_frame_sign_bias;
int i, refmv_count = 0;
const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];
int different_ref_found = 0;
int context_counter = 0;
int const_motion = 0;
// Blank the reference vector list
memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
// The nearest 2 blocks are treated differently
// if the size < 8x8 we get the mv from the bmi substructure,
// and we also need to keep a mode count.
for (i = 0; i < 2; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride];
const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
// Keep counts for entropy encoding.
context_counter += mode_2_counter[candidate->mode];
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
refmv_count, mv_ref_list, Done);
}
}
const_motion = 1;
// Check the rest of the neighbors in much the same way
// as before except we don't need to keep track of sub blocks or
// mode counts.
for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride]->mbmi;
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done);
}
}
// Since we couldn't find 2 mvs from the same reference frame
// go back through the neighbors and find motion vectors from
// different reference frames.
if (different_ref_found && !refmv_count) {
for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
const POSITION *mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
* xd->mi_stride]->mbmi;
// If the candidate is INTRA we don't want to consider its mv.
IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias,
refmv_count, mv_ref_list, Done);
}
}
}
Done:
x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter];
// Clamp vectors
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
return const_motion;
}
static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int64_t best_rd_sofar) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
const int step_param = cpi->sf.mv.fullpel_search_step_param;
const int sadpb = x->sadperbit16;
MV mvp_full;
const int ref = mbmi->ref_frame[0];
const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
int dis;
int rate_mode;
const int tmp_col_min = x->mv_col_min;
const int tmp_col_max = x->mv_col_max;
const int tmp_row_min = x->mv_row_min;
const int tmp_row_max = x->mv_row_max;
int rv = 0;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp9_set_mv_search_range(x, &ref_mv);
assert(x->mv_best_ref_index[ref] <= 2);
if (x->mv_best_ref_index[ref] < 2)
mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
else
mvp_full = x->pred_mv[ref];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list),
&ref_mv, &tmp_mv->as_mv, INT_MAX, 0);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv->as_mv.row * 8;
mvp_full.col = tmp_mv->as_mv.col * 8;
*rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
rate_mode = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]]
[INTER_OFFSET(NEWMV)];
rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) >
best_rd_sofar);
if (rv) {
cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref], NULL, 0, 0);
*rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
return rv;
}
static void block_variance(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int w, int h, unsigned int *sse, int *sum,
int block_size, unsigned int *sse8x8,
int *sum8x8, unsigned int *var8x8) {
int i, j, k = 0;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i += block_size) {
for (j = 0; j < w; j += block_size) {
vpx_get8x8var(src + src_stride * i + j, src_stride,
ref + ref_stride * i + j, ref_stride,
&sse8x8[k], &sum8x8[k]);
*sse += sse8x8[k];
*sum += sum8x8[k];
var8x8[k] = sse8x8[k] - (((unsigned int)sum8x8[k] * sum8x8[k]) >> 6);
k++;
}
}
}
static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
unsigned int *sse_i, int *sum_i,
unsigned int *var_o, unsigned int *sse_o,
int *sum_o) {
const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
int i, j, k = 0;
for (i = 0; i < nh; i += 2) {
for (j = 0; j < nw; j += 2) {
sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
var_o[k] = sse_o[k] - (((unsigned int)sum_o[k] * sum_o[k]) >>
(b_width_log2_lookup[unit_size] +
b_height_log2_lookup[unit_size] + 6));
k++;
}
}
}
static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum,
unsigned int *var_y, unsigned int *sse_y,
int mi_row, int mi_col, int *early_term) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const uint32_t dc_quant = pd->dequant[0];
const uint32_t ac_quant = pd->dequant[1];
const int64_t dc_thr = dc_quant * dc_quant >> 6;
const int64_t ac_thr = ac_quant * ac_quant >> 6;
unsigned int var;
int sum;
int skip_dc = 0;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
const int num8x8 = 1 << (bw + bh - 2);
unsigned int sse8x8[64] = {0};
int sum8x8[64] = {0};
unsigned int var8x8[64] = {0};
TX_SIZE tx_size;
int i, k;
// Calculate variance for whole partition, and also save 8x8 blocks' variance
// to be used in following transform skipping test.
block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
var = sse - (((int64_t)sum * sum) >> (bw + bh + 4));
*var_y = var;
*sse_y = sse;
if (cpi->common.tx_mode == TX_MODE_SELECT) {
if (sse > (var << 2))
tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
else
tx_size = TX_8X8;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
tx_size = TX_8X8;
else if (tx_size > TX_16X16)
tx_size = TX_16X16;
} else {
tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
}
assert(tx_size >= TX_8X8);
xd->mi[0]->mbmi.tx_size = tx_size;
// Evaluate if the partition block is a skippable block in Y plane.
