blob: 655a36be9a4c8986826bad19323e3bd62d8cd1c3 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "test/acm_random.h"
#include "test/buffer.h"
#include "test/register_state_check.h"
#include "vpx_ports/vpx_timer.h"
namespace {
using ::libvpx_test::ACMRandom;
using ::libvpx_test::Buffer;
typedef void (*TemporalFilterFunc)(const uint8_t *a, unsigned int stride,
const uint8_t *b, unsigned int w,
unsigned int h, int filter_strength,
int filter_weight, unsigned int *accumulator,
uint16_t *count);
// Calculate the difference between 'a' and 'b', sum in blocks of 9, and apply
// filter based on strength and weight. Store the resulting filter amount in
// 'count' and apply it to 'b' and store it in 'accumulator'.
void reference_filter(const Buffer<uint8_t> &a, const Buffer<uint8_t> &b, int w,
int h, int filter_strength, int filter_weight,
Buffer<unsigned int> *accumulator,
Buffer<uint16_t> *count) {
Buffer<int> diff_sq = Buffer<int>(w, h, 0);
ASSERT_TRUE(diff_sq.Init());
diff_sq.Set(0);
int rounding = 0;
if (filter_strength > 0) {
rounding = 1 << (filter_strength - 1);
}
// Calculate all the differences. Avoids re-calculating a bunch of extra
// values.
for (int height = 0; height < h; ++height) {
for (int width = 0; width < w; ++width) {
int diff = a.TopLeftPixel()[height * a.stride() + width] -
b.TopLeftPixel()[height * b.stride() + width];
diff_sq.TopLeftPixel()[height * diff_sq.stride() + width] = diff * diff;
}
}
// For any given point, sum the neighboring values and calculate the
// modifier.
for (int height = 0; height < h; ++height) {
for (int width = 0; width < w; ++width) {
// Determine how many values are being summed.
int summed_values = 9;
if (height == 0 || height == (h - 1)) {
summed_values -= 3;
}
if (width == 0 || width == (w - 1)) {
if (summed_values == 6) { // corner
summed_values -= 2;
} else {
summed_values -= 3;
}
}
// Sum the diff_sq of the surrounding values.
int sum = 0;
for (int idy = -1; idy <= 1; ++idy) {
for (int idx = -1; idx <= 1; ++idx) {
const int y = height + idy;
const int x = width + idx;
// If inside the border.
if (y >= 0 && y < h && x >= 0 && x < w) {
sum += diff_sq.TopLeftPixel()[y * diff_sq.stride() + x];
}
}
}
sum *= 3;
sum /= summed_values;
sum += rounding;
sum >>= filter_strength;
// Clamp the value and invert it.
if (sum > 16) sum = 16;
sum = 16 - sum;
sum *= filter_weight;
count->TopLeftPixel()[height * count->stride() + width] += sum;
accumulator->TopLeftPixel()[height * accumulator->stride() + width] +=
sum * b.TopLeftPixel()[height * b.stride() + width];
}
}
}
class TemporalFilterTest : public ::testing::TestWithParam<TemporalFilterFunc> {
public:
virtual void SetUp() {
filter_func_ = GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
}
protected:
TemporalFilterFunc filter_func_;
ACMRandom rnd_;
};
TEST_P(TemporalFilterTest, SizeCombinations) {
// Depending on subsampling this function may be called with values of 8 or 16
// for width and height, in any combination.
Buffer<uint8_t> a = Buffer<uint8_t>(16, 16, 8);
ASSERT_TRUE(a.Init());
const int filter_weight = 2;
const int filter_strength = 6;
for (int width = 8; width <= 16; width += 8) {
for (int height = 8; height <= 16; height += 8) {
// The second buffer must not have any border.
Buffer<uint8_t> b = Buffer<uint8_t>(width, height, 0);
ASSERT_TRUE(b.Init());
Buffer<unsigned int> accum_ref = Buffer<unsigned int>(width, height, 0);
ASSERT_TRUE(accum_ref.Init());
Buffer<unsigned int> accum_chk = Buffer<unsigned int>(width, height, 0);
ASSERT_TRUE(accum_chk.Init());
Buffer<uint16_t> count_ref = Buffer<uint16_t>(width, height, 0);
ASSERT_TRUE(count_ref.Init());
Buffer<uint16_t> count_chk = Buffer<uint16_t>(width, height, 0);
ASSERT_TRUE(count_chk.Init());
// The difference between the buffers must be small to pass the threshold
// to apply the filter.
a.Set(&rnd_, 0, 7);
b.Set(&rnd_, 0, 7);
accum_ref.Set(rnd_.Rand8());
accum_chk.CopyFrom(accum_ref);
count_ref.Set(rnd_.Rand8());
count_chk.CopyFrom(count_ref);
reference_filter(a, b, width, height, filter_strength, filter_weight,
&accum_ref, &count_ref);
ASM_REGISTER_STATE_CHECK(
filter_func_(a.TopLeftPixel(), a.stride(), b.TopLeftPixel(), width,
height, filter_strength, filter_weight,
accum_chk.TopLeftPixel(), count_chk.TopLeftPixel()));
EXPECT_TRUE(accum_chk.CheckValues(accum_ref));
EXPECT_TRUE(count_chk.CheckValues(count_ref));
if (HasFailure()) {
printf("Width: %d Height: %d\n", width, height);
count_chk.PrintDifference(count_ref);
accum_chk.PrintDifference(accum_ref);
return;
}
}
}
}
TEST_P(TemporalFilterTest, CompareReferenceRandom) {
for (int width = 8; width <= 16; width += 8) {
for (int height = 8; height <= 16; height += 8) {
Buffer<uint8_t> a = Buffer<uint8_t>(width, height, 8);
ASSERT_TRUE(a.Init());
// The second buffer must not have any border.
