| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "vpx_config.h" |
| #include "./vpx_scale_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vp8_rtcd.h" |
| #include "vp8/common/onyxc_int.h" |
| #include "vp8/common/blockd.h" |
| #include "onyx_int.h" |
| #include "vp8/common/systemdependent.h" |
| #include "vp8/encoder/quantize.h" |
| #include "vp8/common/alloccommon.h" |
| #include "mcomp.h" |
| #include "firstpass.h" |
| #include "vpx_dsp/psnr.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "vp8/common/extend.h" |
| #include "ratectrl.h" |
| #include "vp8/common/quant_common.h" |
| #include "segmentation.h" |
| #if CONFIG_POSTPROC |
| #include "vp8/common/postproc.h" |
| #endif |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp8/common/reconintra.h" |
| #include "vp8/common/swapyv12buffer.h" |
| #include "vp8/common/threading.h" |
| #include "vpx_ports/system_state.h" |
| #include "vpx_ports/vpx_timer.h" |
| #if ARCH_ARM |
| #include "vpx_ports/arm.h" |
| #endif |
| #if CONFIG_MULTI_RES_ENCODING |
| #include "mr_dissim.h" |
| #endif |
| #include "encodeframe.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING |
| extern int vp8_update_coef_context(VP8_COMP *cpi); |
| extern void vp8_update_coef_probs(VP8_COMP *cpi); |
| #endif |
| |
| extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi); |
| extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val); |
| extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi); |
| |
| extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *post, int filt_lvl, |
| int low_var_thresh, int flag); |
| extern void print_parms(VP8_CONFIG *ocf, char *filenam); |
| extern unsigned int vp8_get_processor_freq(); |
| extern void print_tree_update_probs(); |
| extern int vp8cx_create_encoder_threads(VP8_COMP *cpi); |
| extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi); |
| |
| int vp8_estimate_entropy_savings(VP8_COMP *cpi); |
| |
| int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest); |
| |
| extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance); |
| |
| static void set_default_lf_deltas(VP8_COMP *cpi); |
| |
| extern const int vp8_gf_interval_table[101]; |
| |
| #if CONFIG_INTERNAL_STATS |
| #include "math.h" |
| #include "vpx_dsp/ssim.h" |
| #endif |
| |
| #ifdef OUTPUT_YUV_SRC |
| FILE *yuv_file; |
| #endif |
| #ifdef OUTPUT_YUV_DENOISED |
| FILE *yuv_denoised_file; |
| #endif |
| |
| #if 0 |
| FILE *framepsnr; |
| FILE *kf_list; |
| FILE *keyfile; |
| #endif |
| |
| #if 0 |
| extern int skip_true_count; |
| extern int skip_false_count; |
| #endif |
| |
| #ifdef VP8_ENTROPY_STATS |
| extern int intra_mode_stats[10][10][10]; |
| #endif |
| |
| #ifdef SPEEDSTATS |
| unsigned int frames_at_speed[16] = { 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0 }; |
| unsigned int tot_pm = 0; |
| unsigned int cnt_pm = 0; |
| unsigned int tot_ef = 0; |
| unsigned int cnt_ef = 0; |
| #endif |
| |
| #ifdef MODE_STATS |
| extern unsigned __int64 Sectionbits[50]; |
| extern int y_modes[5]; |
| extern int uv_modes[4]; |
| extern int b_modes[10]; |
| |
| extern int inter_y_modes[10]; |
| extern int inter_uv_modes[4]; |
| extern unsigned int inter_b_modes[15]; |
| #endif |
| |
| extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; |
| |
| extern const int qrounding_factors[129]; |
| extern const int qzbin_factors[129]; |
| extern void vp8cx_init_quantizer(VP8_COMP *cpi); |
| extern const int vp8cx_base_skip_false_prob[128]; |
| |
| /* Tables relating active max Q to active min Q */ |
| static const unsigned char kf_low_motion_minq[QINDEX_RANGE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
| 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, |
| 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, |
| 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, |
| 17, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23 |
| }; |
| static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, |
| 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, |
| 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, |
| 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, |
| 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, |
| 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30 |
| }; |
| static const unsigned char gf_low_motion_minq[QINDEX_RANGE] = { |
| 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, |
| 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, |
| 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, |
| 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, |
| 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, |
| 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44, |
| 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58 |
| }; |
| static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] = { |
| 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, |
| 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, |
| 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, |
| 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, |
| 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, |
| 37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, |
| 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 |
| }; |
| static const unsigned char gf_high_motion_minq[QINDEX_RANGE] = { |
| 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, |
| 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, |
| 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, |
| 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, |
| 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, |
| 40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 |
| }; |
| static const unsigned char inter_minq[QINDEX_RANGE] = { |
| 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, |
| 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, |
| 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, |
| 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, |
| 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, |
| 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, |
| 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 |
| }; |
| |
| #ifdef PACKET_TESTING |
| extern FILE *vpxlogc; |
| #endif |
| |
| static void save_layer_context(VP8_COMP *cpi) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer]; |
| |
| /* Save layer dependent coding state */ |
| lc->target_bandwidth = cpi->target_bandwidth; |
| lc->starting_buffer_level = cpi->oxcf.starting_buffer_level; |
| lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level; |
| lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size; |
| lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms; |
| lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms; |
| lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms; |
| lc->buffer_level = cpi->buffer_level; |
| lc->bits_off_target = cpi->bits_off_target; |
| lc->total_actual_bits = cpi->total_actual_bits; |
| lc->worst_quality = cpi->worst_quality; |
| lc->active_worst_quality = cpi->active_worst_quality; |
| lc->best_quality = cpi->best_quality; |
| lc->active_best_quality = cpi->active_best_quality; |
| lc->ni_av_qi = cpi->ni_av_qi; |
| lc->ni_tot_qi = cpi->ni_tot_qi; |
| lc->ni_frames = cpi->ni_frames; |
| lc->avg_frame_qindex = cpi->avg_frame_qindex; |
| lc->rate_correction_factor = cpi->rate_correction_factor; |
| lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor; |
| lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor; |
| lc->zbin_over_quant = cpi->mb.zbin_over_quant; |
| lc->inter_frame_target = cpi->inter_frame_target; |
| lc->total_byte_count = cpi->total_byte_count; |
| lc->filter_level = cpi->common.filter_level; |
| |
| lc->last_frame_percent_intra = cpi->last_frame_percent_intra; |
| |
| memcpy(lc->count_mb_ref_frame_usage, cpi->mb.count_mb_ref_frame_usage, |
| sizeof(cpi->mb.count_mb_ref_frame_usage)); |
| } |
| |
| static void restore_layer_context(VP8_COMP *cpi, const int layer) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[layer]; |
| |
| /* Restore layer dependent coding state */ |
| cpi->current_layer = layer; |
| cpi->target_bandwidth = lc->target_bandwidth; |
| cpi->oxcf.target_bandwidth = lc->target_bandwidth; |
| cpi->oxcf.starting_buffer_level = lc->starting_buffer_level; |
| cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level; |
| cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size; |
| cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms; |
| cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms; |
| cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms; |
| cpi->buffer_level = lc->buffer_level; |
| cpi->bits_off_target = lc->bits_off_target; |
| cpi->total_actual_bits = lc->total_actual_bits; |
| cpi->active_worst_quality = lc->active_worst_quality; |
| cpi->active_best_quality = lc->active_best_quality; |
| cpi->ni_av_qi = lc->ni_av_qi; |
| cpi->ni_tot_qi = lc->ni_tot_qi; |
| cpi->ni_frames = lc->ni_frames; |
| cpi->avg_frame_qindex = lc->avg_frame_qindex; |
| cpi->rate_correction_factor = lc->rate_correction_factor; |
| cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor; |
| cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor; |
| cpi->mb.zbin_over_quant = lc->zbin_over_quant; |
| cpi->inter_frame_target = lc->inter_frame_target; |
| cpi->total_byte_count = lc->total_byte_count; |
| cpi->common.filter_level = lc->filter_level; |
| |
| cpi->last_frame_percent_intra = lc->last_frame_percent_intra; |
| |
| memcpy(cpi->mb.count_mb_ref_frame_usage, lc->count_mb_ref_frame_usage, |
| sizeof(cpi->mb.count_mb_ref_frame_usage)); |
| } |
| |
| static int rescale(int val, int num, int denom) { |
| int64_t llnum = num; |
| int64_t llden = denom; |
| int64_t llval = val; |
| |
| return (int)(llval * llnum / llden); |
| } |
| |
| static void init_temporal_layer_context(VP8_COMP *cpi, VP8_CONFIG *oxcf, |
| const int layer, |
| double prev_layer_framerate) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[layer]; |
| |
| lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer]; |
| lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000; |
| |
| lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level; |
| lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level; |
| lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size; |
| |
| lc->starting_buffer_level = |
| rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000); |
| |
| if (oxcf->optimal_buffer_level == 0) { |
| lc->optimal_buffer_level = lc->target_bandwidth / 8; |
| } else { |
| lc->optimal_buffer_level = |
| rescale((int)(oxcf->optimal_buffer_level), lc->target_bandwidth, 1000); |
| } |
| |
| if (oxcf->maximum_buffer_size == 0) { |
| lc->maximum_buffer_size = lc->target_bandwidth / 8; |
| } else { |
| lc->maximum_buffer_size = |
| rescale((int)(oxcf->maximum_buffer_size), lc->target_bandwidth, 1000); |
| } |
| |
| /* Work out the average size of a frame within this layer */ |
| if (layer > 0) { |
| lc->avg_frame_size_for_layer = |
| (int)((cpi->oxcf.target_bitrate[layer] - |
| cpi->oxcf.target_bitrate[layer - 1]) * |
| 1000 / (lc->framerate - prev_layer_framerate)); |
| } |
| |
| lc->active_worst_quality = cpi->oxcf.worst_allowed_q; |
| lc->active_best_quality = cpi->oxcf.best_allowed_q; |
| lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q; |
| |
| lc->buffer_level = lc->starting_buffer_level; |
| lc->bits_off_target = lc->starting_buffer_level; |
| |
| lc->total_actual_bits = 0; |
| lc->ni_av_qi = 0; |
| lc->ni_tot_qi = 0; |
| lc->ni_frames = 0; |
| lc->rate_correction_factor = 1.0; |
| lc->key_frame_rate_correction_factor = 1.0; |
| lc->gf_rate_correction_factor = 1.0; |
| lc->inter_frame_target = 0; |
| } |
| |
| // Upon a run-time change in temporal layers, reset the layer context parameters |
| // for any "new" layers. For "existing" layers, let them inherit the parameters |
| // from the previous layer state (at the same layer #). In future we may want |
| // to better map the previous layer state(s) to the "new" ones. |
| static void reset_temporal_layer_change(VP8_COMP *cpi, VP8_CONFIG *oxcf, |
| const int prev_num_layers) { |
| int i; |
| double prev_layer_framerate = 0; |
| const int curr_num_layers = cpi->oxcf.number_of_layers; |
| // If the previous state was 1 layer, get current layer context from cpi. |
| // We need this to set the layer context for the new layers below. |
| if (prev_num_layers == 1) { |
| cpi->current_layer = 0; |
| save_layer_context(cpi); |
| } |
| for (i = 0; i < curr_num_layers; ++i) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[i]; |
| if (i >= prev_num_layers) { |
| init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate); |
| } |
| // The initial buffer levels are set based on their starting levels. |
| // We could set the buffer levels based on the previous state (normalized |
| // properly by the layer bandwidths) but we would need to keep track of |
| // the previous set of layer bandwidths (i.e., target_bitrate[i]) |
| // before the layer change. For now, reset to the starting levels. |
| lc->buffer_level = |
| cpi->oxcf.starting_buffer_level_in_ms * cpi->oxcf.target_bitrate[i]; |
| lc->bits_off_target = lc->buffer_level; |
| // TDOD(marpan): Should we set the rate_correction_factor and |
| // active_worst/best_quality to values derived from the previous layer |
| // state (to smooth-out quality dips/rate fluctuation at transition)? |
| |
| // We need to treat the 1 layer case separately: oxcf.target_bitrate[i] |
| // is not set for 1 layer, and the restore_layer_context/save_context() |
| // are not called in the encoding loop, so we need to call it here to |
| // pass the layer context state to |cpi|. |
| if (curr_num_layers == 1) { |
| lc->target_bandwidth = cpi->oxcf.target_bandwidth; |
| lc->buffer_level = |
| cpi->oxcf.starting_buffer_level_in_ms * lc->target_bandwidth / 1000; |
| lc->bits_off_target = lc->buffer_level; |
| restore_layer_context(cpi, 0); |
| } |
| prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i]; |
| } |
| } |
| |
| static void setup_features(VP8_COMP *cpi) { |
| // If segmentation enabled set the update flags |
| if (cpi->mb.e_mbd.segmentation_enabled) { |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } else { |
| cpi->mb.e_mbd.update_mb_segmentation_map = 0; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 0; |
| } |
| |
| cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; |
| memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, |
| sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, |
| sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| |
| set_default_lf_deltas(cpi); |
| } |
| |
| static void dealloc_raw_frame_buffers(VP8_COMP *cpi); |
| |
| void vp8_initialize_enc(void) { |
| static volatile int init_done = 0; |
| |
| if (!init_done) { |
| vpx_dsp_rtcd(); |
| vp8_init_intra_predictors(); |
| init_done = 1; |
| } |
| } |
| |
| static void dealloc_compressor_data(VP8_COMP *cpi) { |
| vpx_free(cpi->tplist); |
| cpi->tplist = NULL; |
| |
| /* Delete last frame MV storage buffers */ |
| vpx_free(cpi->lfmv); |
| cpi->lfmv = 0; |
| |
| vpx_free(cpi->lf_ref_frame_sign_bias); |
| cpi->lf_ref_frame_sign_bias = 0; |
| |
| vpx_free(cpi->lf_ref_frame); |
| cpi->lf_ref_frame = 0; |
| |
| /* Delete sementation map */ |
| vpx_free(cpi->segmentation_map); |
| cpi->segmentation_map = 0; |
| |
| vpx_free(cpi->active_map); |
| cpi->active_map = 0; |
| |
| vp8_de_alloc_frame_buffers(&cpi->common); |
| |
| vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame); |
| vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); |
| dealloc_raw_frame_buffers(cpi); |
| |
| vpx_free(cpi->tok); |
| cpi->tok = 0; |
| |
| /* Structure used to monitor GF usage */ |
| vpx_free(cpi->gf_active_flags); |
| cpi->gf_active_flags = 0; |
| |
| /* Activity mask based per mb zbin adjustments */ |
| vpx_free(cpi->mb_activity_map); |
| cpi->mb_activity_map = 0; |
| |
| vpx_free(cpi->mb.pip); |
| cpi->mb.pip = 0; |
| |
| #if CONFIG_MULTITHREAD |
| /* De-allocate mutex */ |
| if (cpi->pmutex != NULL) { |
| VP8_COMMON *const pc = &cpi->common; |
| int i; |
| |
| for (i = 0; i < pc->mb_rows; ++i) { |
| pthread_mutex_destroy(&cpi->pmutex[i]); |
| } |
| vpx_free(cpi->pmutex); |
| cpi->pmutex = NULL; |
| } |
| |
| vpx_free(cpi->mt_current_mb_col); |
| cpi->mt_current_mb_col = NULL; |
| #endif |
| } |
| |
| static void enable_segmentation(VP8_COMP *cpi) { |
| /* Set the appropriate feature bit */ |
| cpi->mb.e_mbd.segmentation_enabled = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| static void disable_segmentation(VP8_COMP *cpi) { |
| /* Clear the appropriate feature bit */ |
| cpi->mb.e_mbd.segmentation_enabled = 0; |
| } |
| |
| /* Valid values for a segment are 0 to 3 |
| * Segmentation map is arrange as [Rows][Columns] |
| */ |
| static void set_segmentation_map(VP8_COMP *cpi, |
| unsigned char *segmentation_map) { |
| /* Copy in the new segmentation map */ |
| memcpy(cpi->segmentation_map, segmentation_map, |
| (cpi->common.mb_rows * cpi->common.mb_cols)); |
| |
| /* Signal that the map should be updated. */ |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| /* The values given for each segment can be either deltas (from the default |
| * value chosen for the frame) or absolute values. |
| * |
| * Valid range for abs values is: |
| * (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF) |
| * Valid range for delta values are: |
| * (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF) |
| * |
| * abs_delta = SEGMENT_DELTADATA (deltas) |
| * abs_delta = SEGMENT_ABSDATA (use the absolute values given). |
| * |
| */ |
| static void set_segment_data(VP8_COMP *cpi, signed char *feature_data, |
| unsigned char abs_delta) { |
| cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta; |
| memcpy(cpi->segment_feature_data, feature_data, |
| sizeof(cpi->segment_feature_data)); |
| } |
| |
| /* A simple function to cyclically refresh the background at a lower Q */ |
| static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) { |
| unsigned char *seg_map = cpi->segmentation_map; |
| signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; |
| int i; |
| int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; |
| int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols; |
| |
| cpi->cyclic_refresh_q = Q / 2; |
| |
| if (cpi->oxcf.screen_content_mode) { |
| // Modify quality ramp-up based on Q. Above some Q level, increase the |
| // number of blocks to be refreshed, and reduce it below the thredhold. |
| // Turn-off under certain conditions (i.e., away from key frame, and if |
| // we are at good quality (low Q) and most of the blocks were |
| // skipped-encoded |
| // in previous frame. |
| int qp_thresh = (cpi->oxcf.screen_content_mode == 2) ? 80 : 100; |
| if (Q >= qp_thresh) { |
| cpi->cyclic_refresh_mode_max_mbs_perframe = |
| (cpi->common.mb_rows * cpi->common.mb_cols) / 10; |
| } else if (cpi->frames_since_key > 250 && Q < 20 && |
| cpi->mb.skip_true_count > (int)(0.95 * mbs_in_frame)) { |
| cpi->cyclic_refresh_mode_max_mbs_perframe = 0; |
| } else { |
| cpi->cyclic_refresh_mode_max_mbs_perframe = |
| (cpi->common.mb_rows * cpi->common.mb_cols) / 20; |
| } |
| block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; |
| } |
| |
| // Set every macroblock to be eligible for update. |
| // For key frame this will reset seg map to 0. |
| memset(cpi->segmentation_map, 0, mbs_in_frame); |
| |
| if (cpi->common.frame_type != KEY_FRAME && block_count > 0) { |
| /* Cycle through the macro_block rows */ |
| /* MB loop to set local segmentation map */ |
| i = cpi->cyclic_refresh_mode_index; |
| assert(i < mbs_in_frame); |
| do { |
| /* If the MB is as a candidate for clean up then mark it for |
| * possible boost/refresh (segment 1) The segment id may get |
| * reset to 0 later if the MB gets coded anything other than |
| * last frame 0,0 as only (last frame 0,0) MBs are eligable for |
| * refresh : that is to say Mbs likely to be background blocks. |
| */ |
| if (cpi->cyclic_refresh_map[i] == 0) { |
| seg_map[i] = 1; |