{
unsigned int sse16x16[16] = {0};
int sum16x16[16] = {0};
unsigned int var16x16[16] = {0};
const int num16x16 = num8x8 >> 2;
unsigned int sse32x32[4] = {0};
int sum32x32[4] = {0};
unsigned int var32x32[4] = {0};
const int num32x32 = num8x8 >> 4;
int ac_test = 1;
int dc_test = 1;
const int num = (tx_size == TX_8X8) ? num8x8 :
((tx_size == TX_16X16) ? num16x16 : num32x32);
const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 :
((tx_size == TX_16X16) ? sse16x16 : sse32x32);
const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 :
((tx_size == TX_16X16) ? var16x16 : var32x32);
// Calculate variance if tx_size > TX_8X8
if (tx_size >= TX_16X16)
calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
sum16x16);
if (tx_size == TX_32X32)
calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
sse32x32, sum32x32);
// Skipping test
x->skip_txfm[0] = SKIP_TXFM_NONE;
for (k = 0; k < num; k++)
// Check if all ac coefficients can be quantized to zero.
if (!(var_tx[k] < ac_thr || var == 0)) {
ac_test = 0;
break;
}
for (k = 0; k < num; k++)
// Check if dc coefficient can be quantized to zero.
if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
dc_test = 0;
break;
}
if (ac_test) {
x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
if (dc_test)
x->skip_txfm[0] = SKIP_TXFM_AC_DC;
} else if (dc_test) {
skip_dc = 1;
}
}
if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
int skip_uv[2] = {0};
unsigned int var_uv[2];
unsigned int sse_uv[2];
*out_rate_sum = 0;
*out_dist_sum = sse << 4;
// Transform skipping test in UV planes.
for (i = 1; i <= 2; i++) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const TX_SIZE uv_tx_size = get_uv_tx_size(&xd->mi[0]->mbmi, pd);
const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size];
const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd);
const int uv_bw = b_width_log2_lookup[uv_bsize];
const int uv_bh = b_height_log2_lookup[uv_bsize];
const int sf = (uv_bw - b_width_log2_lookup[unit_size]) +
(uv_bh - b_height_log2_lookup[unit_size]);
const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf);
const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf);
int j = i - 1;
vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i);
var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse_uv[j]);
if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
(sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
skip_uv[j] = 1;
else
break;
}
// If the transform in YUV planes are skippable, the mode search checks
// fewer inter modes and doesn't check intra modes.
if (skip_uv[0] & skip_uv[1]) {
*early_term = 1;
}
return;
}
if (!skip_dc) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
if (!skip_dc) {
*out_rate_sum = rate >> 1;
*out_dist_sum = dist << 3;
} else {
*out_rate_sum = 0;
*out_dist_sum = (sse - var) << 4;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum += rate;
*out_dist_sum += dist << 4;
}
static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum,
unsigned int *var_y, unsigned int *sse_y) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int64_t dc_thr = p->quant_thred[0] >> 6;
const int64_t ac_thr = p->quant_thred[1] >> 6;
const uint32_t dc_quant = pd->dequant[0];
const uint32_t ac_quant = pd->dequant[1];
unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
int skip_dc = 0;
*var_y = var;
*sse_y = sse;
if (cpi->common.tx_mode == TX_MODE_SELECT) {
if (sse > (var << 2))
xd->mi[0]->mbmi.tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
else
xd->mi[0]->mbmi.tx_size = TX_8X8;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
xd->mi[0]->mbmi.tx_size = TX_8X8;
else if (xd->mi[0]->mbmi.tx_size > TX_16X16)
xd->mi[0]->mbmi.tx_size = TX_16X16;
} else {
xd->mi[0]->mbmi.tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
}
// Evaluate if the partition block is a skippable block in Y plane.
{
const BLOCK_SIZE unit_size =
txsize_to_bsize[xd->mi[0]->mbmi.tx_size];
const unsigned int num_blk_log2 =
(b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) +
(b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]);
const unsigned int sse_tx = sse >> num_blk_log2;
const unsigned int var_tx = var >> num_blk_log2;
x->skip_txfm[0] = SKIP_TXFM_NONE;
// Check if all ac coefficients can be quantized to zero.
if (var_tx < ac_thr || var == 0) {
x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
// Check if dc coefficient can be quantized to zero.