Buffer<uint8_t> b = Buffer<uint8_t>(width, height, 0);
ASSERT_TRUE(b.Init());
Buffer<unsigned int> accum_ref = Buffer<unsigned int>(width, height, 0);
ASSERT_TRUE(accum_ref.Init());
Buffer<unsigned int> accum_chk = Buffer<unsigned int>(width, height, 0);
ASSERT_TRUE(accum_chk.Init());
Buffer<uint16_t> count_ref = Buffer<uint16_t>(width, height, 0);
ASSERT_TRUE(count_ref.Init());
Buffer<uint16_t> count_chk = Buffer<uint16_t>(width, height, 0);
ASSERT_TRUE(count_chk.Init());
for (int filter_strength = 0; filter_strength <= 6; ++filter_strength) {
for (int filter_weight = 0; filter_weight <= 2; ++filter_weight) {
for (int repeat = 0; repeat < 100; ++repeat) {
if (repeat < 50) {
a.Set(&rnd_, 0, 7);
b.Set(&rnd_, 0, 7);
} else {
// Check large (but close) values as well.
a.Set(&rnd_, std::numeric_limits<uint8_t>::max() - 7,
std::numeric_limits<uint8_t>::max());
b.Set(&rnd_, std::numeric_limits<uint8_t>::max() - 7,
std::numeric_limits<uint8_t>::max());
}
accum_ref.Set(rnd_.Rand8());
accum_chk.CopyFrom(accum_ref);
count_ref.Set(rnd_.Rand8());
count_chk.CopyFrom(count_ref);
reference_filter(a, b, width, height, filter_strength,
filter_weight, &accum_ref, &count_ref);
ASM_REGISTER_STATE_CHECK(filter_func_(
a.TopLeftPixel(), a.stride(), b.TopLeftPixel(), width, height,
filter_strength, filter_weight, accum_chk.TopLeftPixel(),
count_chk.TopLeftPixel()));
EXPECT_TRUE(accum_chk.CheckValues(accum_ref));
EXPECT_TRUE(count_chk.CheckValues(count_ref));
if (HasFailure()) {
printf("Weight: %d Strength: %d\n", filter_weight,
filter_strength);
count_chk.PrintDifference(count_ref);
accum_chk.PrintDifference(accum_ref);
return;
}
}
}
}
}
}
}
TEST_P(TemporalFilterTest, DISABLED_Speed) {
Buffer<uint8_t> a = Buffer<uint8_t>(16, 16, 8);
ASSERT_TRUE(a.Init());
const int filter_weight = 2;
const int filter_strength = 6;
for (int width = 8; width <= 16; width += 8) {
for (int height = 8; height <= 16; height += 8) {
// The second buffer must not have any border.
Buffer<uint8_t> b = Buffer<uint8_t>(width, height, 0);
ASSERT_TRUE(b.Init());
Buffer<unsigned int> accum_ref = Buffer<unsigned int>(width, height, 0);
ASSERT_TRUE(accum_ref.Init());
Buffer<unsigned int> accum_chk = Buffer<unsigned int>(width, height, 0);
ASSERT_TRUE(accum_chk.Init());
Buffer<uint16_t> count_ref = Buffer<uint16_t>(width, height, 0);
ASSERT_TRUE(count_ref.Init());
Buffer<uint16_t> count_chk = Buffer<uint16_t>(width, height, 0);
ASSERT_TRUE(count_chk.Init());
a.Set(&rnd_, 0, 7);
b.Set(&rnd_, 0, 7);
accum_chk.Set(0);
count_chk.Set(0);
vpx_usec_timer timer;
vpx_usec_timer_start(&timer);
for (int i = 0; i < 10000; ++i) {
filter_func_(a.TopLeftPixel(), a.stride(), b.TopLeftPixel(), width,
height, filter_strength, filter_weight,
accum_chk.TopLeftPixel(), count_chk.TopLeftPixel());
}
vpx_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer));
printf("Temporal filter %dx%d time: %5d us\n", width, height,
elapsed_time);
}
}
}
INSTANTIATE_TEST_CASE_P(C, TemporalFilterTest,
::testing::Values(&vp9_temporal_filter_apply_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_CASE_P(SSE4_1, TemporalFilterTest,
::testing::Values(&vp9_temporal_filter_apply_sse4_1));
#endif // HAVE_SSE4_1
} // namespace