blob: d0919695ce96f727d03ea15c31a4f75429734e63 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/convolve.h"
#include "vpx_dsp/x86/convolve_avx2.h"
#include "vpx_ports/mem.h"
// filters for 16_h8
DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};
DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = {
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};
DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = {
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};
DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = {
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};
static INLINE void vpx_filter_block1d16_h8_x_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter,
const int avg) {
__m128i outReg1, outReg2;
__m256i outReg32b1, outReg32b2;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
__m256i f[4], filt[4], s[4];
shuffle_filter_avx2(filter, f);
filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2);
filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2);
filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2);
filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2);
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
__m256i srcReg;
// load the 2 strides of source
srcReg =
_mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr - 3)));
srcReg = _mm256_inserti128_si256(
srcReg,
_mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line - 3)),
1);
// filter the source buffer
s[0] = _mm256_shuffle_epi8(srcReg, filt[0]);
s[1] = _mm256_shuffle_epi8(srcReg, filt[1]);
s[2] = _mm256_shuffle_epi8(srcReg, filt[2]);
s[3] = _mm256_shuffle_epi8(srcReg, filt[3]);
outReg32b1 = convolve8_16_avx2(s, f);
// reading 2 strides of the next 16 bytes
// (part of it was being read by earlier read)
srcReg =
_mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr + 5)));
srcReg = _mm256_inserti128_si256(
srcReg,
_mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line + 5)),
1);
// filter the source buffer
s[0] = _mm256_shuffle_epi8(srcReg, filt[0]);
s[1] = _mm256_shuffle_epi8(srcReg, filt[1]);
s[2] = _mm256_shuffle_epi8(srcReg, filt[2]);
s[3] = _mm256_shuffle_epi8(srcReg, filt[3]);
outReg32b2 = convolve8_16_avx2(s, f);
// shrink to 8 bit each 16 bits, the low and high 64-bits of each lane
// contain the first and second convolve result respectively
outReg32b1 = _mm256_packus_epi16(outReg32b1, outReg32b2);
src_ptr += src_stride;
// average if necessary
outReg1 = _mm256_castsi256_si128(outReg32b1);
outReg2 = _mm256_extractf128_si256(outReg32b1, 1);
if (avg) {
outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr));
outReg2 = _mm_avg_epu8(
outReg2, _mm_load_si128((__m128i *)(output_ptr + output_pitch)));
}
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr, outReg1);
// save the next 16 bits
_mm_store_si128((__m128i *)(output_ptr + output_pitch), outReg2);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 16 bytes
if (i > 0) {
__m128i srcReg;
// load the first 16 bytes of the last row
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
s[0] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[0])));
s[1] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[1])));
s[2] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[2])));
s[3] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[3])));
outReg1 = convolve8_8_avx2(s, f);
// reading the next 16 bytes
// (part of it was being read by earlier read)
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr + 5));
// filter the source buffer
s[0] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[0])));
s[1] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[1])));
s[2] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[2])));
s[3] = _mm256_castsi128_si256(
_mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[3])));
outReg2 = convolve8_8_avx2(s, f);
// shrink to 8 bit each 16 bits, the low and high 64-bits of each lane
// contain the first and second convolve result respectively
outReg1 = _mm_packus_epi16(outReg1, outReg2);
// average if necessary
if (avg) {
outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr));
}
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr, outReg1);
}
}
static void vpx_filter_block1d16_h8_avx2(