if (sse_tx - var_tx < dc_thr || sse == var)
x->skip_txfm[0] = SKIP_TXFM_AC_DC;
} else {
if (sse_tx - var_tx < dc_thr || sse == var)
skip_dc = 1;
}
}
if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
*out_rate_sum = 0;
*out_dist_sum = sse << 4;
return;
}
if (!skip_dc) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
if (!skip_dc) {
*out_rate_sum = rate >> 1;
*out_dist_sum = dist << 3;
} else {
*out_rate_sum = 0;
*out_dist_sum = (sse - var) << 4;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum += rate;
*out_dist_sum += dist << 4;
}
#if CONFIG_VP9_HIGHBITDEPTH
static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
int *skippable, int64_t *sse, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
unsigned int var_y, sse_y;
(void)plane;
(void)tx_size;
model_rd_for_sb_y(cpi, bsize, x, xd, rate, dist, &var_y, &sse_y);
*sse = INT_MAX;
*skippable = 0;
return;
}
#else
static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
int *skippable, int64_t *sse, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblockd_plane *pd = &xd->plane[plane];
const struct macroblock_plane *const p = &x->plane[plane];
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
const int step = 1 << (tx_size << 1);
const int block_step = (1 << tx_size);
int block = 0, r, c;
int shift = tx_size == TX_32X32 ? 0 : 2;
const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 :
xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 :
xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
int eob_cost = 0;
(void)cpi;
vp9_subtract_plane(x, bsize, plane);
*skippable = 1;
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (r = 0; r < max_blocks_high; r += block_step) {
for (c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[(r * diff_stride + c) << 2];
switch (tx_size) {
case TX_32X32:
vpx_fdct32x32_rd(src_diff, coeff, diff_stride);
vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round_fp, p->quant_fp, p->quant_shift,
qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_16X16:
vp9_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff);
vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vp9_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff);
vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
break;
}
*skippable &= (*eob == 0);
eob_cost += 1;
}
block += step;
}
}
if (*skippable && *sse < INT64_MAX) {
*rate = 0;
*dist = (*sse << 6) >> shift;
*sse = *dist;
return;
}
block = 0;
*rate = 0;
*dist = 0;
if (*sse < INT64_MAX)
*sse = (*sse << 6) >> shift;
for (r = 0; r < max_blocks_high; r += block_step) {
for (c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
if (*eob == 1)
*rate += (int)abs(qcoeff[0]);
else if (*eob > 1)
*rate += (int)vp9_satd((const int16_t *)qcoeff, step << 4);
*dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> shift;
}
block += step;
}
}
if (*skippable == 0) {
*rate <<= 10;
*rate += (eob_cost << 8);
}
}
#endif
static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum,
unsigned int *var_y, unsigned int *sse_y) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
int i;
*out_rate_sum = 0;
*out_dist_sum = 0;
for (i = 1; i <= 2; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const uint32_t dc_quant = pd->dequant[0];
const uint32_t ac_quant = pd->dequant[1];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
unsigned int var;
if (!x->color_sensitivity[i - 1])
continue;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
*var_y += var;
*sse_y += sse;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum += rate >> 1;
*out_dist_sum += dist << 3;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
ac_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
ac_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
ac_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum += rate;
*out_dist_sum += dist << 4;
}
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
int i;
for (i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
if (p != NULL)
p->in_use = 0;
}
static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MV_REFERENCE_FRAME ref_frame,
PREDICTION_MODE this_mode,
unsigned int var_y, unsigned int sse_y,
struct buf_2d yv12_mb[][MAX_MB_PLANE],
int *rate, int64_t *dist) {
MACROBLOCKD *xd = &x->e_mbd;
const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
unsigned int var = var_y, sse = sse_y;
// Skipping threshold for ac.
unsigned int thresh_ac;
// Skipping threshold for dc.
unsigned int thresh_dc;
if (x->encode_breakout > 0) {
// Set a maximum for threshold to avoid big PSNR loss in low bit rate
// case. Use extreme low threshold for static frames to limit
// skipping.
const unsigned int max_thresh = 36000;
// The encode_breakout input
const unsigned int min_thresh =
MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
#if CONFIG_VP9_HIGHBITDEPTH
const int shift = (xd->bd << 1) - 16;
#endif
// Calculate threshold according to dequant value.
thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3;
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
// Adjust ac threshold according to partition size.
thresh_ac >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
thresh_ac = 0;
thresh_dc = 0;
}
// Y skipping condition checking for ac and dc.
if (var <= thresh_ac && (sse - var) <= thresh_dc) {
unsigned int sse_u, sse_v;
unsigned int var_u, var_v;
// Skip UV prediction unless breakout is zero (lossless) to save
// computation with low impact on the result
if (x->encode_breakout == 0) {
xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
}
var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse_u);
// U skipping condition checking
if (((var_u << 2) <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
x->plane[2].src.stride,
xd->plane[2].dst.buf,
xd->plane[2].dst.stride, &sse_v);
// V skipping condition checking
if (((var_v << 2) <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
x->skip = 1;
// The cost of skip bit needs to be added.
*rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
// More on this part of rate
// rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
// Scaling factor for SSE from spatial domain to frequency
// domain is 16. Adjust distortion accordingly.
// TODO(yunqingwang): In this function, only y-plane dist is
// calculated.