| block_count--; |
| } else if (cpi->cyclic_refresh_map[i] < 0) { |
| cpi->cyclic_refresh_map[i]++; |
| } |
| |
| i++; |
| if (i == mbs_in_frame) i = 0; |
| |
| } while (block_count && i != cpi->cyclic_refresh_mode_index); |
| |
| cpi->cyclic_refresh_mode_index = i; |
| |
| #if CONFIG_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive && |
| Q < (int)cpi->denoiser.denoise_pars.qp_thresh && |
| (cpi->frames_since_key > |
| 2 * cpi->denoiser.denoise_pars.consec_zerolast)) { |
| // Under aggressive denoising, use segmentation to turn off loop |
| // filter below some qp thresh. The filter is reduced for all |
| // blocks that have been encoded as ZEROMV LAST x frames in a row, |
| // where x is set by cpi->denoiser.denoise_pars.consec_zerolast. |
| // This is to avoid "dot" artifacts that can occur from repeated |
| // loop filtering on noisy input source. |
| cpi->cyclic_refresh_q = Q; |
| // lf_adjustment = -MAX_LOOP_FILTER; |
| lf_adjustment = -40; |
| for (i = 0; i < mbs_in_frame; ++i) { |
| seg_map[i] = (cpi->consec_zero_last[i] > |
| cpi->denoiser.denoise_pars.consec_zerolast) |
| ? 1 |
| : 0; |
| } |
| } |
| } |
| #endif |
| } |
| |
| /* Activate segmentation. */ |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| enable_segmentation(cpi); |
| |
| /* Set up the quant segment data */ |
| feature_data[MB_LVL_ALT_Q][0] = 0; |
| feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q); |
| feature_data[MB_LVL_ALT_Q][2] = 0; |
| feature_data[MB_LVL_ALT_Q][3] = 0; |
| |
| /* Set up the loop segment data */ |
| feature_data[MB_LVL_ALT_LF][0] = 0; |
| feature_data[MB_LVL_ALT_LF][1] = lf_adjustment; |
| feature_data[MB_LVL_ALT_LF][2] = 0; |
| feature_data[MB_LVL_ALT_LF][3] = 0; |
| |
| /* Initialise the feature data structure */ |
| set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA); |
| } |
| |
| static void set_default_lf_deltas(VP8_COMP *cpi) { |
| cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; |
| |
| memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| |
| /* Test of ref frame deltas */ |
| cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; |
| cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; |
| cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; |
| cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; |
| |
| cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */ |
| |
| if (cpi->oxcf.Mode == MODE_REALTIME) { |
| cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */ |
| } else { |
| cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */ |
| } |
| |
| cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */ |
| cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */ |
| } |
| |
| /* Convenience macros for mapping speed and mode into a continuous |
| * range |
| */ |
| #define GOOD(x) (x + 1) |
| #define RT(x) (x + 7) |
| |
| static int speed_map(int speed, const int *map) { |
| int res; |
| |
| do { |
| res = *map++; |
| } while (speed >= *map++); |
| return res; |
| } |
| |
| static const int thresh_mult_map_znn[] = { |
| /* map common to zero, nearest, and near */ |
| 0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX |
| }; |
| |
| static const int thresh_mult_map_vhpred[] = { 1000, GOOD(2), 1500, GOOD(3), |
| 2000, RT(0), 1000, RT(1), |
| 2000, RT(7), INT_MAX, INT_MAX }; |
| |
| static const int thresh_mult_map_bpred[] = { 2000, GOOD(0), 2500, GOOD(2), |
| 5000, GOOD(3), 7500, RT(0), |
| 2500, RT(1), 5000, RT(6), |
| INT_MAX, INT_MAX }; |
| |
| static const int thresh_mult_map_tm[] = { 1000, GOOD(2), 1500, GOOD(3), |
| 2000, RT(0), 0, RT(1), |
| 1000, RT(2), 2000, RT(7), |
| INT_MAX, INT_MAX }; |
| |
| static const int thresh_mult_map_new1[] = { 1000, GOOD(2), 2000, |
| RT(0), 2000, INT_MAX }; |
| |
| static const int thresh_mult_map_new2[] = { 1000, GOOD(2), 2000, GOOD(3), |
| 2500, GOOD(5), 4000, RT(0), |
| 2000, RT(2), 2500, RT(5), |
| 4000, INT_MAX }; |
| |
| static const int thresh_mult_map_split1[] = { |
| 2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX, |
| RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX |
| }; |
| |
| static const int thresh_mult_map_split2[] = { |
| 5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX, |
| RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX |
| }; |
| |
| static const int mode_check_freq_map_zn2[] = { |
| /* {zero,nearest}{2,3} */ |
| 0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX |
| }; |
| |
| static const int mode_check_freq_map_vhbpred[] = { |
| 0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX |
| }; |
| |
| static const int mode_check_freq_map_near2[] = { |
| 0, GOOD(5), 2, RT(0), 0, RT(3), 2, |
| RT(10), 1 << 2, RT(11), 1 << 3, RT(12), 1 << 4, INT_MAX |
| }; |
| |
| static const int mode_check_freq_map_new1[] = { |
| 0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX |
| }; |
| |
| static const int mode_check_freq_map_new2[] = { 0, GOOD(5), 4, RT(0), |
| 0, RT(3), 4, RT(10), |
| 1 << 3, RT(11), 1 << 4, RT(12), |
| 1 << 5, INT_MAX }; |
| |
| static const int mode_check_freq_map_split1[] = { |
| 0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX |
| }; |
| |
| static const int mode_check_freq_map_split2[] = { |
| 0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX |
| }; |
| |
| void vp8_set_speed_features(VP8_COMP *cpi) { |
| SPEED_FEATURES *sf = &cpi->sf; |
| int Mode = cpi->compressor_speed; |
| int Speed = cpi->Speed; |
| int Speed2; |
| int i; |
| VP8_COMMON *cm = &cpi->common; |
| int last_improved_quant = sf->improved_quant; |
| int ref_frames; |
| |
| /* Initialise default mode frequency sampling variables */ |
| for (i = 0; i < MAX_MODES; ++i) { |
| cpi->mode_check_freq[i] = 0; |
| } |
| |
| cpi->mb.mbs_tested_so_far = 0; |
| cpi->mb.mbs_zero_last_dot_suppress = 0; |
| |
| /* best quality defaults */ |
| sf->RD = 1; |
| sf->search_method = NSTEP; |
| sf->improved_quant = 1; |
| sf->improved_dct = 1; |
| sf->auto_filter = 1; |
| sf->recode_loop = 1; |
| sf->quarter_pixel_search = 1; |
| sf->half_pixel_search = 1; |
| sf->iterative_sub_pixel = 1; |
| sf->optimize_coefficients = 1; |
| sf->use_fastquant_for_pick = 0; |
| sf->no_skip_block4x4_search = 1; |
| |
| sf->first_step = 0; |
| sf->max_step_search_steps = MAX_MVSEARCH_STEPS; |
| sf->improved_mv_pred = 1; |
| |
| /* default thresholds to 0 */ |
| for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = 0; |
| |
| /* Count enabled references */ |
| ref_frames = 1; |
| if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frames++; |
| if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frames++; |
| if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frames++; |
| |
| /* Convert speed to continuous range, with clamping */ |
| if (Mode == 0) { |
| Speed = 0; |
| } else if (Mode == 2) { |
| Speed = RT(Speed); |
| } else { |
| if (Speed > 5) Speed = 5; |
| Speed = GOOD(Speed); |
| } |
| |
| sf->thresh_mult[THR_ZERO1] = sf->thresh_mult[THR_NEAREST1] = |
| sf->thresh_mult[THR_NEAR1] = sf->thresh_mult[THR_DC] = 0; /* always */ |
| |
| sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO3] = |
| sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST3] = |
| sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR3] = |
| speed_map(Speed, thresh_mult_map_znn); |
| |
| sf->thresh_mult[THR_V_PRED] = sf->thresh_mult[THR_H_PRED] = |
| speed_map(Speed, thresh_mult_map_vhpred); |
| sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred); |
| sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm); |
| sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1); |
| sf->thresh_mult[THR_NEW2] = sf->thresh_mult[THR_NEW3] = |
| speed_map(Speed, thresh_mult_map_new2); |
| sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1); |
| sf->thresh_mult[THR_SPLIT2] = sf->thresh_mult[THR_SPLIT3] = |
| speed_map(Speed, thresh_mult_map_split2); |
| |
| // Special case for temporal layers. |
| // Reduce the thresholds for zero/nearest/near for GOLDEN, if GOLDEN is |
| // used as second reference. We don't modify thresholds for ALTREF case |
| // since ALTREF is usually used as long-term reference in temporal layers. |
| if ((cpi->Speed <= 6) && (cpi->oxcf.number_of_layers > 1) && |
| (cpi->ref_frame_flags & VP8_LAST_FRAME) && |
| (cpi->ref_frame_flags & VP8_GOLD_FRAME)) { |
| if (cpi->closest_reference_frame == GOLDEN_FRAME) { |
| sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 3; |
| sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 3; |
| sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 3; |
| } else { |
| sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 1; |
| sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 1; |
| sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 1; |
| } |
| } |
| |
| cpi->mode_check_freq[THR_ZERO1] = cpi->mode_check_freq[THR_NEAREST1] = |
| cpi->mode_check_freq[THR_NEAR1] = cpi->mode_check_freq[THR_TM] = |
| cpi->mode_check_freq[THR_DC] = 0; /* always */ |
| |
| cpi->mode_check_freq[THR_ZERO2] = cpi->mode_check_freq[THR_ZERO3] = |
| cpi->mode_check_freq[THR_NEAREST2] = cpi->mode_check_freq[THR_NEAREST3] = |
| speed_map(Speed, mode_check_freq_map_zn2); |
| |
| cpi->mode_check_freq[THR_NEAR2] = cpi->mode_check_freq[THR_NEAR3] = |
| speed_map(Speed, mode_check_freq_map_near2); |
| |
| cpi->mode_check_freq[THR_V_PRED] = cpi->mode_check_freq[THR_H_PRED] = |
| cpi->mode_check_freq[THR_B_PRED] = |
| speed_map(Speed, mode_check_freq_map_vhbpred); |
| |
| // For real-time mode at speed 10 keep the mode_check_freq threshold |
| // for NEW1 similar to that of speed 9. |
| Speed2 = Speed; |
| if (cpi->Speed == 10 && Mode == 2) Speed2 = RT(9); |
| cpi->mode_check_freq[THR_NEW1] = speed_map(Speed2, mode_check_freq_map_new1); |
| |
| cpi->mode_check_freq[THR_NEW2] = cpi->mode_check_freq[THR_NEW3] = |
| speed_map(Speed, mode_check_freq_map_new2); |
| |
| cpi->mode_check_freq[THR_SPLIT1] = |
| speed_map(Speed, mode_check_freq_map_split1); |
| cpi->mode_check_freq[THR_SPLIT2] = cpi->mode_check_freq[THR_SPLIT3] = |
| speed_map(Speed, mode_check_freq_map_split2); |
| Speed = cpi->Speed; |
