blob: b886076aa3d0220732895c69286ed6e7191b8fc0 [file] [log] [blame] [edit]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils/bert_tokenizer.h"
#include <string>
#include <vector>
#include "annotator/types.h"
#include "utils/tokenizer-utils.h"
#include "utils/utf8/unicodetext.h"
#include "utils/utf8/unilib.h"
#include "absl/strings/string_view.h"
namespace libtextclassifier3 {
namespace {
int SafeLookup(const std::vector<int>& vector, int index) {
if (vector.empty()) {
return 0;
}
index = std::max(index, 0);
index = std::min(index, static_cast<int>(vector.size()) - 1);
return vector[index];
}
} // namespace
FlatHashMapBackedWordpiece::FlatHashMapBackedWordpiece(
const std::vector<std::string>& vocab)
: vocab_{vocab} {
for (int i = 0; i < vocab_.size(); ++i) {
index_map_[vocab_[i]] = i;
}
}
LookupStatus FlatHashMapBackedWordpiece::Contains(absl::string_view key,
bool* value) const {
*value = index_map_.contains(key);
return LookupStatus();
}
bool FlatHashMapBackedWordpiece::LookupId(const absl::string_view key,
int* result) const {
auto it = index_map_.find(key);
if (it == index_map_.end()) {
return false;
}
*result = it->second;
return true;
}
bool FlatHashMapBackedWordpiece::LookupWord(int vocab_id,
absl::string_view* result) const {
if (vocab_id >= vocab_.size() || vocab_id < 0) {
return false;
}
*result = vocab_[vocab_id];
return true;
}
TokenizerResult BertTokenizer::Tokenize(const std::string& input) {
return TokenizeIntoWordpieces(input);
}
WordpieceTokenizerResult BertTokenizer::TokenizeIntoWordpieces(
const std::string& input) {
std::vector<Token> tokens =
TokenizeOnWhiteSpacePunctuationAndChineseLetter(input);
return TokenizeIntoWordpieces(tokens);
}
WordpieceTokenizerResult BertTokenizer::TokenizeSingleToken(
const std::string& token) {
const UnicodeText token_unicode = UTF8ToUnicodeText(token, /*do_copy=*/false);
std::vector<Token> tokens = {
Token(token, 0, token_unicode.size_codepoints())};
return TokenizeIntoWordpieces(tokens);
}
WordpieceTokenizerResult BertTokenizer::TokenizeIntoWordpieces(
const std::vector<Token>& tokens) {
WordpieceTokenizerResult result;
std::vector<std::string>& subwords = result.subwords;
for (int token_index = 0; token_index < tokens.size(); token_index++) {
const Token& token = tokens[token_index];
int num_word_pieces = 0;
std::vector<int> wp_absolute_begin_offset;
std::vector<int> wp_absolute_end_offset;
LookupStatus status = WordpieceTokenize(
token.value, options_.max_bytes_per_token,
options_.max_chars_per_subtoken, options_.suffix_indicator,
options_.use_unknown_token, options_.unknown_token,
options_.split_unknown_chars, &vocab_, &subwords,
&wp_absolute_begin_offset, &wp_absolute_end_offset, &num_word_pieces);
const UnicodeText token_unicode =
UTF8ToUnicodeText(token.value, /*do_copy=*/false);
std::vector<int> byte_to_codepoint_offsets;
int byte_to_codepoint_offset = 0;
for (const auto& it : token_unicode.Codepoints()) {
byte_to_codepoint_offsets.resize(
it.utf8_data() + it.utf8_length() - token_unicode.data(),
byte_to_codepoint_offset++);
}
byte_to_codepoint_offsets.push_back(byte_to_codepoint_offset);
for (const int offset : wp_absolute_begin_offset) {
result.wp_begin_offset.push_back(
token.start + SafeLookup(byte_to_codepoint_offsets, offset));
}
for (const int offset : wp_absolute_end_offset) {
result.wp_end_offset.push_back(
token.start + SafeLookup(byte_to_codepoint_offsets, offset));
}
result.row_lengths.push_back(num_word_pieces);
if (!status.success) {
return result;
}
}
return result;
}
// This replicates how the original bert_tokenizer from the tflite-support
// library pretokenize text by using regex_split with these default regexes.
// It splits the text on spaces, punctuations and chinese characters and
// output all the tokens except spaces.
// So far, the only difference between this and the original implementation
// we are aware of is that the original regexes has 8 ranges of chinese
// unicodes. We have all these 8 ranges plus two extra ranges.
std::vector<std::string> BertTokenizer::PreTokenize(
const absl::string_view input) {
const std::vector<Token> tokens =
TokenizeOnWhiteSpacePunctuationAndChineseLetter(input);
std::vector<std::string> token_texts;
std::transform(tokens.begin(), tokens.end(), std::back_inserter(token_texts),
[](Token const& token) { return std::move(token.value); });
return token_texts;
}
} // namespace libtextclassifier3