*dist = (sse << 4); // + ((sse_u + sse_v) << 4);
// *disable_skip = 1;
}
}
}
}
struct estimate_block_intra_args {
VP9_COMP *cpi;
MACROBLOCK *x;
PREDICTION_MODE mode;
int rate;
int64_t dist;
};
static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct estimate_block_intra_args* const args = arg;
VP9_COMP *const cpi = args->cpi;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int i, j;
int rate;
int64_t dist;
int64_t this_sse = INT64_MAX;
int is_skippable;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
assert(plane == 0);
(void) plane;
p->src.buf = &src_buf_base[4 * (j * src_stride + i)];
pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)];
// Use source buffer as an approximation for the fully reconstructed buffer.
vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize],
tx_size, args->mode,
x->skip_encode ? p->src.buf : pd->dst.buf,
x->skip_encode ? src_stride : dst_stride,
pd->dst.buf, dst_stride,
i, j, 0);
// TODO(jingning): This needs further refactoring.
block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0,
bsize_tx, MIN(tx_size, TX_16X16));
x->skip_txfm[0] = is_skippable;
rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), is_skippable);
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
args->rate += rate;
args->dist += dist;
}
static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = {
{THR_DC, THR_V_PRED, THR_H_PRED, THR_TM},
{THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV},
{THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG},
};
static const PREDICTION_MODE intra_mode_list[] = {
DC_PRED, V_PRED, H_PRED, TM_PRED
};
static int mode_offset(const PREDICTION_MODE mode) {
if (mode >= NEARESTMV) {
return INTER_OFFSET(mode);
} else {
switch (mode) {
case DC_PRED:
return 0;
case V_PRED:
return 1;
case H_PRED:
return 2;
case TM_PRED:
return 3;
default:
return -1;
}
}
}
static INLINE void update_thresh_freq_fact(VP9_COMP *cpi,
TileDataEnc *tile_data,
BLOCK_SIZE bsize,
MV_REFERENCE_FRAME ref_frame,
THR_MODES best_mode_idx,
PREDICTION_MODE mode) {
THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
if (thr_mode_idx == best_mode_idx)
*freq_fact -= (*freq_fact >> 4);
else
*freq_fact = MIN(*freq_fact + RD_THRESH_INC,
cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}
void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
RD_COST this_rdc, best_rdc;
PREDICTION_MODE this_mode;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
const TX_SIZE intra_tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
MODE_INFO *const mic = xd->mi[0];
int *bmode_costs;
const MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL;
const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
bmode_costs = cpi->y_mode_costs[A][L];
(void) ctx;
vp9_rd_cost_reset(&best_rdc);
vp9_rd_cost_reset(&this_rdc);
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->mv[0].as_int = INVALID_MV;
mbmi->uv_mode = DC_PRED;
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
// Change the limit of this loop to add other intra prediction
// mode tests.
for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
args.mode = this_mode;
args.rate = 0;
args.dist = 0;
mbmi->tx_size = intra_tx_size;
vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
estimate_block_intra, &args);
this_rdc.rate = args.rate;
this_rdc.dist = args.dist;
this_rdc.rate += bmode_costs[this_mode];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
mbmi->mode = this_mode;
}
}
*rd_cost = best_rdc;
}
static void init_ref_frame_cost(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
int ref_frame_cost[MAX_REF_FRAMES]) {
vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] =
ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1);
ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
}
typedef struct {
MV_REFERENCE_FRAME ref_frame;
PREDICTION_MODE pred_mode;
} REF_MODE;
#define RT_INTER_MODES 8
static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
{LAST_FRAME, ZEROMV},
{LAST_FRAME, NEARESTMV},
{GOLDEN_FRAME, ZEROMV},
{LAST_FRAME, NEARMV},
{LAST_FRAME, NEWMV},
{GOLDEN_FRAME, NEARESTMV},
{GOLDEN_FRAME, NEARMV},
{GOLDEN_FRAME, NEWMV}
};
static const REF_MODE ref_mode_set_svc[RT_INTER_MODES] = {
{LAST_FRAME, ZEROMV},
{GOLDEN_FRAME, ZEROMV},
{LAST_FRAME, NEARESTMV},
{LAST_FRAME, NEARMV},
{GOLDEN_FRAME, NEARESTMV},
{GOLDEN_FRAME, NEARMV},
{LAST_FRAME, NEWMV},
{GOLDEN_FRAME, NEWMV}
};
// TODO(jingning) placeholder for inter-frame non-RD mode decision.
// this needs various further optimizations. to be continued..
void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
TileDataEnc *tile_data,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct macroblockd_plane *const pd = &xd->plane[0];
PREDICTION_MODE best_mode = ZEROMV;
MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
MV_REFERENCE_FRAME usable_ref_frame;
TX_SIZE best_tx_size = TX_SIZES;
INTERP_FILTER best_pred_filter = EIGHTTAP;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
RD_COST this_rdc, best_rdc;
uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE;
// var_y and sse_y are saved to be used in skipping checking
unsigned int var_y = UINT_MAX;
unsigned int sse_y = UINT_MAX;
// Reduce the intra cost penalty for small blocks (<=16x16).
const int reduction_fac = (bsize <= BLOCK_16X16) ?