| switch (Mode) { |
| #if !CONFIG_REALTIME_ONLY |
| case 0: /* best quality mode */ |
| sf->first_step = 0; |
| sf->max_step_search_steps = MAX_MVSEARCH_STEPS; |
| break; |
| case 1: |
| case 3: |
| if (Speed > 0) { |
| /* Disable coefficient optimization above speed 0 */ |
| sf->optimize_coefficients = 0; |
| sf->use_fastquant_for_pick = 1; |
| sf->no_skip_block4x4_search = 0; |
| |
| sf->first_step = 1; |
| } |
| |
| if (Speed > 2) { |
| sf->improved_quant = 0; |
| sf->improved_dct = 0; |
| |
| /* Only do recode loop on key frames, golden frames and |
| * alt ref frames |
| */ |
| sf->recode_loop = 2; |
| } |
| |
| if (Speed > 3) { |
| sf->auto_filter = 1; |
| sf->recode_loop = 0; /* recode loop off */ |
| sf->RD = 0; /* Turn rd off */ |
| } |
| |
| if (Speed > 4) { |
| sf->auto_filter = 0; /* Faster selection of loop filter */ |
| } |
| |
| break; |
| #endif |
| case 2: |
| sf->optimize_coefficients = 0; |
| sf->recode_loop = 0; |
| sf->auto_filter = 1; |
| sf->iterative_sub_pixel = 1; |
| sf->search_method = NSTEP; |
| |
| if (Speed > 0) { |
| sf->improved_quant = 0; |
| sf->improved_dct = 0; |
| |
| sf->use_fastquant_for_pick = 1; |
| sf->no_skip_block4x4_search = 0; |
| sf->first_step = 1; |
| } |
| |
| if (Speed > 2) sf->auto_filter = 0; /* Faster selection of loop filter */ |
| |
| if (Speed > 3) { |
| sf->RD = 0; |
| sf->auto_filter = 1; |
| } |
| |
| if (Speed > 4) { |
| sf->auto_filter = 0; /* Faster selection of loop filter */ |
| sf->search_method = HEX; |
| sf->iterative_sub_pixel = 0; |
| } |
| |
| if (Speed > 6) { |
| unsigned int sum = 0; |
| unsigned int total_mbs = cm->MBs; |
| int thresh; |
| unsigned int total_skip; |
| |
| int min = 2000; |
| |
| if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout; |
| |
| min >>= 7; |
| |
| for (i = 0; i < min; ++i) { |
| sum += cpi->mb.error_bins[i]; |
| } |
| |
| total_skip = sum; |
| sum = 0; |
| |
| /* i starts from 2 to make sure thresh started from 2048 */ |
| for (; i < 1024; ++i) { |
| sum += cpi->mb.error_bins[i]; |
| |
| if (10 * sum >= |
| (unsigned int)(cpi->Speed - 6) * (total_mbs - total_skip)) { |
| break; |
| } |
| } |
| |
| i--; |
| thresh = (i << 7); |
| |
| if (thresh < 2000) thresh = 2000; |
| |
| if (ref_frames > 1) { |
| sf->thresh_mult[THR_NEW1] = thresh; |
| sf->thresh_mult[THR_NEAREST1] = thresh >> 1; |
| sf->thresh_mult[THR_NEAR1] = thresh >> 1; |
| } |
| |
| if (ref_frames > 2) { |
| sf->thresh_mult[THR_NEW2] = thresh << 1; |
| sf->thresh_mult[THR_NEAREST2] = thresh; |
| sf->thresh_mult[THR_NEAR2] = thresh; |
| } |
| |
| if (ref_frames > 3) { |
| sf->thresh_mult[THR_NEW3] = thresh << 1; |
| sf->thresh_mult[THR_NEAREST3] = thresh; |
| sf->thresh_mult[THR_NEAR3] = thresh; |
| } |
| |
| sf->improved_mv_pred = 0; |
| } |
| |
| if (Speed > 8) sf->quarter_pixel_search = 0; |
| |
| if (cm->version == 0) { |
| cm->filter_type = NORMAL_LOOPFILTER; |
| |
| if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER; |
| } else { |
| cm->filter_type = SIMPLE_LOOPFILTER; |
| } |
| |
| /* This has a big hit on quality. Last resort */ |
| if (Speed >= 15) sf->half_pixel_search = 0; |
| |
| memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins)); |
| |
| }; /* switch */ |
| |
| /* Slow quant, dct and trellis not worthwhile for first pass |
| * so make sure they are always turned off. |
| */ |
| if (cpi->pass == 1) { |
| sf->improved_quant = 0; |
| sf->optimize_coefficients = 0; |
| sf->improved_dct = 0; |
| } |
| |
| if (cpi->sf.search_method == NSTEP) { |
| vp8_init3smotion_compensation(&cpi->mb, |
| cm->yv12_fb[cm->lst_fb_idx].y_stride); |
| } else if (cpi->sf.search_method == DIAMOND) { |
| vp8_init_dsmotion_compensation(&cpi->mb, |
| cm->yv12_fb[cm->lst_fb_idx].y_stride); |
| } |
| |
| if (cpi->sf.improved_dct) { |
| cpi->mb.short_fdct8x4 = vp8_short_fdct8x4; |
| cpi->mb.short_fdct4x4 = vp8_short_fdct4x4; |
| } else { |
| /* No fast FDCT defined for any platform at this time. */ |
| cpi->mb.short_fdct8x4 = vp8_short_fdct8x4; |
| cpi->mb.short_fdct4x4 = vp8_short_fdct4x4; |
| } |
| |
| cpi->mb.short_walsh4x4 = vp8_short_walsh4x4; |
| |
| if (cpi->sf.improved_quant) { |
| cpi->mb.quantize_b = vp8_regular_quantize_b; |
| } else { |
| cpi->mb.quantize_b = vp8_fast_quantize_b; |
| } |
| if (cpi->sf.improved_quant != last_improved_quant) vp8cx_init_quantizer(cpi); |
| |
| if (cpi->sf.iterative_sub_pixel == 1) { |
| cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively; |
| } else if (cpi->sf.quarter_pixel_search) { |
| cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step; |
| } else if (cpi->sf.half_pixel_search) { |
| cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step; |
| } else { |
| cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; |
| } |
| |
| if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) { |
| cpi->mb.optimize = 1; |
| } else { |
| cpi->mb.optimize = 0; |
| } |
| |
| if (cpi->common.full_pixel) { |
| cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; |
| } |
| |
| #ifdef SPEEDSTATS |
| frames_at_speed[cpi->Speed]++; |
| #endif |
| } |
| #undef GOOD |
| #undef RT |
| |
| static void alloc_raw_frame_buffers(VP8_COMP *cpi) { |
| #if VP8_TEMPORAL_ALT_REF |
| int width = (cpi->oxcf.Width + 15) & ~15; |
| int height = (cpi->oxcf.Height + 15) & ~15; |
| #endif |
| |
| cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height, |
| cpi->oxcf.lag_in_frames); |
| if (!cpi->lookahead) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate lag buffers"); |
| } |
| |
| #if VP8_TEMPORAL_ALT_REF |
| |
| if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height, |
| VP8BORDERINPIXELS)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate altref buffer"); |
| } |
| |
| #endif |
| } |
| |
| static void dealloc_raw_frame_buffers(VP8_COMP *cpi) { |
| #if VP8_TEMPORAL_ALT_REF |
| vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer); |
| #endif |
| vp8_lookahead_destroy(cpi->lookahead); |
| } |
| |
| static int vp8_alloc_partition_data(VP8_COMP *cpi) { |
| vpx_free(cpi->mb.pip); |
| |
| cpi->mb.pip = |
| vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1), |
| sizeof(PARTITION_INFO)); |
| if (!cpi->mb.pip) return 1; |
| |
| cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; |
| |
| return 0; |
| } |
| |
| void vp8_alloc_compressor_data(VP8_COMP *cpi) { |
| VP8_COMMON *cm = &cpi->common; |
| |
| int width = cm->Width; |
| int height = cm->Height; |
| #if CONFIG_MULTITHREAD |
| int prev_mb_rows = cm->mb_rows; |
| #endif |
| |
| if (vp8_alloc_frame_buffers(cm, width, height)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffers"); |
| } |
| |
| if (vp8_alloc_partition_data(cpi)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate partition data"); |
| } |
| |
| if ((width & 0xf) != 0) width += 16 - (width & 0xf); |
| |
| if ((height & 0xf) != 0) height += 16 - (height & 0xf); |
| |
| if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame, width, height, |
| VP8BORDERINPIXELS)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate last frame buffer"); |
| } |
| |
| if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, |
| VP8BORDERINPIXELS)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled source buffer"); |
| } |
| |
| vpx_free(cpi->tok); |
| |
| { |
| #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING |
| unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */ |
| #else |
| unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16; |
| #endif |
| CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); |
| } |
| |
| /* Data used for real time vc mode to see if gf needs refreshing */ |
| cpi->zeromv_count = 0; |
| |
| /* Structures used to monitor GF usage */ |
| vpx_free(cpi->gf_active_flags); |
| CHECK_MEM_ERROR( |
| cpi->gf_active_flags, |
| vpx_calloc(sizeof(*cpi->gf_active_flags), cm->mb_rows * cm->mb_cols)); |
| cpi->gf_active_count = cm->mb_rows * cm->mb_cols; |
| |
| vpx_free(cpi->mb_activity_map); |
| CHECK_MEM_ERROR( |
| cpi->mb_activity_map, |
| vpx_calloc(sizeof(*cpi->mb_activity_map), cm->mb_rows * cm->mb_cols)); |
| |
| /* allocate memory for storing last frame's MVs for MV prediction. */ |
| vpx_free(cpi->lfmv); |
| CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), |
| sizeof(*cpi->lfmv))); |
| vpx_free(cpi->lf_ref_frame_sign_bias); |
| CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, |
| vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), |
| sizeof(*cpi->lf_ref_frame_sign_bias))); |
| vpx_free(cpi->lf_ref_frame); |
| CHECK_MEM_ERROR(cpi->lf_ref_frame, |
| vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), |
| sizeof(*cpi->lf_ref_frame))); |
| |
| /* Create the encoder segmentation map and set all entries to 0 */ |
| vpx_free(cpi->segmentation_map); |
| CHECK_MEM_ERROR( |
| cpi->segmentation_map, |
| vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->segmentation_map))); |
| cpi->cyclic_refresh_mode_index = 0; |
| vpx_free(cpi->active_map); |
| CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cm->mb_rows * cm->mb_cols, |
| sizeof(*cpi->active_map))); |
| memset(cpi->active_map, 1, (cm->mb_rows * cm->mb_cols)); |
| |
| #if CONFIG_MULTITHREAD |
| if (width < 640) { |
| cpi->mt_sync_range = 1; |
| } else if (width <= 1280) { |
| cpi->mt_sync_range = 4; |
| } else if (width <= 2560) { |
| cpi->mt_sync_range = 8; |
| } else { |
| cpi->mt_sync_range = 16; |
| } |
| |
| if (cpi->oxcf.multi_threaded > 1) { |
| int i; |
| |
| /* De-allocate and re-allocate mutex */ |
| if (cpi->pmutex != NULL) { |
| for (i = 0; i < prev_mb_rows; ++i) { |
| pthread_mutex_destroy(&cpi->pmutex[i]); |
| } |
| vpx_free(cpi->pmutex); |
| cpi->pmutex = NULL; |
| } |
| |
| CHECK_MEM_ERROR(cpi->pmutex, |
| vpx_malloc(sizeof(*cpi->pmutex) * cm->mb_rows)); |
| if (cpi->pmutex) { |
| for (i = 0; i < cm->mb_rows; ++i) { |
| pthread_mutex_init(&cpi->pmutex[i], NULL); |
| } |
| } |
| |
| vpx_free(cpi->mt_current_mb_col); |
| CHECK_MEM_ERROR(cpi->mt_current_mb_col, |
| vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows)); |
| } |
| |
| #endif |
| |
| vpx_free(cpi->tplist); |
| CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows)); |
| |
| #if CONFIG_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| vp8_denoiser_free(&cpi->denoiser); |
| if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows, |
| cm->mb_cols, cpi->oxcf.noise_sensitivity)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate denoiser"); |
| } |
| } |
| #endif |
| } |
| |
| /* Quant MOD */ |
| static const int q_trans[] = { |
| 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, |
| 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, |
| 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79, |
| 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, |
| }; |
| |
| int vp8_reverse_trans(int x) { |
| int i; |
| |
| for (i = 0; i < 64; ++i) { |
| if (q_trans[i] >= x) return i; |
| } |
| |
| return 63; |
| } |
| void vp8_new_framerate(VP8_COMP *cpi, double framerate) { |
| if (framerate < .1) framerate = 30; |
| |
| cpi->framerate = framerate; |
| cpi->output_framerate = framerate; |
| cpi->per_frame_bandwidth = |
| (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate); |
| cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth; |
| cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * |
| cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| /* Set Maximum gf/arf interval */ |
| cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2); |
| |
| if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12; |
| |
| /* Extended interval for genuinely static scenes */ |
| cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; |
| |
| /* Special conditions when altr ref frame enabled in lagged compress mode */ |
| if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { |
| if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) { |
| cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; |
| } |
| |
| if (cpi->twopass.static_scene_max_gf_interval > |
| cpi->oxcf.lag_in_frames - 1) { |
| cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; |
| } |
| } |
| |
| if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) { |
| cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval; |
| } |
| } |
| |
| static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) { |
| VP8_COMMON *cm = &cpi->common; |
| |
| cpi->oxcf = *oxcf; |
| |
| cpi->auto_gold = 1; |
| cpi->auto_adjust_gold_quantizer = 1; |
| |
| cm->version = oxcf->Version; |
| vp8_setup_version(cm); |
| |
| /* Frame rate is not available on the first frame, as it's derived from |
| * the observed timestamps. The actual value used here doesn't matter |
| * too much, as it will adapt quickly. |
| */ |
| if (oxcf->timebase.num > 0) { |
| cpi->framerate = |
| (double)(oxcf->timebase.den) / (double)(oxcf->timebase.num); |
| } else { |
| cpi->framerate = 30; |
| } |
| |
| /* If the reciprocal of the timebase seems like a reasonable framerate, |
| * then use that as a guess, otherwise use 30. |
| */ |
| if (cpi->framerate > 180) cpi->framerate = 30; |
| |
| cpi->ref_framerate = cpi->framerate; |
| |
| cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME; |
| |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 1; |
| cm->refresh_entropy_probs = 1; |
| |
| /* change includes all joint functionality */ |
| vp8_change_config(cpi, oxcf); |
| |
| /* Initialize active best and worst q and average q values. */ |
| cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->active_best_quality = cpi->oxcf.best_allowed_q; |
| cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; |
| |
| /* Initialise the starting buffer levels */ |
| cpi->buffer_level = cpi->oxcf.starting_buffer_level; |
| cpi->bits_off_target = cpi->oxcf.starting_buffer_level; |
| |
| cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| |
| cpi->total_actual_bits = 0; |
| cpi->total_target_vs_actual = 0; |
| |
| /* Temporal scalabilty */ |
| if (cpi->oxcf.number_of_layers > 1) { |
| unsigned int i; |
| double prev_layer_framerate = 0; |
| |
| for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { |
| init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate); |
| prev_layer_framerate = |
| cpi->output_framerate / cpi->oxcf.rate_decimator[i]; |
| } |
| } |
| |
| #if VP8_TEMPORAL_ALT_REF |
| { |
| int i; |
| |
| cpi->fixed_divide[0] = 0; |
| |
| for (i = 1; i < 512; ++i) cpi->fixed_divide[i] = 0x80000 / i; |
| } |
| #endif |
| } |
| |
| static void update_layer_contexts(VP8_COMP *cpi) { |
| VP8_CONFIG *oxcf = &cpi->oxcf; |
| |
| /* Update snapshots of the layer contexts to reflect new parameters */ |
| if (oxcf->number_of_layers > 1) { |
| unsigned int i; |
| double prev_layer_framerate = 0; |
| |
| assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS); |
| for (i = 0; i < oxcf->number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[i]; |
| |
| lc->framerate = cpi->ref_framerate / oxcf->rate_decimator[i]; |
| lc->target_bandwidth = oxcf->target_bitrate[i] * 1000; |
| |
| lc->starting_buffer_level = rescale( |
| (int)oxcf->starting_buffer_level_in_ms, lc->target_bandwidth, 1000); |
| |
| if (oxcf->optimal_buffer_level == 0) { |
| lc->optimal_buffer_level = lc->target_bandwidth / 8; |
| } else { |
| lc->optimal_buffer_level = rescale( |
| (int)oxcf->optimal_buffer_level_in_ms, lc->target_bandwidth, 1000); |
| } |
| |
| if (oxcf->maximum_buffer_size == 0) { |
| lc->maximum_buffer_size = lc->target_bandwidth / 8; |
| } else { |
| lc->maximum_buffer_size = rescale((int)oxcf->maximum_buffer_size_in_ms, |
| lc->target_bandwidth, 1000); |
| } |
| |
| /* Work out the average size of a frame within this layer */ |
| if (i > 0) { |
| lc->avg_frame_size_for_layer = |
| (int)((oxcf->target_bitrate[i] - oxcf->target_bitrate[i - 1]) * |
| 1000 / (lc->framerate - prev_layer_framerate)); |
| } |
| |
| prev_layer_framerate = lc->framerate; |
| } |
| } |
| } |
| |
| void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) { |
| VP8_COMMON *cm = &cpi->common; |
| int last_w, last_h; |
| unsigned int prev_number_of_layers; |
| |
| if (!cpi) return; |
| |
| if (!oxcf) return; |
| |
| if (cm->version != oxcf->Version) { |
| cm->version = oxcf->Version; |
| vp8_setup_version(cm); |
| } |
| |
| last_w = cpi->oxcf.Width; |
| last_h = cpi->oxcf.Height; |
| prev_number_of_layers = cpi->oxcf.number_of_layers; |
| |
| cpi->oxcf = *oxcf; |
| |
| switch (cpi->oxcf.Mode) { |
| case MODE_REALTIME: |
| cpi->pass = 0; |
| cpi->compressor_speed = 2; |
| |
| if (cpi->oxcf.cpu_used < -16) { |
| cpi->oxcf.cpu_used = -16; |
| } |
| |
| if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16; |
| |
| break; |
| |
| case MODE_GOODQUALITY: |
| cpi->pass = 0; |
| cpi->compressor_speed = 1; |
| |
| if (cpi->oxcf.cpu_used < -5) { |
| cpi->oxcf.cpu_used = -5; |
| } |
| |
| if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; |
| |
| break; |
| |
| case MODE_BESTQUALITY: |
| cpi->pass = 0; |
| cpi->compressor_speed = 0; |
| break; |
| |
| case MODE_FIRSTPASS: |
| cpi->pass = 1; |
| cpi->compressor_speed = 1; |
| break; |
| case MODE_SECONDPASS: |
| cpi->pass = 2; |
| cpi->compressor_speed = 1; |
| |
| if (cpi->oxcf.cpu_used < -5) { |
| cpi->oxcf.cpu_used = -5; |
| } |
| |
| if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; |
| |
| break; |
| case MODE_SECONDPASS_BEST: |
| cpi->pass = 2; |
| cpi->compressor_speed = 0; |
| break; |
| } |
| |
| if (cpi->pass == 0) cpi->auto_worst_q = 1; |
| |
| cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; |
| cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; |
| cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; |
| |
| if (oxcf->fixed_q >= 0) { |
| if (oxcf->worst_allowed_q < 0) { |
| cpi->oxcf.fixed_q = q_trans[0]; |
| } else { |
| cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; |
| } |
| |
| if (oxcf->alt_q < 0) { |
| cpi->oxcf.alt_q = q_trans[0]; |
| } else { |
| cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; |
| } |
| |
| if (oxcf->key_q < 0) { |
| cpi->oxcf.key_q = q_trans[0]; |
| } else { |
| cpi->oxcf.key_q = q_trans[oxcf->key_q]; |
| } |
| |
| if (oxcf->gold_q < 0) { |
| cpi->oxcf.gold_q = q_trans[0]; |
| } else { |
| cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; |
| } |
| } |
| |
| cpi->baseline_gf_interval = |
| cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; |
| |
| // GF behavior for 1 pass CBR, used when error_resilience is off. |
| if (!cpi->oxcf.error_resilient_mode && |
| cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && |
| cpi->oxcf.Mode == MODE_REALTIME) |
| cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; |
| |
| #if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) |
| cpi->oxcf.token_partitions = 3; |
| #endif |
| |
| if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) { |
| cm->multi_token_partition = (TOKEN_PARTITION)cpi->oxcf.token_partitions; |
| } |
| |
| setup_features(cpi); |
| |
| { |
| int i; |
| |
| for (i = 0; i < MAX_MB_SEGMENTS; ++i) { |
| cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; |
| } |
| } |
| |
| /* At the moment the first order values may not be > MAXQ */ |
| if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ; |
| |
| /* local file playback mode == really big buffer */ |
| if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { |
| cpi->oxcf.starting_buffer_level = 60000; |
| cpi->oxcf.optimal_buffer_level = 60000; |
| cpi->oxcf.maximum_buffer_size = 240000; |
| cpi->oxcf.starting_buffer_level_in_ms = 60000; |
| cpi->oxcf.optimal_buffer_level_in_ms = 60000; |
| cpi->oxcf.maximum_buffer_size_in_ms = 240000; |
| } |
| |
| /* Convert target bandwidth from Kbit/s to Bit/s */ |
| cpi->oxcf.target_bandwidth *= 1000; |
| |
| cpi->oxcf.starting_buffer_level = rescale( |
| (int)cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); |
| |
| /* Set or reset optimal and maximum buffer levels. */ |
| if (cpi->oxcf.optimal_buffer_level == 0) { |
| cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; |
| } else { |
| cpi->oxcf.optimal_buffer_level = rescale( |
| (int)cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); |
| } |
| |
| if (cpi->oxcf.maximum_buffer_size == 0) { |
| cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; |
| } else { |
| cpi->oxcf.maximum_buffer_size = rescale((int)cpi->oxcf.maximum_buffer_size, |
| cpi->oxcf.target_bandwidth, 1000); |
| } |
| // Under a configuration change, where maximum_buffer_size may change, |
| // keep buffer level clipped to the maximum allowed buffer size. |
| if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { |
| cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; |
| cpi->buffer_level = cpi->bits_off_target; |
| } |
| |
| /* Set up frame rate and related parameters rate control values. */ |
| vp8_new_framerate(cpi, cpi->framerate); |
| |
| /* Set absolute upper and lower quality limits */ |
| cpi->worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->best_quality = cpi->oxcf.best_allowed_q; |
| |
| /* active values should only be modified if out of new range */ |
| if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) { |
| cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; |
| } |
| /* less likely */ |
| else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) { |
| cpi->active_worst_quality = cpi->oxcf.best_allowed_q; |
| } |
| if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) { |
| cpi->active_best_quality = cpi->oxcf.best_allowed_q; |
| } |
| /* less likely */ |
| else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) { |
| cpi->active_best_quality = cpi->oxcf.worst_allowed_q; |
| } |
| |
| cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0; |
| |
| cpi->cq_target_quality = cpi->oxcf.cq_level; |
| |
| /* Only allow dropped frames in buffered mode */ |
| cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; |
| |
| cpi->target_bandwidth = cpi->oxcf.target_bandwidth; |
| |
| // Check if the number of temporal layers has changed, and if so reset the |
| // pattern counter and set/initialize the temporal layer context for the |
| // new layer configuration. |
| if (cpi->oxcf.number_of_layers != prev_number_of_layers) { |
| // If the number of temporal layers are changed we must start at the |
| // base of the pattern cycle, so set the layer id to 0 and reset |
| // the temporal pattern counter. |
| if (cpi->temporal_layer_id > 0) { |
| cpi->temporal_layer_id = 0; |
| } |
| cpi->temporal_pattern_counter = 0; |
| reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers); |
| } |
| |
| if (!cpi->initial_width) { |
| cpi->initial_width = cpi->oxcf.Width; |
| cpi->initial_height = cpi->oxcf.Height; |
| } |
| |
| cm->Width = cpi->oxcf.Width; |
| cm->Height = cpi->oxcf.Height; |
| assert(cm->Width <= cpi->initial_width); |
| assert(cm->Height <= cpi->initial_height); |
| |
| /* TODO(jkoleszar): if an internal spatial resampling is active, |
| * and we downsize the input image, maybe we should clear the |
| * internal scale immediately rather than waiting for it to |
| * correct. |
| */ |
| |
| /* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */ |
| if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7; |
| |
| cm->sharpness_level = cpi->oxcf.Sharpness; |
| |
| if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) { |
| int hr, hs, vr, vs; |
| |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| |
| /* always go to the next whole number */ |
| cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; |
| cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; |
| } |
| |
| if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height) { |
| cpi->force_next_frame_intra = 1; |
| } |
| |
| if (((cm->Width + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_width || |
| ((cm->Height + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_height || |
| cm->yv12_fb[cm->lst_fb_idx].y_width == 0) { |
| dealloc_raw_frame_buffers(cpi); |
| alloc_raw_frame_buffers(cpi); |
| vp8_alloc_compressor_data(cpi); |
| } |
| |
| if (cpi->oxcf.fixed_q >= 0) { |
| cpi->last_q[0] = cpi->oxcf.fixed_q; |
| cpi->last_q[1] = cpi->oxcf.fixed_q; |
| } |
| |
| cpi->Speed = cpi->oxcf.cpu_used; |
| |
| /* force to allowlag to 0 if lag_in_frames is 0; */ |
| if (cpi->oxcf.lag_in_frames == 0) { |
| cpi->oxcf.allow_lag = 0; |
| } |
| /* Limit on lag buffers as these are not currently dynamically allocated */ |
| else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) { |
| cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; |
| } |
| |
| /* YX Temp */ |
| cpi->alt_ref_source = NULL; |
| cpi->is_src_frame_alt_ref = 0; |
| |
| #if CONFIG_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity) { |
| if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc) { |
| int width = (cpi->oxcf.Width + 15) & ~15; |
| int height = (cpi->oxcf.Height + 15) & ~15; |
| if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows, |
| cm->mb_cols, cpi->oxcf.noise_sensitivity)) { |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate denoiser"); |
| } |
| } |
| } |
| #endif |
| |
| #if 0 |
| /* Experimental RD Code */ |
| cpi->frame_distortion = 0; |
| cpi->last_frame_distortion = 0; |
| #endif |
| } |
| |
| #ifndef M_LOG2_E |
| #define M_LOG2_E 0.693147180559945309417 |
| #endif |
| #define log2f(x) (log(x) / (float)M_LOG2_E) |
| |
| static void cal_mvsadcosts(int *mvsadcost[2]) { |
| int i = 1; |
| |
| mvsadcost[0][0] = 300; |
| mvsadcost[1][0] = 300; |
| |
| do { |
| double z = 256 * (2 * (log2f(8 * i) + .6)); |
| mvsadcost[0][i] = (int)z; |
| mvsadcost[1][i] = (int)z; |
| mvsadcost[0][-i] = (int)z; |
| mvsadcost[1][-i] = (int)z; |
| } while (++i <= mvfp_max); |
| } |
| |
| struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf) { |
| int i; |
| |
| VP8_COMP *cpi; |
| VP8_COMMON *cm; |
| |
| cpi = vpx_memalign(32, sizeof(VP8_COMP)); |
| /* Check that the CPI instance is valid */ |
| if (!cpi) return 0; |
| |
| cm = &cpi->common; |
| |
| memset(cpi, 0, sizeof(VP8_COMP)); |
| |
| if (setjmp(cm->error.jmp)) { |
| cpi->common.error.setjmp = 0; |
| vp8_remove_compressor(&cpi); |
| return 0; |
| } |
| |
| cpi->common.error.setjmp = 1; |
| |
| CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), |
| (MAX_MVSEARCH_STEPS * 8) + 1)); |
| |
| vp8_create_common(&cpi->common); |
| |
| init_config(cpi, oxcf); |
| |
| memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, |
| sizeof(vp8cx_base_skip_false_prob)); |
| cpi->common.current_video_frame = 0; |
| cpi->temporal_pattern_counter = 0; |
| cpi->temporal_layer_id = -1; |
| cpi->kf_overspend_bits = 0; |
| cpi->kf_bitrate_adjustment = 0; |
| cpi->frames_till_gf_update_due = 0; |
| cpi->gf_overspend_bits = 0; |
| cpi->non_gf_bitrate_adjustment = 0; |
| cpi->prob_last_coded = 128; |
| cpi->prob_gf_coded = 128; |
| cpi->prob_intra_coded = 63; |
| |
| /* Prime the recent reference frame usage counters. |
| * Hereafter they will be maintained as a sort of moving average |
| */ |
| cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; |
| cpi->recent_ref_frame_usage[LAST_FRAME] = 1; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; |
| |
| /* Set reference frame sign bias for ALTREF frame to 1 (for now) */ |
| cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; |
| |
| cpi->twopass.gf_decay_rate = 0; |
| cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; |
| |
| cpi->gold_is_last = 0; |
| cpi->alt_is_last = 0; |
| cpi->gold_is_alt = 0; |
| |
| cpi->active_map_enabled = 0; |
| |
| #if 0 |
| /* Experimental code for lagged and one pass */ |
| /* Initialise one_pass GF frames stats */ |
| /* Update stats used for GF selection */ |
| if (cpi->pass == 0) |
| { |
| cpi->one_pass_frame_index = 0; |
| |
| for (i = 0; i < MAX_LAG_BUFFERS; ++i) |
| { |
| cpi->one_pass_frame_stats[i].frames_so_far = 0; |
| cpi->one_pass_frame_stats[i].frame_intra_error = 0.0; |
| cpi->one_pass_frame_stats[i].frame_coded_error = 0.0; |
| cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0; |
| cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvr = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvc = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0; |
| } |
| } |
| #endif |
| |
| cpi->mse_source_denoised = 0; |
| |
| /* Should we use the cyclic refresh method. |
| * Currently there is no external control for this. |
| * Enable it for error_resilient_mode, or for 1 pass CBR mode. |
| */ |
| cpi->cyclic_refresh_mode_enabled = |
| (cpi->oxcf.error_resilient_mode || |
| (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && |
| cpi->oxcf.Mode <= 2)); |
| cpi->cyclic_refresh_mode_max_mbs_perframe = |
| (cpi->common.mb_rows * cpi->common.mb_cols) / 7; |
| if (cpi->oxcf.number_of_layers == 1) { |
| cpi->cyclic_refresh_mode_max_mbs_perframe = |
| (cpi->common.mb_rows * cpi->common.mb_cols) / 20; |
| } else if (cpi->oxcf.number_of_layers == 2) { |
| cpi->cyclic_refresh_mode_max_mbs_perframe = |
| (cpi->common.mb_rows * cpi->common.mb_cols) / 10; |
| } |
| cpi->cyclic_refresh_mode_index = 0; |
| cpi->cyclic_refresh_q = 32; |
| |
| // GF behavior for 1 pass CBR, used when error_resilience is off. |
| cpi->gf_update_onepass_cbr = 0; |
| cpi->gf_noboost_onepass_cbr = 0; |
| if (!cpi->oxcf.error_resilient_mode && |
| cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode <= 2) { |
| cpi->gf_update_onepass_cbr = 1; |
| cpi->gf_noboost_onepass_cbr = 1; |
| cpi->gf_interval_onepass_cbr = |
| cpi->cyclic_refresh_mode_max_mbs_perframe > 0 |
| ? (2 * (cpi->common.mb_rows * cpi->common.mb_cols) / |
| cpi->cyclic_refresh_mode_max_mbs_perframe) |
| : 10; |
| cpi->gf_interval_onepass_cbr = |
| VPXMIN(40, VPXMAX(6, cpi->gf_interval_onepass_cbr)); |
| cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; |
| } |
| |
| if (cpi->cyclic_refresh_mode_enabled) { |
| CHECK_MEM_ERROR(cpi->cyclic_refresh_map, |
| vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); |
| } else { |
| cpi->cyclic_refresh_map = (signed char *)NULL; |
| } |
| |
| CHECK_MEM_ERROR(cpi->consec_zero_last, |
| vpx_calloc(cm->mb_rows * cm->mb_cols, 1)); |
| CHECK_MEM_ERROR(cpi->consec_zero_last_mvbias, |
| vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); |
| |
| #ifdef VP8_ENTROPY_STATS |
| init_context_counters(); |
| #endif |