const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *output_ptr,
ptrdiff_t dst_stride, uint32_t output_height, const int16_t *filter) {
vpx_filter_block1d16_h8_x_avx2(src_ptr, src_stride, output_ptr, dst_stride,
output_height, filter, 0);
}
static void vpx_filter_block1d16_h8_avg_avx2(
const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *output_ptr,
ptrdiff_t dst_stride, uint32_t output_height, const int16_t *filter) {
vpx_filter_block1d16_h8_x_avx2(src_ptr, src_stride, output_ptr, dst_stride,
output_height, filter, 1);
}
static INLINE void vpx_filter_block1d16_v8_x_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter,
const int avg) {
__m128i outReg1, outReg2;
__m256i srcRegHead1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
__m256i f[4], s1[4], s2[4];
shuffle_filter_avx2(filter, f);
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
{
__m128i s[6];
__m256i s32b[6];
// load 16 bytes 7 times in stride of src_pitch
s[0] = _mm_loadu_si128((const __m128i *)(src_ptr + 0 * src_pitch));
s[1] = _mm_loadu_si128((const __m128i *)(src_ptr + 1 * src_pitch));
s[2] = _mm_loadu_si128((const __m128i *)(src_ptr + 2 * src_pitch));
s[3] = _mm_loadu_si128((const __m128i *)(src_ptr + 3 * src_pitch));
s[4] = _mm_loadu_si128((const __m128i *)(src_ptr + 4 * src_pitch));
s[5] = _mm_loadu_si128((const __m128i *)(src_ptr + 5 * src_pitch));
srcRegHead1 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + 6 * src_pitch)));
// have each consecutive loads on the same 256 register
s32b[0] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[0]), s[1], 1);
s32b[1] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[1]), s[2], 1);
s32b[2] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[2]), s[3], 1);
s32b[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[3]), s[4], 1);
s32b[4] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[4]), s[5], 1);
s32b[5] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[5]),
_mm256_castsi256_si128(srcRegHead1), 1);
// merge every two consecutive registers except the last one
// the first lanes contain values for filtering odd rows (1,3,5...) and
// the second lanes contain values for filtering even rows (2,4,6...)
s1[0] = _mm256_unpacklo_epi8(s32b[0], s32b[1]);
s2[0] = _mm256_unpackhi_epi8(s32b[0], s32b[1]);
s1[1] = _mm256_unpacklo_epi8(s32b[2], s32b[3]);
s2[1] = _mm256_unpackhi_epi8(s32b[2], s32b[3]);
s1[2] = _mm256_unpacklo_epi8(s32b[4], s32b[5]);
s2[2] = _mm256_unpackhi_epi8(s32b[4], s32b[5]);
}
for (i = output_height; i > 1; i -= 2) {
__m256i srcRegHead2, srcRegHead3;
// load the next 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcRegHead2 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + 7 * src_pitch)));
srcRegHead1 = _mm256_inserti128_si256(
srcRegHead1, _mm256_castsi256_si128(srcRegHead2), 1);
srcRegHead3 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + 8 * src_pitch)));
srcRegHead2 = _mm256_inserti128_si256(
srcRegHead2, _mm256_castsi256_si128(srcRegHead3), 1);
// merge the two new consecutive registers
// the first lane contain values for filtering odd rows (1,3,5...) and
// the second lane contain values for filtering even rows (2,4,6...)
s1[3] = _mm256_unpacklo_epi8(srcRegHead1, srcRegHead2);
s2[3] = _mm256_unpackhi_epi8(srcRegHead1, srcRegHead2);
s1[0] = convolve8_16_avx2(s1, f);
s2[0] = convolve8_16_avx2(s2, f);
// shrink to 8 bit each 16 bits, the low and high 64-bits of each lane
// contain the first and second convolve result respectively
s1[0] = _mm256_packus_epi16(s1[0], s2[0]);
src_ptr += src_stride;
// average if necessary
outReg1 = _mm256_castsi256_si128(s1[0]);
outReg2 = _mm256_extractf128_si256(s1[0], 1);
if (avg) {
outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr));
outReg2 = _mm_avg_epu8(
outReg2, _mm_load_si128((__m128i *)(output_ptr + out_pitch)));
}
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr, outReg1);
// save the next 16 bits
_mm_store_si128((__m128i *)(output_ptr + out_pitch), outReg2);
output_ptr += dst_stride;
// shift down by two rows
s1[0] = s1[1];
s2[0] = s2[1];
s1[1] = s1[2];
s2[1] = s2[2];
s1[2] = s1[3];
s2[2] = s2[3];
srcRegHead1 = srcRegHead3;
}
// if the number of strides is odd.