((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
const int intra_cost_penalty = vp9_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac;
const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
intra_cost_penalty, 0);
const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize];
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
INTERP_FILTER filter_ref;
const int bsl = mi_width_log2_lookup[bsize];
const int pred_filter_search = cm->interp_filter == SWITCHABLE ?
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
int const_motion[MAX_REF_FRAMES] = { 0 };
const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
// For speed 6, the result of interp filter is reused later in actual encoding
// process.
// tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
PRED_BUFFER tmp[4];
DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]);
#endif
struct buf_2d orig_dst = pd->dst;
PRED_BUFFER *best_pred = NULL;
PRED_BUFFER *this_mode_pred = NULL;
const int pixels_in_block = bh * bw;
int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
int ref_frame_skip_mask = 0;
int idx;
int best_pred_sad = INT_MAX;
int best_early_term = 0;
int ref_frame_cost[MAX_REF_FRAMES];
init_ref_frame_cost(cm, xd, ref_frame_cost);
if (reuse_inter_pred) {
int i;
for (i = 0; i < 3; i++) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
else
tmp[i].data = &pred_buf[pixels_in_block * i];
#else
tmp[i].data = &pred_buf[pixels_in_block * i];
#endif // CONFIG_VP9_HIGHBITDEPTH
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
x->skip = 0;
if (xd->up_available)
filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
else if (xd->left_available)
filter_ref = xd->mi[-1]->mbmi.interp_filter;
else
filter_ref = cm->interp_filter;
// initialize mode decisions
vp9_rd_cost_reset(&best_rdc);
vp9_rd_cost_reset(rd_cost);
mbmi->sb_type = bsize;
mbmi->ref_frame[0] = NONE;
mbmi->ref_frame[1] = NONE;
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cm->tx_mode]);
#if CONFIG_VP9_TEMPORAL_DENOISING
vp9_denoiser_reset_frame_stats(ctx);
#endif
if (cpi->rc.frames_since_golden == 0 && !cpi->use_svc) {
usable_ref_frame = LAST_FRAME;
} else {
usable_ref_frame = GOLDEN_FRAME;
}
for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
x->pred_mv_sad[ref_frame] = INT_MAX;
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
sf, sf);
if (cm->use_prev_frame_mvs)
vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame,
candidates, mi_row, mi_col, NULL, NULL,
x->mbmi_ext->mode_context);
else
const_motion[ref_frame] = mv_refs_rt(cm, x, xd, tile_info,
xd->mi[0],
ref_frame, candidates,
mi_row, mi_col);
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&frame_mv[NEARESTMV][ref_frame],
&frame_mv[NEARMV][ref_frame]);
if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
ref_frame, bsize);
} else {
ref_frame_skip_mask |= (1 << ref_frame);
}
}
for (idx = 0; idx < RT_INTER_MODES; ++idx) {
int rate_mv = 0;
int mode_rd_thresh;
int mode_index;
int i;
int64_t this_sse;
int is_skippable;
int this_early_term = 0;
PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode;
if (cpi->use_svc)
this_mode = ref_mode_set_svc[idx].pred_mode;
if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
continue;
ref_frame = ref_mode_set[idx].ref_frame;
if (cpi->use_svc)
ref_frame = ref_mode_set_svc[idx].ref_frame;
if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
continue;
if (const_motion[ref_frame] && this_mode == NEARMV)
continue;
i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking)
if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
ref_frame_skip_mask |= (1 << ref_frame);
if (ref_frame_skip_mask & (1 << ref_frame))
continue;
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
mbmi->ref_frame[0] = ref_frame;
set_ref_ptrs(cm, xd, ref_frame, NONE);
mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
mode_rd_thresh = best_mode_skip_txfm ?
rd_threshes[mode_index] << 1 : rd_threshes[mode_index];
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
continue;
if (this_mode == NEWMV) {
if (ref_frame > LAST_FRAME && !cpi->use_svc) {
int tmp_sad;
int dis, cost_list[5];
if (bsize < BLOCK_16X16)
continue;
tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
if (tmp_sad > x->pred_mv_sad[LAST_FRAME])
continue;
if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad)
continue;
frame_mv[NEWMV][ref_frame].as_int = mbmi->mv[0].as_int;
rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv,
&x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv,
&x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &dis,
&x->pred_sse[ref_frame], NULL, 0, 0);
} else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost)) {
continue;
}
}
if (this_mode == NEWMV && ref_frame == LAST_FRAME &&
frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
const int pre_stride = xd->plane[0].pre[0].stride;
const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
(frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
(frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
x->plane[0].src.stride,
pre_buf, pre_stride);
x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
}
if (cpi->use_svc) {
if (this_mode == NEWMV && ref_frame == GOLDEN_FRAME &&
frame_mv[NEWMV][GOLDEN_FRAME].as_int != INVALID_MV) {
const int pre_stride = xd->plane[0].pre[0].stride;
const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
(frame_mv[NEWMV][GOLDEN_FRAME].as_mv.row >> 3) * pre_stride +
(frame_mv[NEWMV][GOLDEN_FRAME].as_mv.col >> 3);
best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
x->plane[0].src.stride,
pre_buf, pre_stride);
x->pred_mv_sad[GOLDEN_FRAME] = best_pred_sad;
}
}
if (this_mode != NEARESTMV &&
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[NEARESTMV][ref_frame].as_int)
continue;
mbmi->mode = this_mode;
mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
// Search for the best prediction filter type, when the resulting
// motion vector is at sub-pixel accuracy level for luma component, i.e.,
// the last three bits are all zeros.