| |
| /*Initialize the feed-forward activity masking.*/ |
| cpi->activity_avg = 90 << 12; |
| |
| /* Give a sensible default for the first frame. */ |
| cpi->frames_since_key = 8; |
| cpi->key_frame_frequency = cpi->oxcf.key_freq; |
| cpi->this_key_frame_forced = 0; |
| cpi->next_key_frame_forced = 0; |
| |
| cpi->source_alt_ref_pending = 0; |
| cpi->source_alt_ref_active = 0; |
| cpi->common.refresh_alt_ref_frame = 0; |
| |
| cpi->force_maxqp = 0; |
| |
| cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; |
| #if CONFIG_INTERNAL_STATS |
| cpi->b_calculate_ssimg = 0; |
| |
| cpi->count = 0; |
| cpi->bytes = 0; |
| |
| if (cpi->b_calculate_psnr) { |
| cpi->total_sq_error = 0.0; |
| cpi->total_sq_error2 = 0.0; |
| cpi->total_y = 0.0; |
| cpi->total_u = 0.0; |
| cpi->total_v = 0.0; |
| cpi->total = 0.0; |
| cpi->totalp_y = 0.0; |
| cpi->totalp_u = 0.0; |
| cpi->totalp_v = 0.0; |
| cpi->totalp = 0.0; |
| cpi->tot_recode_hits = 0; |
| cpi->summed_quality = 0; |
| cpi->summed_weights = 0; |
| } |
| |
| #endif |
| |
| cpi->first_time_stamp_ever = 0x7FFFFFFF; |
| |
| cpi->frames_till_gf_update_due = 0; |
| cpi->key_frame_count = 1; |
| |
| cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; |
| cpi->ni_tot_qi = 0; |
| cpi->ni_frames = 0; |
| cpi->total_byte_count = 0; |
| |
| cpi->drop_frame = 0; |
| |
| cpi->rate_correction_factor = 1.0; |
| cpi->key_frame_rate_correction_factor = 1.0; |
| cpi->gf_rate_correction_factor = 1.0; |
| cpi->twopass.est_max_qcorrection_factor = 1.0; |
| |
| for (i = 0; i < KEY_FRAME_CONTEXT; ++i) { |
| cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate; |
| } |
| |
| #ifdef OUTPUT_YUV_SRC |
| yuv_file = fopen("bd.yuv", "ab"); |
| #endif |
| #ifdef OUTPUT_YUV_DENOISED |
| yuv_denoised_file = fopen("denoised.yuv", "ab"); |
| #endif |
| |
| #if 0 |
| framepsnr = fopen("framepsnr.stt", "a"); |
| kf_list = fopen("kf_list.stt", "w"); |
| #endif |
| |
| cpi->output_pkt_list = oxcf->output_pkt_list; |
| |
| #if !CONFIG_REALTIME_ONLY |
| |
| if (cpi->pass == 1) { |
| vp8_init_first_pass(cpi); |
| } else if (cpi->pass == 2) { |
| size_t packet_sz = sizeof(FIRSTPASS_STATS); |
| int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); |
| |
| cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; |
| cpi->twopass.stats_in = cpi->twopass.stats_in_start; |
| cpi->twopass.stats_in_end = |
| (void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz); |
| vp8_init_second_pass(cpi); |
| } |
| |
| #endif |
| |
| if (cpi->compressor_speed == 2) { |
| cpi->avg_encode_time = 0; |
| cpi->avg_pick_mode_time = 0; |
| } |
| |
| vp8_set_speed_features(cpi); |
| |
| /* Set starting values of RD threshold multipliers (128 = *1) */ |
| for (i = 0; i < MAX_MODES; ++i) { |
| cpi->mb.rd_thresh_mult[i] = 128; |
| } |
| |
| #ifdef VP8_ENTROPY_STATS |
| init_mv_ref_counts(); |
| #endif |
| |
| #if CONFIG_MULTITHREAD |
| if (vp8cx_create_encoder_threads(cpi)) { |
| vp8_remove_compressor(&cpi); |
| return 0; |
| } |
| #endif |
| |
| cpi->fn_ptr[BLOCK_16X16].sdf = vpx_sad16x16; |
| cpi->fn_ptr[BLOCK_16X16].vf = vpx_variance16x16; |
| cpi->fn_ptr[BLOCK_16X16].svf = vpx_sub_pixel_variance16x16; |
| cpi->fn_ptr[BLOCK_16X16].sdx3f = vpx_sad16x16x3; |
| cpi->fn_ptr[BLOCK_16X16].sdx8f = vpx_sad16x16x8; |
| cpi->fn_ptr[BLOCK_16X16].sdx4df = vpx_sad16x16x4d; |
| |
| cpi->fn_ptr[BLOCK_16X8].sdf = vpx_sad16x8; |
| cpi->fn_ptr[BLOCK_16X8].vf = vpx_variance16x8; |
| cpi->fn_ptr[BLOCK_16X8].svf = vpx_sub_pixel_variance16x8; |
| cpi->fn_ptr[BLOCK_16X8].sdx3f = vpx_sad16x8x3; |
| cpi->fn_ptr[BLOCK_16X8].sdx8f = vpx_sad16x8x8; |
| cpi->fn_ptr[BLOCK_16X8].sdx4df = vpx_sad16x8x4d; |
| |
| cpi->fn_ptr[BLOCK_8X16].sdf = vpx_sad8x16; |
| cpi->fn_ptr[BLOCK_8X16].vf = vpx_variance8x16; |
| cpi->fn_ptr[BLOCK_8X16].svf = vpx_sub_pixel_variance8x16; |
| cpi->fn_ptr[BLOCK_8X16].sdx3f = vpx_sad8x16x3; |
| cpi->fn_ptr[BLOCK_8X16].sdx8f = vpx_sad8x16x8; |
| cpi->fn_ptr[BLOCK_8X16].sdx4df = vpx_sad8x16x4d; |
| |
| cpi->fn_ptr[BLOCK_8X8].sdf = vpx_sad8x8; |
| cpi->fn_ptr[BLOCK_8X8].vf = vpx_variance8x8; |
| cpi->fn_ptr[BLOCK_8X8].svf = vpx_sub_pixel_variance8x8; |
| cpi->fn_ptr[BLOCK_8X8].sdx3f = vpx_sad8x8x3; |
| cpi->fn_ptr[BLOCK_8X8].sdx8f = vpx_sad8x8x8; |
| cpi->fn_ptr[BLOCK_8X8].sdx4df = vpx_sad8x8x4d; |
| |
| cpi->fn_ptr[BLOCK_4X4].sdf = vpx_sad4x4; |
| cpi->fn_ptr[BLOCK_4X4].vf = vpx_variance4x4; |
| cpi->fn_ptr[BLOCK_4X4].svf = vpx_sub_pixel_variance4x4; |
| cpi->fn_ptr[BLOCK_4X4].sdx3f = vpx_sad4x4x3; |
| cpi->fn_ptr[BLOCK_4X4].sdx8f = vpx_sad4x4x8; |
| cpi->fn_ptr[BLOCK_4X4].sdx4df = vpx_sad4x4x4d; |
| |
| #if ARCH_X86 || ARCH_X86_64 |
| cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn; |
| cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn; |
| cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn; |
| cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn; |
| cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn; |
| #endif |
| |
| cpi->full_search_sad = vp8_full_search_sad; |
| cpi->diamond_search_sad = vp8_diamond_search_sad; |
| cpi->refining_search_sad = vp8_refining_search_sad; |
| |
| /* make sure frame 1 is okay */ |
| cpi->mb.error_bins[0] = cpi->common.MBs; |
| |
| /* vp8cx_init_quantizer() is first called here. Add check in |
| * vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only |
| * called later when needed. This will avoid unnecessary calls of |
| * vp8cx_init_quantizer() for every frame. |
| */ |
| vp8cx_init_quantizer(cpi); |
| |
| vp8_loop_filter_init(cm); |
| |
| cpi->common.error.setjmp = 0; |
| |
| #if CONFIG_MULTI_RES_ENCODING |
| |
| /* Calculate # of MBs in a row in lower-resolution level image. */ |
| if (cpi->oxcf.mr_encoder_id > 0) vp8_cal_low_res_mb_cols(cpi); |
| |
| #endif |
| |
| /* setup RD costs to MACROBLOCK struct */ |
| |
| cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max + 1]; |
| cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max + 1]; |
| cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max + 1]; |
| cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max + 1]; |
| |
| cal_mvsadcosts(cpi->mb.mvsadcost); |
| |
| cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost; |
| cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost; |
| cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs; |
| cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs; |
| cpi->mb.token_costs = cpi->rd_costs.token_costs; |
| |
| /* setup block ptrs & offsets */ |
| vp8_setup_block_ptrs(&cpi->mb); |
| vp8_setup_block_dptrs(&cpi->mb.e_mbd); |
| |
| return cpi; |
| } |
| |
| void vp8_remove_compressor(VP8_COMP **ptr) { |
| VP8_COMP *cpi = *ptr; |
| |
| if (!cpi) return; |
| |
| if (cpi && (cpi->common.current_video_frame > 0)) { |
| #if !CONFIG_REALTIME_ONLY |
| |
| if (cpi->pass == 2) { |
| vp8_end_second_pass(cpi); |
| } |
| |
| #endif |
| |
| #ifdef VP8_ENTROPY_STATS |
| print_context_counters(); |
| print_tree_update_probs(); |
| print_mode_context(); |
| #endif |
| |
| #if CONFIG_INTERNAL_STATS |
| |
| if (cpi->pass != 1) { |
| FILE *f = fopen("opsnr.stt", "a"); |
| double time_encoded = |
| (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / |
| 10000000.000; |
| double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded; |
| |
| if (cpi->b_calculate_psnr) { |
| if (cpi->oxcf.number_of_layers > 1) { |
| int i; |
| |
| fprintf(f, |
| "Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t" |
| "GLPsnrP\tVPXSSIM\n"); |
| for (i = 0; i < (int)cpi->oxcf.number_of_layers; ++i) { |
| double dr = |
| (double)cpi->bytes_in_layer[i] * 8.0 / 1000.0 / time_encoded; |
| double samples = 3.0 / 2 * cpi->frames_in_layer[i] * |
| cpi->common.Width * cpi->common.Height; |
| double total_psnr = |
| vpx_sse_to_psnr(samples, 255.0, cpi->total_error2[i]); |
| double total_psnr2 = |
| vpx_sse_to_psnr(samples, 255.0, cpi->total_error2_p[i]); |
| double total_ssim = |
| 100 * pow(cpi->sum_ssim[i] / cpi->sum_weights[i], 8.0); |
| |
| fprintf(f, |
| "%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\n", |
| i, dr, cpi->sum_psnr[i] / cpi->frames_in_layer[i], |
| total_psnr, cpi->sum_psnr_p[i] / cpi->frames_in_layer[i], |
| total_psnr2, total_ssim); |
| } |
| } else { |
| double samples = |
| 3.0 / 2 * cpi->count * cpi->common.Width * cpi->common.Height; |
| double total_psnr = |
| vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error); |
| double total_psnr2 = |
| vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error2); |
| double total_ssim = |
| 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); |
| |
| fprintf(f, |
| "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t" |
| "GLPsnrP\tVPXSSIM\n"); |
| fprintf(f, |
| "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\n", |
| dr, cpi->total / cpi->count, total_psnr, |
| cpi->totalp / cpi->count, total_psnr2, total_ssim); |
| } |
| } |
| fclose(f); |
| #if 0 |
| f = fopen("qskip.stt", "a"); |
| fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount); |
| fclose(f); |
| #endif |
| } |
| |
| #endif |
| |
| #ifdef SPEEDSTATS |
| |
| if (cpi->compressor_speed == 2) { |
| int i; |
| FILE *f = fopen("cxspeed.stt", "a"); |
| cnt_pm /= cpi->common.MBs; |
| |
| for (i = 0; i < 16; ++i) fprintf(f, "%5d", frames_at_speed[i]); |
| |
| fprintf(f, "\n"); |
| fclose(f); |
| } |
| |
| #endif |
| |
| #ifdef MODE_STATS |
| { |
| extern int count_mb_seg[4]; |
| FILE *f = fopen("modes.stt", "a"); |
| double dr = (double)cpi->framerate * (double)bytes * (double)8 / |
| (double)count / (double)1000; |
| fprintf(f, "intra_mode in Intra Frames:\n"); |
| fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], |
| y_modes[2], y_modes[3], y_modes[4]); |
| fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], |
| uv_modes[2], uv_modes[3]); |
| fprintf(f, "B: "); |
| { |
| int i; |
| |
| for (i = 0; i < 10; ++i) fprintf(f, "%8d, ", b_modes[i]); |
| |
| fprintf(f, "\n"); |
| } |
| |
| fprintf(f, "Modes in Inter Frames:\n"); |
| fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", |
| inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], |