// process only 16 bytes
if (i > 0) {
// load the last 16 bytes
const __m128i srcRegHead2 =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
// merge the last 2 results together
s1[0] = _mm256_castsi128_si256(
_mm_unpacklo_epi8(_mm256_castsi256_si128(srcRegHead1), srcRegHead2));
s2[0] = _mm256_castsi128_si256(
_mm_unpackhi_epi8(_mm256_castsi256_si128(srcRegHead1), srcRegHead2));
outReg1 = convolve8_8_avx2(s1, f);
outReg2 = convolve8_8_avx2(s2, f);
// shrink to 8 bit each 16 bits, the low and high 64-bits of each lane
// contain the first and second convolve result respectively
outReg1 = _mm_packus_epi16(outReg1, outReg2);
// average if necessary
if (avg) {
outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr));
}
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr, outReg1);
}
}
static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr,
ptrdiff_t src_stride, uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *filter) {
vpx_filter_block1d16_v8_x_avx2(src_ptr, src_stride, dst_ptr, dst_stride,
height, filter, 0);
}
static void vpx_filter_block1d16_v8_avg_avx2(
const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *filter) {
vpx_filter_block1d16_v8_x_avx2(src_ptr, src_stride, dst_ptr, dst_stride,
height, filter, 1);
}
#if HAVE_AVX2 && HAVE_SSSE3
filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
#if ARCH_X86_64
filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3;
#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_intrin_ssse3
#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_intrin_ssse3
#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_intrin_ssse3
#else // ARCH_X86
filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_ssse3
#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_ssse3
#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_ssse3
#endif // ARCH_X86_64
filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
#define vpx_filter_block1d8_v8_avg_avx2 vpx_filter_block1d8_v8_avg_ssse3
#define vpx_filter_block1d8_h8_avg_avx2 vpx_filter_block1d8_h8_avg_ssse3
#define vpx_filter_block1d4_v8_avg_avx2 vpx_filter_block1d4_v8_avg_ssse3
#define vpx_filter_block1d4_h8_avg_avx2 vpx_filter_block1d4_h8_avg_ssse3
filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
#define vpx_filter_block1d4_v8_avx2 vpx_filter_block1d4_v8_ssse3
#define vpx_filter_block1d16_v2_avx2 vpx_filter_block1d16_v2_ssse3
#define vpx_filter_block1d16_h2_avx2 vpx_filter_block1d16_h2_ssse3
#define vpx_filter_block1d8_v2_avx2 vpx_filter_block1d8_v2_ssse3
#define vpx_filter_block1d8_h2_avx2 vpx_filter_block1d8_h2_ssse3
#define vpx_filter_block1d4_v2_avx2 vpx_filter_block1d4_v2_ssse3
#define vpx_filter_block1d4_h2_avx2 vpx_filter_block1d4_h2_ssse3
filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3;
#define vpx_filter_block1d16_v2_avg_avx2 vpx_filter_block1d16_v2_avg_ssse3
#define vpx_filter_block1d16_h2_avg_avx2 vpx_filter_block1d16_h2_avg_ssse3
#define vpx_filter_block1d8_v2_avg_avx2 vpx_filter_block1d8_v2_avg_ssse3
#define vpx_filter_block1d8_h2_avg_avx2 vpx_filter_block1d8_h2_avg_ssse3
#define vpx_filter_block1d4_v2_avg_avx2 vpx_filter_block1d4_v2_avg_ssse3
#define vpx_filter_block1d4_h2_avg_avx2 vpx_filter_block1d4_h2_avg_ssse3
// void vpx_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
// void vpx_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
// void vpx_convolve8_avg_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4,
// int y_step_q4, int w, int h);
// void vpx_convolve8_avg_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4,
// int y_step_q4, int w, int h);
FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , avx2);
FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , avx2);
FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, avx2);
FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, avx2);
// void vpx_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
// void vpx_convolve8_avg_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
FUN_CONV_2D(, avx2);
FUN_CONV_2D(avg_, avx2);
#endif // HAVE_AX2 && HAVE_SSSE3