if (reuse_inter_pred) {
if (!this_mode_pred) {
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search
&& (ref_frame == LAST_FRAME ||
(ref_frame == GOLDEN_FRAME && cpi->use_svc))
&& (((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) != 0)) {
int pf_rate[3];
int64_t pf_dist[3];
unsigned int pf_var[3];
unsigned int pf_sse[3];
TX_SIZE pf_tx_size[3];
int64_t best_cost = INT64_MAX;
INTERP_FILTER best_filter = SWITCHABLE, filter;
PRED_BUFFER *current_pred = this_mode_pred;
for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) {
int64_t cost;
mbmi->interp_filter = filter;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter],
&pf_var[filter], &pf_sse[filter]);
pf_rate[filter] += vp9_get_switchable_rate(cpi, xd);
cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]);
pf_tx_size[filter] = mbmi->tx_size;
if (cost < best_cost) {
best_filter = filter;
best_cost = cost;
skip_txfm = x->skip_txfm[0];
if (reuse_inter_pred) {
if (this_mode_pred != current_pred) {
free_pred_buffer(this_mode_pred);
this_mode_pred = current_pred;
}
if (filter < EIGHTTAP_SHARP) {
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
}
if (reuse_inter_pred && this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mbmi->interp_filter = best_filter;
mbmi->tx_size = pf_tx_size[best_filter];
this_rdc.rate = pf_rate[best_filter];
this_rdc.dist = pf_dist[best_filter];
var_y = pf_var[best_filter];
sse_y = pf_sse[best_filter];
x->skip_txfm[0] = skip_txfm;
if (reuse_inter_pred) {
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = this_mode_pred->stride;
}
} else {
mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
// For large partition blocks, extra testing is done.
if (bsize > BLOCK_32X32 &&
!cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id) &&
cm->base_qindex) {
model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate,
&this_rdc.dist, &var_y, &sse_y, mi_row, mi_col,
&this_early_term);
} else {
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&var_y, &sse_y);
}
}
if (!this_early_term) {
this_sse = (int64_t)sse_y;
block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable,
&this_sse, 0, bsize, MIN(mbmi->tx_size, TX_16X16));
x->skip_txfm[0] = is_skippable;
if (is_skippable) {
this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
} else {
if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) <
RDCOST(x->rdmult, x->rddiv, 0, this_sse)) {
this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
} else {
this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
this_rdc.dist = this_sse;
x->skip_txfm[0] = SKIP_TXFM_AC_DC;
}
}
if (cm->interp_filter == SWITCHABLE) {
if ((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07)
this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
}
} else {
this_rdc.rate += cm->interp_filter == SWITCHABLE ?
vp9_get_switchable_rate(cpi, xd) : 0;
this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
}
if (x->color_sensitivity[0] || x->color_sensitivity[1]) {
int uv_rate = 0;
int64_t uv_dist = 0;
if (x->color_sensitivity[0])
vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1);
if (x->color_sensitivity[1])
vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2);
model_rd_for_sb_uv(cpi, bsize, x, xd, &uv_rate, &uv_dist,
&var_y, &sse_y);
this_rdc.rate += uv_rate;
this_rdc.dist += uv_dist;
}
this_rdc.rate += rate_mv;
this_rdc.rate +=
cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]][INTER_OFFSET(
this_mode)];
this_rdc.rate += ref_frame_cost[ref_frame];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
// Skipping checking: test to see if this block can be reconstructed by
// prediction only.
if (cpi->allow_encode_breakout) {
encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode,
var_y, sse_y, yv12_mb, &this_rdc.rate,
&this_rdc.dist);
if (x->skip) {
this_rdc.rate += rate_mv;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate,
this_rdc.dist);
}
}
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0)
vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx);
#else
(void)ctx;
#endif
if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
best_rdc = this_rdc;
best_mode = this_mode;
best_pred_filter = mbmi->interp_filter;
best_tx_size = mbmi->tx_size;
best_ref_frame = ref_frame;
best_mode_skip_txfm = x->skip_txfm[0];
best_early_term = this_early_term;
if (reuse_inter_pred) {
free_pred_buffer(best_pred);
best_pred = this_mode_pred;
}
} else {
if (reuse_inter_pred)
free_pred_buffer(this_mode_pred);
}
if (x->skip)
break;
// If early termination flag is 1 and at least 2 modes are checked,
// the mode search is terminated.