| inter_y_modes[3], inter_y_modes[4], inter_y_modes[5], |
| inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], |
| inter_y_modes[9]); |
| fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], |
| inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]); |
| fprintf(f, "B: "); |
| { |
| int i; |
| |
| for (i = 0; i < 15; ++i) fprintf(f, "%8d, ", inter_b_modes[i]); |
| |
| fprintf(f, "\n"); |
| } |
| fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], |
| count_mb_seg[2], count_mb_seg[3]); |
| fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], |
| inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], |
| inter_b_modes[NEW4X4]); |
| |
| fclose(f); |
| } |
| #endif |
| |
| #ifdef VP8_ENTROPY_STATS |
| { |
| int i, j, k; |
| FILE *fmode = fopen("modecontext.c", "w"); |
| |
| fprintf(fmode, "\n#include \"entropymode.h\"\n\n"); |
| fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts "); |
| fprintf(fmode, |
| "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n"); |
| |
| for (i = 0; i < 10; ++i) { |
| fprintf(fmode, " { /* Above Mode : %d */\n", i); |
| |
| for (j = 0; j < 10; ++j) { |
| fprintf(fmode, " {"); |
| |
| for (k = 0; k < 10; ++k) { |
| if (!intra_mode_stats[i][j][k]) |
| fprintf(fmode, " %5d, ", 1); |
| else |
| fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); |
| } |
| |
| fprintf(fmode, "}, /* left_mode %d */\n", j); |
| } |
| |
| fprintf(fmode, " },\n"); |
| } |
| |
| fprintf(fmode, "};\n"); |
| fclose(fmode); |
| } |
| #endif |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| |
| if (0) { |
| int i; |
| FILE *f = fopen("tokenbits.stt", "a"); |
| |
| for (i = 0; i < 28; ++i) fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); |
| |
| fprintf(f, "\n"); |
| fclose(f); |
| } |
| |
| #endif |
| |
| #if 0 |
| { |
| printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); |
| printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); |
| printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); |
| } |
| #endif |
| } |
| |
| #if CONFIG_MULTITHREAD |
| vp8cx_remove_encoder_threads(cpi); |
| #endif |
| |
| #if CONFIG_TEMPORAL_DENOISING |
| vp8_denoiser_free(&cpi->denoiser); |
| #endif |
| dealloc_compressor_data(cpi); |
| vpx_free(cpi->mb.ss); |
| vpx_free(cpi->tok); |
| vpx_free(cpi->cyclic_refresh_map); |
| vpx_free(cpi->consec_zero_last); |
| vpx_free(cpi->consec_zero_last_mvbias); |
| |
| vp8_remove_common(&cpi->common); |
| vpx_free(cpi); |
| *ptr = 0; |
| |
| #ifdef OUTPUT_YUV_SRC |
| fclose(yuv_file); |
| #endif |
| #ifdef OUTPUT_YUV_DENOISED |
| fclose(yuv_denoised_file); |
| #endif |
| |
| #if 0 |
| |
| if (keyfile) |
| fclose(keyfile); |
| |
| if (framepsnr) |
| fclose(framepsnr); |
| |
| if (kf_list) |
| fclose(kf_list); |
| |
| #endif |
| } |
| |
| static uint64_t calc_plane_error(unsigned char *orig, int orig_stride, |
| unsigned char *recon, int recon_stride, |
| unsigned int cols, unsigned int rows) { |
| unsigned int row, col; |
| uint64_t total_sse = 0; |
| int diff; |
| |
| for (row = 0; row + 16 <= rows; row += 16) { |
| for (col = 0; col + 16 <= cols; col += 16) { |
| unsigned int sse; |
| |
| vpx_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); |
| total_sse += sse; |
| } |
| |
| /* Handle odd-sized width */ |
| if (col < cols) { |
| unsigned int border_row, border_col; |
| unsigned char *border_orig = orig; |
| unsigned char *border_recon = recon; |
| |
| for (border_row = 0; border_row < 16; ++border_row) { |
| for (border_col = col; border_col < cols; ++border_col) { |
| diff = border_orig[border_col] - border_recon[border_col]; |
| total_sse += diff * diff; |
| } |
| |
| border_orig += orig_stride; |
| border_recon += recon_stride; |
| } |
| } |
| |
| orig += orig_stride * 16; |
| recon += recon_stride * 16; |
| } |
| |
| /* Handle odd-sized height */ |
| for (; row < rows; ++row) { |
| for (col = 0; col < cols; ++col) { |
| diff = orig[col] - recon[col]; |
| total_sse += diff * diff; |
| } |
| |
| orig += orig_stride; |
| recon += recon_stride; |
| } |
| |
| vpx_clear_system_state(); |
| return total_sse; |
| } |
| |
| static void generate_psnr_packet(VP8_COMP *cpi) { |
| YV12_BUFFER_CONFIG *orig = cpi->Source; |
| YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; |
| struct vpx_codec_cx_pkt pkt; |
| uint64_t sse; |
| int i; |
| unsigned int width = cpi->common.Width; |
| unsigned int height = cpi->common.Height; |
| |
| pkt.kind = VPX_CODEC_PSNR_PKT; |
| sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, |
| recon->y_stride, width, height); |
| pkt.data.psnr.sse[0] = sse; |
| pkt.data.psnr.sse[1] = sse; |
| pkt.data.psnr.samples[0] = width * height; |
| pkt.data.psnr.samples[1] = width * height; |
| |
| width = (width + 1) / 2; |
| height = (height + 1) / 2; |
| |
| sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, |
| recon->uv_stride, width, height); |
| pkt.data.psnr.sse[0] += sse; |
| pkt.data.psnr.sse[2] = sse; |
| pkt.data.psnr.samples[0] += width * height; |
| pkt.data.psnr.samples[2] = width * height; |
| |
| sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, |
| recon->uv_stride, width, height); |
| pkt.data.psnr.sse[0] += sse; |
| pkt.data.psnr.sse[3] = sse; |
| pkt.data.psnr.samples[0] += width * height; |
| pkt.data.psnr.samples[3] = width * height; |
| |
| for (i = 0; i < 4; ++i) { |
| pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0, |
| (double)(pkt.data.psnr.sse[i])); |
| } |
| |
| vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); |
| } |
| |
| int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags) { |
| if (ref_frame_flags > 7) return -1; |
| |
| cpi->ref_frame_flags = ref_frame_flags; |
| return 0; |
| } |
| int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags) { |
| if (ref_frame_flags > 7) return -1; |
| |
| cpi->common.refresh_golden_frame = 0; |
| cpi->common.refresh_alt_ref_frame = 0; |
| cpi->common.refresh_last_frame = 0; |
| |
| if (ref_frame_flags & VP8_LAST_FRAME) cpi->common.refresh_last_frame = 1; |
| |
| if (ref_frame_flags & VP8_GOLD_FRAME) cpi->common.refresh_golden_frame = 1; |
| |
| if (ref_frame_flags & VP8_ALTR_FRAME) cpi->common.refresh_alt_ref_frame = 1; |
| |
| return 0; |
| } |
| |
| int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, |
| YV12_BUFFER_CONFIG *sd) { |
| VP8_COMMON *cm = &cpi->common; |
| int ref_fb_idx; |
| |
| if (ref_frame_flag == VP8_LAST_FRAME) { |
| ref_fb_idx = cm->lst_fb_idx; |
| } else if (ref_frame_flag == VP8_GOLD_FRAME) { |
| ref_fb_idx = cm->gld_fb_idx; |
| } else if (ref_frame_flag == VP8_ALTR_FRAME) { |
| ref_fb_idx = cm->alt_fb_idx; |
| } else { |
| return -1; |
| } |
| |
| vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd); |
| |
| return 0; |
| } |
| int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, |
| YV12_BUFFER_CONFIG *sd) { |
| VP8_COMMON *cm = &cpi->common; |
| |
| int ref_fb_idx; |
| |
| if (ref_frame_flag == VP8_LAST_FRAME) { |
| ref_fb_idx = cm->lst_fb_idx; |
| } else if (ref_frame_flag == VP8_GOLD_FRAME) { |
| ref_fb_idx = cm->gld_fb_idx; |
| } else if (ref_frame_flag == VP8_ALTR_FRAME) { |
| ref_fb_idx = cm->alt_fb_idx; |
| } else { |
| return -1; |
| } |
| |
| vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]); |
| |
| return 0; |
| } |
| int vp8_update_entropy(VP8_COMP *cpi, int update) { |
| VP8_COMMON *cm = &cpi->common; |
| cm->refresh_entropy_probs = update; |
| |
| return 0; |
| } |
| |
| #if defined(OUTPUT_YUV_SRC) || defined(OUTPUT_YUV_DENOISED) |
| void vp8_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) { |
| unsigned char *src = s->y_buffer; |
| int h = s->y_height; |
| |
| do { |
| fwrite(src, s->y_width, 1, yuv_file); |
| src += s->y_stride; |
| } while (--h); |
| |
| src = s->u_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| src = s->v_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_file); |
| src += s->uv_stride; |
| } while (--h); |
| } |
| #endif |
| |
| static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) { |
| VP8_COMMON *cm = &cpi->common; |
| |
| /* are we resizing the image */ |
| if (cm->horiz_scale != 0 || cm->vert_scale != 0) { |
| #if CONFIG_SPATIAL_RESAMPLING |
| int hr, hs, vr, vs; |
| int tmp_height; |
| |
| if (cm->vert_scale == 3) { |
| tmp_height = 9; |
| } else { |
| tmp_height = 11; |
| } |
| |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| |
| vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer, |
| tmp_height, hs, hr, vs, vr, 0); |
| |
| vp8_yv12_extend_frame_borders(&cpi->scaled_source); |
| cpi->Source = &cpi->scaled_source; |
| #endif |
| } else { |
| cpi->Source = sd; |
| } |
| } |
| |
| static int resize_key_frame(VP8_COMP *cpi) { |
| #if CONFIG_SPATIAL_RESAMPLING |
| VP8_COMMON *cm = &cpi->common; |
| |
| /* Do we need to apply resampling for one pass cbr. |
| * In one pass this is more limited than in two pass cbr. |
| * The test and any change is only made once per key frame sequence. |
| */ |
| if (cpi->oxcf.allow_spatial_resampling && |
| (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) { |
| int hr, hs, vr, vs; |
| int new_width, new_height; |
| |
| /* If we are below the resample DOWN watermark then scale down a |
| * notch. |
| */ |
| if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * |
| cpi->oxcf.optimal_buffer_level / 100)) { |
| cm->horiz_scale = |
| (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO; |
| cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO; |
| } |
| /* Should we now start scaling back up */ |
| else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * |
| cpi->oxcf.optimal_buffer_level / 100)) { |
| cm->horiz_scale = |
| (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL; |
| cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL; |
| } |
| |
| /* Get the new height and width */ |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; |
| new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; |
| |
| /* If the image size has changed we need to reallocate the buffers |
| * and resample the source image |
| */ |
| if ((cm->Width != new_width<
|