| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Contains classes that can execute different models/parts of a model. |
| |
| #ifndef LIBTEXTCLASSIFIER_UTILS_TFLITE_MODEL_EXECUTOR_H_ |
| #define LIBTEXTCLASSIFIER_UTILS_TFLITE_MODEL_EXECUTOR_H_ |
| |
| #include <cstdint> |
| #include <memory> |
| |
| #include "utils/base/logging.h" |
| #include "utils/tensor-view.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/mutable_op_resolver.h" |
| #include "tensorflow/lite/op_resolver.h" |
| #include "tensorflow/lite/string_util.h" |
| |
| namespace libtextclassifier3 { |
| |
| // Creates a TF.Lite Op resolver in default configuration, with ops for |
| // Annotator and Actions models. |
| std::unique_ptr<tflite::OpResolver> BuildOpResolver(); |
| |
| // Like above, but allows passage of a function that can register additional |
| // ops. |
| std::unique_ptr<tflite::OpResolver> BuildOpResolver( |
| const std::function<void(tflite::MutableOpResolver*)>& customize_fn); |
| |
| std::unique_ptr<const tflite::FlatBufferModel> TfLiteModelFromModelSpec( |
| const tflite::Model*); |
| std::unique_ptr<const tflite::FlatBufferModel> TfLiteModelFromBuffer( |
| const flatbuffers::Vector<uint8_t>*); |
| |
| // Executor for the text selection prediction and classification models. |
| class TfLiteModelExecutor { |
| public: |
| static std::unique_ptr<TfLiteModelExecutor> FromModelSpec( |
| const tflite::Model* model_spec) { |
| auto model = TfLiteModelFromModelSpec(model_spec); |
| if (!model) { |
| return nullptr; |
| } |
| return std::unique_ptr<TfLiteModelExecutor>( |
| new TfLiteModelExecutor(std::move(model))); |
| } |
| |
| static std::unique_ptr<TfLiteModelExecutor> FromBuffer( |
| const flatbuffers::Vector<uint8_t>* model_spec_buffer) { |
| auto model = TfLiteModelFromBuffer(model_spec_buffer); |
| if (!model) { |
| return nullptr; |
| } |
| return std::unique_ptr<TfLiteModelExecutor>( |
| new TfLiteModelExecutor(std::move(model))); |
| } |
| |
| // Creates an Interpreter for the model that serves as a scratch-pad for the |
| // inference. The Interpreter is NOT thread-safe. |
| std::unique_ptr<tflite::Interpreter> CreateInterpreter() const; |
| |
| template <typename T> |
| void SetInput(const int input_index, const TensorView<T>& input_data, |
| tflite::Interpreter* interpreter) const { |
| input_data.copy_to(interpreter->typed_input_tensor<T>(input_index), |
| input_data.size()); |
| } |
| |
| template <typename T> |
| void SetInput(const int input_index, const std::vector<T>& input_data, |
| tflite::Interpreter* interpreter) const { |
| std::copy(input_data.begin(), input_data.end(), |
| interpreter->typed_input_tensor<T>(input_index)); |
| } |
| |
| template <typename T> |
| void SetInput(const int input_index, const T input_value, |
| tflite::Interpreter* interpreter) const { |
| TfLiteTensor* input_tensor = |
| interpreter->tensor(interpreter->inputs()[input_index]); |
| switch (input_tensor->type) { |
| case kTfLiteFloat32: |
| *tflite::GetTensorData<float>(input_tensor) = input_value; |
| break; |
| case kTfLiteInt32: |
| *tflite::GetTensorData<int32_t>(input_tensor) = input_value; |
| break; |
| case kTfLiteUInt8: |
| *tflite::GetTensorData<uint8_t>(input_tensor) = input_value; |
| break; |
| case kTfLiteInt64: |
| *tflite::GetTensorData<int64_t>(input_tensor) = input_value; |
| break; |
| case kTfLiteBool: |
| *tflite::GetTensorData<bool>(input_tensor) = input_value; |
| break; |
| case kTfLiteInt16: |
| *tflite::GetTensorData<int16_t>(input_tensor) = input_value; |
| break; |
| case kTfLiteInt8: |
| *tflite::GetTensorData<int8_t>(input_tensor) = input_value; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| template <typename T> |
| TensorView<T> OutputView(const int output_index, |
| const tflite::Interpreter* interpreter) const { |
| const TfLiteTensor* output_tensor = |
| interpreter->tensor(interpreter->outputs()[output_index]); |
| return TensorView<T>(interpreter->typed_output_tensor<T>(output_index), |
| std::vector<int>(output_tensor->dims->data, |
| output_tensor->dims->data + |
| output_tensor->dims->size)); |
| } |
| |
| template <typename T> |
| std::vector<T> Output(const int output_index, |
| const tflite::Interpreter* interpreter) const { |
| TensorView<T> output_view = OutputView<T>(output_index, interpreter); |
| return std::vector<T>(output_view.data(), |
| output_view.data() + output_view.size()); |
| } |
| |
| protected: |
| explicit TfLiteModelExecutor( |
| std::unique_ptr<const tflite::FlatBufferModel> model); |
| TfLiteModelExecutor(std::unique_ptr<const tflite::FlatBufferModel> model, |
| std::unique_ptr<tflite::OpResolver> resolver); |
| |
| std::unique_ptr<const tflite::FlatBufferModel> model_; |
| std::unique_ptr<tflite::OpResolver> resolver_; |
| }; |
| |
| template <> |
| void TfLiteModelExecutor::SetInput(const int input_index, |
| const std::vector<std::string>& input_data, |
| tflite::Interpreter* interpreter) const; |
| |
| template <> |
| std::vector<tflite::StringRef> TfLiteModelExecutor::Output( |
| const int output_index, const tflite::Interpreter* interpreter) const; |
| |
| template <> |
| std::vector<std::string> TfLiteModelExecutor::Output( |
| const int output_index, const tflite::Interpreter* interpreter) const; |
| |
| } // namespace libtextclassifier3 |
| |
| #endif // LIBTEXTCLASSIFIER_UTILS_TFLITE_MODEL_EXECUTOR_H_ |