if (best_early_term && idx > 0) {
x->skip = 1;
break;
}
}
mbmi->mode = best_mode;
mbmi->interp_filter = best_pred_filter;
mbmi->tx_size = best_tx_size;
mbmi->ref_frame[0] = best_ref_frame;
mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
x->skip_txfm[0] = best_mode_skip_txfm;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
if (best_rdc.rdcost == INT64_MAX ||
(!x->skip && best_rdc.rdcost > inter_mode_thresh &&
bsize <= cpi->sf.max_intra_bsize)) {
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
const TX_SIZE intra_tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
int i;
TX_SIZE best_intra_tx_size = TX_SIZES;
if (reuse_inter_pred && best_pred != NULL) {
if (best_pred->data == orig_dst.buf) {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
vpx_highbd_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride,
NULL, 0, NULL, 0, bw, bh, xd->bd);
else
vpx_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride,
NULL, 0, NULL, 0, bw, bh);
#else
vpx_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride,
NULL, 0, NULL, 0, bw, bh);
#endif // CONFIG_VP9_HIGHBITDEPTH
best_pred = this_mode_pred;
}
}
pd->dst = orig_dst;
for (i = 0; i < 4; ++i) {
const PREDICTION_MODE this_mode = intra_mode_list[i];
THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
int mode_rd_thresh = rd_threshes[mode_index];
if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize]))
continue;
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
continue;
mbmi->mode = this_mode;
mbmi->ref_frame[0] = INTRA_FRAME;
args.mode = this_mode;
args.rate = 0;
args.dist = 0;
mbmi->tx_size = intra_tx_size;
vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
estimate_block_intra, &args);
this_rdc.rate = args.rate;
this_rdc.dist = args.dist;
this_rdc.rate += cpi->mbmode_cost[this_mode];
this_rdc.rate += ref_frame_cost[INTRA_FRAME];
this_rdc.rate += intra_cost_penalty;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_mode = this_mode;
best_intra_tx_size = mbmi->tx_size;
best_ref_frame = INTRA_FRAME;
mbmi->uv_mode = this_mode;
mbmi->mv[0].as_int = INVALID_MV;
best_mode_skip_txfm = x->skip_txfm[0];
}
}
// Reset mb_mode_info to the best inter mode.
if (best_ref_frame != INTRA_FRAME) {
mbmi->tx_size = best_tx_size;
} else {
mbmi->tx_size = best_intra_tx_size;
}
}
pd->dst = orig_dst;
mbmi->mode = best_mode;
mbmi->ref_frame[0] = best_ref_frame;
x->skip_txfm[0] = best_mode_skip_txfm;
if (reuse_inter_pred && best_pred != NULL) {
if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
vpx_highbd_convolve_copy(best_pred->data, best_pred->stride,
pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh, xd->bd);
else
vpx_convolve_copy(best_pred->data, best_pred->stride,
pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh);
#else
vpx_convolve_copy(best_pred->data, best_pred->stride,
pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
if (cpi->sf.adaptive_rd_thresh) {
THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mbmi->mode)];
if (best_ref_frame == INTRA_FRAME) {
// Only consider the modes that are included in the intra_mode_list.
int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE);
int i;
// TODO(yunqingwang): Check intra mode mask and only update freq_fact
// for those valid modes.
for (i = 0; i < intra_modes; i++) {
update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME,
best_mode_idx, intra_mode_list[i]);
}
} else {
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
PREDICTION_MODE this_mode;
if (best_ref_frame != ref_frame) continue;
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame,
best_mode_idx, this_mode);
}
}
}
}
*rd_cost = best_rdc;
}
void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE;
MV_REFERENCE_FRAME best_ref_frame = NONE;
unsigned char segment_id = mbmi->segment_id;
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int64_t best_rd = INT64_MAX;
b_mode_info bsi[MAX_REF_FRAMES][4];
int ref_frame_skip_mask = 0;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
ctx->pred_pixel_ready = 0;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
int_mv dummy_mv[2];
x->pred_mv_sad[ref_frame] = INT_MAX;
if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame];
const struct scale_factors *const sf =
&cm->frame_refs[ref_frame - 1].sf;
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
sf, sf);
vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame,
candidates, mi_row, mi_col, NULL, NULL,
mbmi_ext->mode_context);
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&dummy_mv[0], &dummy_mv[1]);
} else {
ref_frame_skip_mask |= (1 << ref_frame);
}
}
mbmi->sb_type = bsize;
mbmi->tx_size = TX_4X4;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
: cm->interp_filter;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
int64_t this_rd = 0;
int plane;
if (ref_frame_skip_mask & (1 << ref_frame))
continue;
// TODO(jingning, agrange): Scaling reference frame not supported for
// sub8x8 blocks. Is this supported now?
