blob: e68d1d5b6824bf61a50b00fd621087f251c54299 [file] [log] [blame] [edit]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "actions/tflite-sensitive-model.h"
#include <utility>
#include "actions/actions_model_generated.h"
#include "actions/types.h"
namespace libtextclassifier3 {
namespace {
const char kNotSensitive[] = "NOT_SENSITIVE";
} // namespace
std::unique_ptr<TFLiteSensitiveModel> TFLiteSensitiveModel::Create(
const TFLiteSensitiveClassifierConfig* model_config) {
auto result_model = std::unique_ptr<TFLiteSensitiveModel>(
new TFLiteSensitiveModel(model_config));
if (result_model->model_executor_ == nullptr) {
return nullptr;
}
return result_model;
}
std::pair<bool, float> TFLiteSensitiveModel::Eval(
const UnicodeText& text) const {
// Create a conversation with one message and classify it.
Conversation conversation;
conversation.messages.emplace_back();
conversation.messages.front().text = text.ToUTF8String();
return EvalConversation(conversation, 1);
}
std::pair<bool, float> TFLiteSensitiveModel::EvalConversation(
const Conversation& conversation, int num_messages) const {
if (model_executor_ == nullptr) {
return std::make_pair(false, 0.0f);
}
const auto interpreter = model_executor_->CreateInterpreter();
if (interpreter->AllocateTensors() != kTfLiteOk) {
// TODO(mgubin): report error that tensors can't be allocated.
return std::make_pair(false, 0.0f);
}
// The sensitive model is actually an ordinary TFLite model with Lingua API,
// prepare texts and user_ids similar way, it doesn't use timediffs.
std::vector<std::string> context;
std::vector<int> user_ids;
context.reserve(num_messages);
user_ids.reserve(num_messages);
// Gather last `num_messages` messages from the conversation.
for (int i = conversation.messages.size() - num_messages;
i < conversation.messages.size(); i++) {
const ConversationMessage& message = conversation.messages[i];
context.push_back(message.text);
user_ids.push_back(message.user_id);
}
// Allocate tensors.
//
if (model_config_->model_spec()->input_context() >= 0) {
if (model_config_->model_spec()->input_length_to_pad() > 0) {
context.resize(model_config_->model_spec()->input_length_to_pad());
}
model_executor_->SetInput<std::string>(
model_config_->model_spec()->input_context(), context,
interpreter.get());
}
if (model_config_->model_spec()->input_context_length() >= 0) {
model_executor_->SetInput<int>(
model_config_->model_spec()->input_context_length(), context.size(),
interpreter.get());
}
// Num suggestions is always locked to 3.
if (model_config_->model_spec()->input_num_suggestions() > 0) {
model_executor_->SetInput<int>(
model_config_->model_spec()->input_num_suggestions(), 3,
interpreter.get());
}
if (interpreter->Invoke() != kTfLiteOk) {
// TODO(mgubin): Report a error about invoke.
return std::make_pair(false, 0.0f);
}
// Check that the prediction is not-sensitive.
const std::vector<tflite::StringRef> replies =
model_executor_->Output<tflite::StringRef>(
model_config_->model_spec()->output_replies(), interpreter.get());
const TensorView<float> scores = model_executor_->OutputView<float>(
model_config_->model_spec()->output_replies_scores(), interpreter.get());
for (int i = 0; i < replies.size(); ++i) {
const auto reply = replies[i];
if (reply.len != sizeof(kNotSensitive) - 1 &&
0 != memcmp(reply.str, kNotSensitive, sizeof(kNotSensitive))) {
const auto score = scores.data()[i];
if (score >= model_config_->threshold()) {
return std::make_pair(true, score);
}
}
}
return std::make_pair(false, 1.0);
}
TFLiteSensitiveModel::TFLiteSensitiveModel(
const TFLiteSensitiveClassifierConfig* model_config)
: model_config_(model_config),
model_executor_(TfLiteModelExecutor::FromBuffer(
model_config->model_spec()->tflite_model())) {}
} // namespace libtextclassifier3