if (ref_frame > INTRA_FRAME &&
vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
continue;
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
continue;
mbmi->ref_frame[0] = ref_frame;
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (plane = 0; plane < MAX_MB_PLANE; plane++)
xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
int_mv b_mv[MB_MODE_COUNT];
int64_t b_best_rd = INT64_MAX;
const int i = idy * 2 + idx;
PREDICTION_MODE this_mode;
RD_COST this_rdc;
unsigned int var_y, sse_y;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const struct buf_2d orig_src = p->src;
const struct buf_2d orig_dst = pd->dst;
struct buf_2d orig_pre[2];
memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));
// set buffer pointers for sub8x8 motion search.
p->src.buf =
&p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
pd->dst.buf =
&pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
pd->pre[0].buf =
&pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8,
i, pd->pre[0].stride)];
b_mv[ZEROMV].as_int = 0;
b_mv[NEWMV].as_int = INVALID_MV;
vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col,
&b_mv[NEARESTMV],
&b_mv[NEARMV],
mbmi_ext->mode_context);
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
int b_rate = 0;
xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;
if (this_mode == NEWMV) {
const int step_param = cpi->sf.mv.fullpel_search_step_param;
MV mvp_full;
MV tmp_mv;
int cost_list[5];
const int tmp_col_min = x->mv_col_min;
const int tmp_col_max = x->mv_col_max;
const int tmp_row_min = x->mv_row_min;
const int tmp_row_max = x->mv_row_max;
int dummy_dist;
if (i == 0) {
mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
} else {
mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3;
mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3;
}
vp9_set_mv_search_range(x, &mbmi_ext->ref_mvs[0]->as_mv);
vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, x->sadperbit4,
cond_cost_list(cpi, cost_list),
&mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv,
INT_MAX, 0);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv.row * 8;
mvp_full.col = tmp_mv.col * 8;
b_rate += vp9_mv_bit_cost(&mvp_full,
&mbmi_ext->ref_mvs[ref_frame][0].as_mv,
x->nmvjointcost, x->mvcost,
MV_COST_WEIGHT);
b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
[INTER_OFFSET(NEWMV)];
if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd)
continue;
cpi->find_fractional_mv_step(x, &tmp_mv,
&mbmi_ext->ref_mvs[ref_frame][0].as_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dummy_dist,
&x->pred_sse[ref_frame], NULL, 0, 0);
xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv;
} else {
b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
pd->dst.buf, pd->dst.stride,
&xd->mi[0]->bmi[i].as_mv[0].as_mv,
&xd->block_refs[0]->sf,
4 * num_4x4_blocks_wide,
4 * num_4x4_blocks_high, 0,
vp9_filter_kernels[mbmi->interp_filter],
MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * (i & 0x01),
mi_row * MI_SIZE + 4 * (i >> 1), xd->bd);
} else {
#endif
vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
pd->dst.buf, pd->dst.stride,
&xd->mi[0]->bmi[i].as_mv[0].as_mv,
&xd->block_refs[0]->sf,
4 * num_4x4_blocks_wide,
4 * num_4x4_blocks_high, 0,
vp9_filter_kernels[mbmi->interp_filter],
MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * (i & 0x01),
mi_row * MI_SIZE + 4 * (i >> 1));
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&var_y, &sse_y);
this_rdc.rate += b_rate;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < b_best_rd) {
b_best_rd = this_rdc.rdcost;
bsi[ref_frame][i].as_mode = this_mode;
bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv;
}
} // mode search
// restore source and prediction buffer pointers.
p->src = orig_src;
pd->pre[0] = orig_pre[0];
pd->dst = orig_dst;
this_rd += b_best_rd;
xd->mi[0]->bmi[i] = bsi[ref_frame][i];
if (num_4x4_blocks_wide > 1)
xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i];
if (num_4x4_blocks_high > 1)
xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i];
}
} // loop through sub8x8 blocks
if (this_rd < best_rd) {
best_rd = this_rd;
best_ref_frame = ref_frame;
}
} // reference frames
mbmi->tx_size = TX_4X4;
mbmi->ref_frame[0] = best_ref_frame;
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
const int block = idy * 2 + idx;
xd->mi[0]->bmi[block] = bsi[best_ref_frame][block];
if (num_4x4_blocks_wide > 1)
xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block];
if (num_4x4_blocks_high > 1)
xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block];
}
}
mbmi->mode = xd->mi[0]->bmi[3].as_mode;
ctx->mic = *(xd->mi[0]);
ctx->mbmi_ext = *x->mbmi_ext;
ctx->skip_txfm[0] = SKIP_TXFM_NONE;
ctx->skip = 0;
// Dummy assignment for speed -5. No effect in speed -6.
rd_cost->rdcost = best_rd;
}